51
|
Gaisano HY. Here come the newcomer granules, better late than never. Trends Endocrinol Metab 2014; 25:381-8. [PMID: 24746186 DOI: 10.1016/j.tem.2014.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
Abstract
Exocytosis in pancreatic β-cells employs Munc18/soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that mediate the priming and docking onto the plasma membrane (PM) of insulin granules, called predocked granules, that sit on the PM until Ca(2+) influx evokes fusion. This accounts for most of the initial peak secretory response. However, the subsequent sustained phase of glucose-stimulated insulin secretion arises from newcomer granules that have a minimal residence time at the PM before fusion. In this Opinion I discuss recent work that has begun to decipher the components of the exocytotic machinery of newcomer granules, including a Munc18/SNARE complex that is different from that mediating the fusion of predocked granules and which can potentially rescue defective insulin secretion in diabetes. These insights are applicable to other neuroendocrine cells that exhibit sustained secretion.
Collapse
Affiliation(s)
- Herbert Y Gaisano
- Department of Medicine, University of Toronto, M5S 1A8, Toronto, Canada.
| |
Collapse
|
52
|
Walter AM, Kurps J, de Wit H, Schöning S, Toft-Bertelsen TL, Lauks J, Ziomkiewicz I, Weiss AN, Schulz A, Fischer von Mollard G, Verhage M, Sørensen JB. The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 2014; 33:1681-97. [PMID: 24902738 DOI: 10.15252/embj.201387549] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca(2+)-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca(2+)-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca(2+)-channel trafficking, but is dispensable for transmitter release.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Julia Kurps
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Susanne Schöning
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Trine L Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Lauks
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Iwona Ziomkiewicz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Annita N Weiss
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Li H, Wei S, Cheng K, Gounko NV, Ericksen RE, Xu A, Hong W, Han W. BIG3 inhibits insulin granule biogenesis and insulin secretion. EMBO Rep 2014; 15:714-22. [PMID: 24711543 DOI: 10.1002/embr.201338181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While molecular regulation of insulin granule exocytosis is relatively well understood, insulin granule biogenesis and maturation and its influence on glucose homeostasis are relatively unclear. Here, we identify a novel protein highly expressed in insulin-secreting cells and name it BIG3 due to its similarity to BIG/GBF of the Arf-GTP exchange factor (GEF) family. BIG3 is predominantly localized to insulin- and clathrin-positive trans-Golgi network (TGN) compartments. BIG3-deficient insulin-secreting cells display increased insulin content and granule number and elevated insulin secretion upon stimulation. Moreover, BIG3 deficiency results in faster processing of proinsulin to insulin and chromogranin A to β-granin in β-cells. BIG3-knockout mice exhibit postprandial hyperinsulinemia, hyperglycemia, impaired glucose tolerance, and insulin resistance. Collectively, these results demonstrate that BIG3 negatively modulates insulin granule biogenesis and insulin secretion and participates in the regulation of systemic glucose homeostasis.
Collapse
Affiliation(s)
- Hongyu Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shunhui Wei
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Joint IMB-IMCB Electron Microscopy Suite, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Russell E Ericksen
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China Department of Medicine, University of Hong Kong, Hong Kong, China Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
54
|
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals. Proc Natl Acad Sci U S A 2014; 111:3597-601. [PMID: 24550480 DOI: 10.1073/pnas.1322170111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.
Collapse
|
55
|
Vardjan N, Kreft M, Zorec R. Regulated Exocytosis in Astrocytes is as Slow as the Metabolic Availability of Gliotransmitters: Focus on Glutamate and ATP. GLUTAMATE AND ATP AT THE INTERFACE OF METABOLISM AND SIGNALING IN THE BRAIN 2014; 11:81-101. [DOI: 10.1007/978-3-319-08894-5_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Trudeau KM, Gottlieb RA, Shirihai OS. Measurement of mitochondrial turnover and life cycle using MitoTimer. Methods Enzymol 2014; 547:21-38. [PMID: 25416350 DOI: 10.1016/b978-0-12-801415-8.00002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current methodologies available to quantify changes in mitochondrial turnover are limited to pulse-chase assays or specific assays that quantify mitophagy. Accordingly, new tools that can assess mitochondrial turnover are needed for the study of cellular, subcellular, and spatial parameters of mitochondrial turnover and quality control. Recently, a group of studies described the use of the MitoTimer fluorescent probe to investigate various aspects of mitochondrial turnover, including changes to protein import, interorganelle protein sharing, and autophagy-mediated turnover. MitoTimer provides a fluorescent readout which directly relates to the mitochondrial turnover rate and allows quantification of relative changes to turnover. Importantly, MitoTimer can be used to investigate mitochondrial turnover on the subcellular level. Due to the fact that MitoTimer is a dual-emission probe and a number of factors can affect MitoTimer readout, certain considerations must be taken into account when using this tool both in experimental design and data interpretation. When used and interpreted appropriately, MitoTimer serves as a unique tool to understand pivotal aspects of mitochondrial turnover.
Collapse
Affiliation(s)
- Kyle M Trudeau
- Department of Medicine, Obesity and Nutrition Section, The Mitochondria Affinity Research Collaborative, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Roberta A Gottlieb
- Department of Molecular Cardiobiology, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, The Mitochondria Affinity Research Collaborative, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, USA; Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
57
|
Ivanova A, Kalaidzidis Y, Dirkx R, Sarov M, Gerlach M, Schroth-Diez B, Müller A, Liu Y, Andree C, Mulligan B, Münster C, Kurth T, Bickle M, Speier S, Anastassiadis K, Solimena M. Age-dependent labeling and imaging of insulin secretory granules. Diabetes 2013; 62:3687-96. [PMID: 23929935 PMCID: PMC3806613 DOI: 10.2337/db12-1819] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is stored within the secretory granules of pancreatic β-cells, and impairment of its release is the hallmark of type 2 diabetes. Preferential exocytosis of newly synthesized insulin suggests that granule aging is a key factor influencing insulin secretion. Here, we illustrate a technology that enables the study of granule aging in insulinoma cells and β-cells of knock-in mice through the conditional and unequivocal labeling of insulin fused to the SNAP tag. This approach, which overcomes the limits encountered with previous strategies based on radiolabeling or fluorescence timer proteins, allowed us to formally demonstrate the preferential release of newly synthesized insulin and reveal that the motility of cortical granules significantly changes over time. Exploitation of this approach may enable the identification of molecular signatures associated with granule aging and unravel possible alterations of granule turnover in diabetic β-cells. Furthermore, the method is of general interest for the study of membrane traffic and aging.
Collapse
Affiliation(s)
- Anna Ivanova
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- International Max Planck Research School, Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ronald Dirkx
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Gerlach
- Islet Cell Regeneration, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Britta Schroth-Diez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Müller
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
| | - Yanmei Liu
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Cordula Andree
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bernard Mulligan
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephan Speier
- Islet Cell Regeneration, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | | | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Corresponding author: Michele Solimena,
| |
Collapse
|
58
|
Hiersemenzel K, Brown ER, Duncan RR. Imaging large cohorts of single ion channels and their activity. Front Endocrinol (Lausanne) 2013; 4:114. [PMID: 24027557 PMCID: PMC3762133 DOI: 10.3389/fendo.2013.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 01/16/2023] Open
Abstract
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca(2+) indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca(2+) indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells.
Collapse
Affiliation(s)
- Katia Hiersemenzel
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Euan R. Brown
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Rory R. Duncan
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- *Correspondence: Rory R. Duncan, Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK e-mail:
| |
Collapse
|
59
|
Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgačevski J, Kreft M, Zorec R. Astrocytic vesicle mobility in health and disease. Int J Mol Sci 2013; 14:11238-58. [PMID: 23712361 PMCID: PMC3709730 DOI: 10.3390/ijms140611238] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5′-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Mateja Gabrijel
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Saša Trkov
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-1543-7020; Fax: +386-1543-7036
| |
Collapse
|
60
|
Blanco EH, Lagos CF, Andrés ME, Gysling K. An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated transcript peptide precursor serves as its sorting signal to the regulated secretory pathway. PLoS One 2013; 8:e59695. [PMID: 23527253 PMCID: PMC3602189 DOI: 10.1371/journal.pone.0059695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1-41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24-37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting.
Collapse
Affiliation(s)
- Elías H. Blanco
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (EHB); (KG)
| | - Carlos F. Lagos
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Estela Andrés
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (EHB); (KG)
| |
Collapse
|
61
|
Kisler K, Chow RH, Dominguez R. Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy. ACTA ACUST UNITED AC 2013; Suppl 12. [PMID: 24353903 DOI: 10.4172/2157-7536.s12-002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estradiol is a steroid hormone that binds and activates estradiol receptors. Activation of these receptors is known to modulate neuronal physiology and provide neuroprotection, but it is not completely understood how estradiol mediates these actions on the nervous system. Activation of a sub-population of estradiol receptor-α (ERα), originally identified as a nuclear protein, localizes to the plasma membrane and appears to be a critical step in neuroprotection against brain injury and disease. Previously we showed that estradiol stimulates the rapid and transient trafficking of plasma membrane ERα in primary hypothalamic neurons, and internalization of membrane-impermeant estradiol (E6BSA-FITC) into cortical neuron endosomes in vitro. These findings support the concept that estradiol activates and down-regulates plasma membrane ERα by triggering endocytosis. Here, we use TIRFM (total internal reflection fluorescence microscopy) to image the trafficking of E6BSA-FITC, and GFP-labeled ERα, in live cells in real time. We show that activation of plasma membrane ERs by E6BSA-FITC result in internalization of the fluorescent ligand in live N-38 neurons, an immortalized hypothalamic cell line. Pretreatment with ER antagonist ICI 182,780 decreased the number of E6BSA-FITC labeled puncta observed. We also observed in live N-38 neurons that E6BSA-FITC co-localized with FM4-64 and LysoTracker fluorescent dyes that label endosomes and lysosomes. Our results provide further evidence that plasma membrane ERα activation results in endocytosis of the receptor.
Collapse
Affiliation(s)
- Kassandra Kisler
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine of University of Southern California, USA
| | - Robert H Chow
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine of University of Southern California, USA
| | - Reymundo Dominguez
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine of University of Southern California, USA
| |
Collapse
|
62
|
Smyth AM, Yang L, Martin KJ, Hamilton C, Lu W, Cousin MA, Rickman C, Duncan RR. Munc18-1 protein molecules move between membrane molecular depots distinct from vesicle docking sites. J Biol Chem 2012; 288:5102-13. [PMID: 23223447 PMCID: PMC3576115 DOI: 10.1074/jbc.m112.407585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.
Collapse
Affiliation(s)
- Annya M Smyth
- Life-Physical Sciences Interface Laboratory, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Preferential release of newly synthesized insulin assessed by a multi-label reporter system using pancreatic β-cell line MIN6. PLoS One 2012; 7:e47921. [PMID: 23133529 PMCID: PMC3485036 DOI: 10.1371/journal.pone.0047921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Newly synthesized hormones have been suggested to be preferentially secreted by various neuroendocrine cells. This observation indicates that there is a distinct population of secretory granules containing new and old hormones. Recent development of fluorescent timer proteins used in bovine adrenal chromaffin cells revealed that secretory vesicles segregate into distinct age-dependent populations. Here, we verify the preferential release of newly synthesized insulin in the pancreatic β-cell line, MIN6, using a combination of multi-labeling reporter systems with both fluorescent and biochemical procedures. This system allows hormones or granules of any age to be labeled, in contrast to the timer proteins, which require fluorescence shift time. Pulse-chase labeling with different color probes distinguishes insulin secretory granules by age, with younger granules having a predominantly intracellular localization rather than at the cell periphery.
Collapse
|
64
|
Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Ueki K, Kadowaki T, Nagamatsu S. Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion through upregulation of newcomer granule fusions in pancreatic β-cells. PLoS One 2012; 7:e47381. [PMID: 23077605 PMCID: PMC3471824 DOI: 10.1371/journal.pone.0047381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/12/2012] [Indexed: 02/03/2023] Open
Abstract
In glucose-induced insulin secretion from pancreatic β-cells, a population of insulin granules fuses with the plasma membrane without the typical docking process (newcomer granule fusions), however, its mechanism is unclear. In this study, we investigated the PI3K signaling pathways involved in the upregulation of newcomer granule fusions. Acute treatment with the class IA-selective PI3K inhibitors, PIK-75 and PI-103, enhanced the glucose-induced insulin secretion. Total internal reflection fluorescent microscopy revealed that the PI3K inhibitors increased the fusion events from newcomer granules. We developed a new system for transfection into pancreatic islets and demonstrated the usefulness of this system in order for evaluating the effect of transfected genes on the glucose-induced secretion in primary cultured pancreatic islets. Using this transfection system together with a series of constitutive active mutants, we showed that the PI3K-3-phosphoinositide dependent kinase-1 (PDK1)-Akt pathway mediated the potentiation of insulin secretion. The Akt inhibitor also enhanced the glucose-induced insulin secretion in parallel with the upregulation of newcomer granule fusions, probably via increased motility of intracellular insulin granules. These data suggest that the PI3K-PDK1-Akt pathway plays a significant role in newcomer granule fusions, probably through an alteration of the dynamics of the intracellular insulin granules.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Chiyono Nishiwaki
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
65
|
Partitioning and Exocytosis of Secretory Granules during Division of PC12 Cells. Int J Cell Biol 2012; 2012:805295. [PMID: 22719766 PMCID: PMC3375158 DOI: 10.1155/2012/805295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 03/06/2012] [Indexed: 02/06/2023] Open
Abstract
The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.
Collapse
|
66
|
Hammel I, Meilijson I. Function suggests nano-structure: electrophysiology supports that granule membranes play dice. J R Soc Interface 2012; 9:2516-26. [PMID: 22628211 DOI: 10.1098/rsif.2012.0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular communication depends on membrane fusion mechanisms. SNARE proteins play a fundamental role in all intracellular fusion reactions associated with the life cycle of secretory vesicles, such as vesicle-vesicle and vesicle plasma membrane fusion at the porosome base in the cell plasma membrane. We present growth and elimination (G&E), a birth and death model for the investigation of granule growth, its evoked and spontaneous secretion and their information content. Using a statistical mechanics approach in which SNARE components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation behind granule growth and secretion. Results from experimental work, mathematical calculations and statistical modelling suggest that for vesicle growth a minimal aggregation of three SNAREs is required, while for the evoked secretion one SNARE is enough. Furthermore, the required number of SNARE aggregates (which varies between cell types and is nearly proportional to the square root of the mean granule diameter) affects and is statistically identifiable from the size distributions of spontaneous and evoked secreted granules. The new statistical mechanics approach to granule fusion is bound to have a significant changing effect on the investigation of the pathophysiology of secretory mechanisms and methodologies for the investigation of secretion.
Collapse
Affiliation(s)
- Ilan Hammel
- Sackler Faculty of Medicine, Department of Pathology, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
67
|
Kile BM, Walsh PL, McElligott ZA, Bucher ES, Guillot TS, Salahpour A, Caron MG, Wightman RM. Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2012; 3:285-292. [PMID: 22708011 DOI: 10.1021/cn200119u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA) the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements, but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 Hz and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that over-express DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal.
Collapse
Affiliation(s)
- Brian M. Kile
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - Paul L. Walsh
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - Zoé A. McElligott
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - Elizabeth S. Bucher
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - Thomas S. Guillot
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| | - Ali Salahpour
- Department of Pharmacology
and
Toxicology, University of Toronto, Toronto,
Ontario M5S 1A8, Canada
| | - Marc G. Caron
- Department
of Cell Biology, Duke University, Durham,
North Carolina 27710, United
States
| | - R. Mark Wightman
- Department of Chemistry and
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United
States
| |
Collapse
|
68
|
Abstract
Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments). Gliotransmitters released into the ECS (extracellular space) can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy.
Collapse
|
69
|
Stefan M, Simmons RA, Bertera S, Trucco M, Esni F, Drain P, Nicholls RD. Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome. Am J Physiol Endocrinol Metab 2011; 300:E909-22. [PMID: 21343540 PMCID: PMC3093973 DOI: 10.1152/ajpendo.00185.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.
Collapse
Affiliation(s)
- Mihaela Stefan
- Dept. of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Bldg., 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Koseoglu S, Love SA, Haynes CL. Cholesterol effects on vesicle pools in chromaffin cells revealed by carbon-fiber microelectrode amperometry. Anal Bioanal Chem 2011; 400:2963-71. [PMID: 21523329 DOI: 10.1007/s00216-011-5002-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022]
Abstract
Cell-cell communication is often achieved via granular exocytosis, as in neurons during synaptic transmission or neuroendocrine cells during blood hormone control. Owing to its critical role in membrane properties and SNARE function, cholesterol is expected to play an important role in the highly conserved process of exocytosis. In this work, membrane cholesterol concentration is systematically varied in primary culture mouse chromaffin cells, and the change in secretion behavior of distinct vesicle pools as well as pool recovery following stimulation is measured using carbon-fiber microelectrode amperometry. Amperometric traces obtained from activation of the younger readily releasable and slowly releasable pool (RRP/SRP) vesicles at depleted cholesterol levels showed fewer sustained fusion pore features (6.1 ± 1.1% of spikes compared with 11.2 ± 1.0% for control), revealing that cholesterol content influences fusion pore formation and stability during exocytosis. Moreover, subsequent stimulation of RRP/SRP vesicles showed that cellular cholesterol level influences both the quantal recovery and kinetics of the later release events. Finally, diverging effects of cholesterol on RRP and the older reserve pool vesicle release suggest two different mechanisms for the release of these two vesicular pools.
Collapse
Affiliation(s)
- Secil Koseoglu
- Department of Chemistry, University of Minnesota, Minneapolis, 55455-0240, USA
| | | | | |
Collapse
|
71
|
Pattu V, Qu B, Marshall M, Becherer U, Junker C, Matti U, Schwarz EC, Krause E, Hoth M, Rettig J. Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 2011; 12:890-901. [PMID: 21438968 DOI: 10.1111/j.1600-0854.2011.01193.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SNARE proteins are essential fusion mediators for many intracellular trafficking events. Here, we investigate the role of Syntaxin7 (Stx7) in the release of lytic granules from cytotoxic T lymphocytes (CTLs). We show that Stx7 is expressed in CTLs and is preferentially localized to the region of lytic granule release, the immunological synapse (IS). Interference of Stx7 function by expression of a dominant-negative Stx7 construct or by small interfering RNA leads to a dramatic reduction of CTL-mediated killing of target cells. Real-time visualization of individual lytic granules at the IS by evanescent wave microscopy reveals that lytic granules in Stx7-deprived CTLs not only fail to fuse with the plasma membrane but even fail to accumulate at the IS. Surprisingly, the accumulation defect is not caused by an overall reduction in lytic granule number, but by a defect in the trafficking of T cell receptors (TCRs) through endosomes. Subsequent high-resolution nanoscopy shows that Stx7 colocalizes with Rab7 on late endosomes. We conclude from these data that the accumulation of recycling TCRs at the IS is a SNARE-dependent process and that Stx7-mediated processing of recycling TCRs through endosomes is a prerequisite for the cytolytic function of CTLs.
Collapse
Affiliation(s)
- Varsha Pattu
- Institut für Physiologie, Universität des Saarlandes, Kirrberger Straße 8, Gebäude 59, 66421 Homburg, Saarland, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
He Z, Fernandez-Fuente M, Strom M, Cheung L, Robinson IC, Le Tissier P. Continuous on-line monitoring of secretion from rodent pituitary endocrine cells using fluorescent protein surrogate markers. J Neuroendocrinol 2011; 23:197-207. [PMID: 21166728 DOI: 10.1111/j.1365-2826.2010.02104.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have developed a system to use secreted fluorescent proteins (FPs) as surrogate markers for the continuous on-line monitoring of hormone release from perfused tissue slices. We have tested this system using GH-GFP transgenic rats with green fluorescent protein (GFP) targeted to the secretory vesicles (SVs) of pituitary growth hormone (GH) cells. Brief exposures of vibratome slices to GH secretagogues [GH-releasing hormone (GHRH), GH-releasing peptide-6 (GHRP-6)] or somatostatin caused changes in FP output that correlate with hormone secretion, subsequently measured in fractions of perfusate by radioimmunoassay. The temporal resolution of this method was capable of revealing differences in the kinetics of response to GHRH and GHRP-6 between wild-type and dwarf (dw/dw) rats harbouring the GH-GFP transgene. We further tested the utility of the system by generating transgenic mice with red FPs targeted to secretory vesicles (PRL-mRFP(sv)) and to the cytoplasm (PRL-DsRed(cyto)) of lactotrophs. Dopamine had no effect on the FP output from pituitary slices of PRL-DsRed(cyto) mice but inhibited output from those of PRL-mRFP(sv) animals, with a rebound increase of release after removal, which again correlated with hormone output measured in the perfusate by radioimmunoassay. The inhibition of monomeric RFP secretion by dopamine was dose-dependent, as was stimulation by low concentrations of oxytocin. The temporal resolution afforded by this method provides useful insight into the release kinetics from large populations of pituitary cells, and fills a temporo-spatial gap between single vesicle and single cell monitoring of exocytosis in milliseconds, and in vivo sampling studies of release into the bloodstream on a time scale of minutes.
Collapse
Affiliation(s)
- Z He
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
73
|
Monteiro O, Wiegand UK, Ludwig M. Vesicle degradation in dendrites of magnocellular neurones of the rat supraoptic nucleus. Neurosci Lett 2011; 489:30-3. [PMID: 21129440 DOI: 10.1016/j.neulet.2010.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/02/2010] [Accepted: 11/20/2010] [Indexed: 11/17/2022]
Abstract
The magnocellular neurones of the supraoptic nucleus (SON) and paraventricular nucleus release neuropeptide from their axon terminals and also from their dendrites. In the axon terminals, swellings known as Herring bodies are responsible for the degradation of aged, unreleased large dense-cored vesicles (LDCVs) by lysosomes. Dendrites of magnocellular neurones also contain a large number of LDCVs but specialised areas of vesicle degradation have yet to be discovered. Using immunofluorescence labelling for lysosomes in vasopressin-enhanced green fluorescent protein (vasopressin-eGFP) transgenic rats, we found that lysosomes are preferentially located in the centre of the dendrites where there was a high density of vasopressin-eGFP expression. These data suggest that there are local "hot spots", but not specific compartments for vesicle degradation in magnocellular dendrites.
Collapse
Affiliation(s)
- Olivia Monteiro
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | |
Collapse
|
74
|
Losón OC, Ha CM, Parpura V. Age-dependent spatial segregation of synaptobrevin 2-containing vesicles in astrocytes. J Neurochem 2011; 116:909-15. [PMID: 21214554 DOI: 10.1111/j.1471-4159.2010.07018.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Astrocytes possess much of the same exocytotic protein machinery as neurons do and can release various gliotransmitters stored in their secretory vesicles. An essential component of this exocytotic machinery is the vesicle-associated membrane protein synaptobrevin 2 (Sb2). In order to assess whether vesicular age plays a role in determining the intracellular location of vesicles in astrocytes, we generated a fluorescent chimeric form of Sb2. We appended the Sb2 cytosolic N-terminus with the fluorescent 'timer' protein DsRedE5, which changes its fluorescence emission from green to red as it ages. We found that Sb2-containing vesicles in astrocytes segregate and localize intracellularly in an age dependent manner. Younger vesicles predominately localize at the periphery of cell somata and processes, while older vesicles predominately locate at the central portion of the cell body. These findings raise the notion that there might be differential astrocyte-neuron signaling at sites away or at the tripartite synapse that could be modulated by the age of vesicles and/or their cargo.
Collapse
Affiliation(s)
- Oliver C Losón
- MARC U* STAR Program, University of California, Riverside, California, USA
| | | | | |
Collapse
|
75
|
Wang J, Fei B, Geahlen RL, Lu C. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. LAB ON A CHIP 2010; 10:2673-9. [PMID: 20820633 PMCID: PMC2948076 DOI: 10.1039/c0lc00131g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Protein translocation, or the change in a protein's location between different subcellular compartments, is a critical process by which intracellular proteins carry out their cellular functions. Aberrant translocation events contribute to various diseases ranging from metabolic disorders to cancer. In this study, we demonstrate the use of a newly developed single-cell tool, microfluidic total internal reflection fluorescence flow cytometry (TIRF-FC), for detecting both cytosol to plasma membrane and cytosol to nucleus translocations using the tyrosine kinase Syk and the transcription factor NF-κB as models. This technique detects fluorescent molecules at the plasma membrane and in the membrane-proximal cytosol in single cells. We were able to record quantitatively changes in the fluorescence density in the evanescent field associated with these translocation processes for large cell populations with single cell resolution. We envision that TIRF-FC will provide a new approach to explore the molecular biology and clinical relevance of protein translocations.
Collapse
Affiliation(s)
- Jun Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA, Tel: +1 540-231-8681
| |
Collapse
|
76
|
Mustafa T, Walsh J, Grimaldi M, Eiden LE. PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca(2+) channels in PC12 cells. Cell Signal 2010; 22:1420-6. [PMID: 20471475 PMCID: PMC2916070 DOI: 10.1016/j.cellsig.2010.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/05/2010] [Indexed: 11/30/2022]
Abstract
PACAP is a critical regulator of long-term catecholamine secretion from the adrenal medulla in vivo, however the receptor or pathways for Ca(2+) entry triggering acute and sustained secretion have not been adequately characterized. We have previously cloned the bovine adrenal chromaffin cell PAC1 receptor that contains the molecular determinants required for PACAP-induced Ca(2+) elevation and is responsible for imparting extracellular Ca(2+) influx-dependent secretory competence in PC12 cells. Here, we use this cell model to gain mechanistic insights into PAC1hop-dependent Ca(2+) pathways responsible for catecholamine secretion. PACAP-modulated extracellular Ca(2+) entry in PC12 cells could be partially blocked with nimodipine, an inhibitor of L-type VGCCs and partially blocked by 2-APB, an inhibitor and modulator of various transient receptor potential (TRP) channels. Despite the co-existence of these two modes of Ca(2+) entry, sustained catecholamine secretion in PC12 cells was exclusively modulated by 2-APB-sensitive Ca(2+) channels. While IP3 generation occurred after PACAP exposure, most PACAP-induced Ca(2+) mobilization involved release from ryanodine-gated cytosolic stores. 2-APB-sensitive Ca(2+) influx, and subsequent catecholamine secretion was however not functionally related to intracellular Ca(2+) mobilization and store depletion. The reconstituted PAC1hop-expessing PC12 cell model therefore recapitulates both PACAP-induced Ca(2+) release from ER stores and extracellular Ca(2+) entry that restores PACAP-induced secretory competence in neuroendocrine cells. We demonstrate here that although bPAC1hop receptor occupancy induces Ca(2+) entry through two independent sources, VGCCs and 2-APB-sensitive channels, only the latter contributes importantly to sustained vesicular catecholamine release that is a fundamental characteristic of this neuropeptide system. These results emphasize the importance of establishing functional linkages between Ca(2+) signaling pathways initiated by pleotrophic signaling molecules such as PACAP, and physiologically important downstream events, such as secretion, triggered by them.
Collapse
Affiliation(s)
- Tomris Mustafa
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bethesda, Maryland 20892
| | - James Walsh
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bethesda, Maryland 20892
| | - Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, 35205
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
77
|
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63. [PMID: 20664080 DOI: 10.1152/physrev.00038.2009] [Citation(s) in RCA: 944] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
Collapse
|
78
|
Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 2010; 30:8151-61. [PMID: 20554865 DOI: 10.1523/jneurosci.0293-10.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.
Collapse
|
79
|
Moreno A, SantoDomingo J, Fonteriz RI, Lobatón CD, Montero M, Alvarez J. A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes. J Struct Biol 2010; 172:261-9. [PMID: 20600953 DOI: 10.1016/j.jsb.2010.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/24/2022]
Abstract
Secretory vesicles have low pH and have been classically identified as those labelled by a series of acidic fluorescent dyes such as acridine orange or neutral red, which accumulate into the vesicles according to the pH gradient. More recently, several fusion proteins containing enhanced green fluorescent protein (EGFP) and targeted to the secretory vesicles have been engineered. Both targeted fluorescent proteins and acidic dyes have been used, separately or combined, to monitor the dynamics of secretory vesicle movements and their fusion with the plasma membrane. We have now investigated in detail the degree of colocalization of both types of probes using several fusion proteins targeted to the vesicles (synaptobrevin2-EGFP, Cromogranin A-EGFP and neuropeptide Y-EGFP) and several acidic dyes (acridine orange, neutral red and lysotracker red) in chromaffin cells, PC12 cells and GH(3) cells. We find that all the acidic dyes labelled the same population of vesicles. However, that population was largely different from the one labelled by the targeted proteins, with very little colocalization among them, in all the cell types studied. Our data show that the vesicles containing the proteins more characteristic of the secretory vesicles are not labelled by the acidic dyes, and vice versa. Peptide glycyl-L-phenylalanine 2-naphthylamide (GPN) produced a rapid and selective disruption of the vesicles labelled by acidic dyes, suggesting that they could be mainly lysosomes. Therefore, these labelling techniques distinguish two clearly different sets of acidic vesicles in neuroendocrine cells. This finding should be taken into account whenever vesicle dynamics is studied using these techniques.
Collapse
Affiliation(s)
- Alfredo Moreno
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
80
|
Versatile roles for myosin Va in dense core vesicle biogenesis and function. Biochem Soc Trans 2010; 38:199-204. [PMID: 20074059 DOI: 10.1042/bst0380199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The motor protein myosin Va is involved in multiple successive steps in the development of dense-core vesicles, such as in the membrane remodelling during their maturation, their transport along actin filaments and the regulation of their exocytosis. In the present paper, we summarize the current knowledge on the roles of myosin Va in the different steps of dense-core vesicle biogenesis and exocytosis, and compare findings obtained from different cell types and experimental systems.
Collapse
|
81
|
Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J Am Chem Soc 2010; 132:2243-53. [PMID: 20121102 PMCID: PMC2887295 DOI: 10.1021/ja908418r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast-FT is a fluorescent timer (FT) engineered from DsRed-like fluorescent protein mCherry. Crystal structures of Fast-FT (chromophore Met66-Tyr67-Gly68) and its precursor with blocked blue-to-red conversion Blue102 (chromophore Leu66-Tyr67-Gly68) have been determined at the resolution of 1.15 A and 1.81 A, respectively. Structural data suggest that blue-to-red conversion, taking place in Fast-FT and in related FTs, is associated with the oxidation of Calpha2-Cbeta2 bond of Tyr67. Site directed mutagenesis revealed a crucial role of Arg70 and Tyr83 in the delayed oxidation of Calpha2-Cbeta2 bond, introducing the timing factor in maturation of the timer. Substitutions Ser217Ala and Ser217Cys in Fast-FT substantially slow down formation of an intermediate blue chromophore but do not affect much blue-to-red conversion, whereas mutations Arg70Lys or Trp83Leu, having little effect on the blue chromophore formation rate, markedly accelerates formation of the red chromophore. The chromophore of FTs adopts a cis-conformation stabilized by a hydrogen bond between its phenolate oxygen and the side chain hydroxyl of Ser146. In Blue102, a bulky side chain of Ile146 precludes the chromophore from adopting a "cis-like" conformation, blocking its blue-to-red conversion. Both Fast-FT and Blue102 structures revealed hydrolytic degradation of the chromophores. In Fast-FT, chromophore-forming Met66 residue is eliminated from the polypeptide chain, whereas Leu66 in Blue102 is cleaved out from the chromophore, decarboxylated and remains attached to the preceding Phe65. Hydrolysis of the chromophore competes with chromophore maturation and is driven by the same residues that participate in chromophore maturation.
Collapse
Affiliation(s)
- Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois 60439, USA.
| | | | | | | | | |
Collapse
|
82
|
Obermüller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A, Francolini M, Rosa P, Rorsman P, Huttner WB, Barg S. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 2010; 5:e8936. [PMID: 20126668 PMCID: PMC2812483 DOI: 10.1371/journal.pone.0008936] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/11/2010] [Indexed: 12/21/2022] Open
Abstract
Granins are major constituents of dense-core secretory granules in neuroendocrine cells, but their function is still a matter of debate. Work in cell lines has suggested that the most abundant and ubiquitously expressed granins, chromogranin A and B (CgA and CgB), are involved in granulogenesis and protein sorting. Here we report the generation and characterization of mice lacking chromogranin B (CgB-ko), which were viable and fertile. Unlike neuroendocrine tissues, pancreatic islets of these animals lacked compensatory changes in other granins and were therefore analyzed in detail. Stimulated secretion of insulin, glucagon and somatostatin was reduced in CgB-ko islets, in parallel with somewhat impaired glucose clearance and reduced insulin release, but normal insulin sensitivity in vivo. CgB-ko islets lacked specifically the rapid initial phase of stimulated secretion, had elevated basal insulin release, and stored and released twice as much proinsulin as wildtype (wt) islets. Stimulated release of glucagon and somatostatin was reduced as well. Surprisingly, biogenesis, morphology and function of insulin granules were normal, and no differences were found with regard to beta-cell stimulus-secretion coupling. We conclude that CgB is not required for normal insulin granule biogenesis or maintenance in vivo, but is essential for adequate secretion of islet hormones. Consequentially CgB-ko animals display some, but not all, hallmarks of human type-2 diabetes. However, the molecular mechanisms underlying this defect remain to be determined.
Collapse
Affiliation(s)
| | - Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Angus King
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Anders Lindqvist
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Ingmar Lundquist
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Maura Francolini
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Patrizia Rosa
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (WBH); (SB)
| | - Sebastian Barg
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (WBH); (SB)
| |
Collapse
|
83
|
Borue X, Condron B, Venton BJ. Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila. J Neurochem 2010; 113:188-99. [PMID: 20070864 DOI: 10.1111/j.1471-4159.2010.06588.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two main sources of serotonin available for release are expected to be newly synthesized serotonin and serotonin recycled after reuptake by the serotonin transporter. However, their relative importance for maintaining release and the time course of regulation are unknown. We studied serotonin signaling in the ventral nerve cord of the larval Drosophila CNS. Fast-scan cyclic voltammetry at implanted microelectrodes was used to detect serotonin elicited by channelrhodopsin2-mediated depolarization. The effects of reuptake were probed by incubating in cocaine, which is selective for the serotonin transporter in Drosophila. p-chlorophenylalanine, an inhibitor of tryptophan hydroxylase2, was used to investigate the effects of synthesis. Stimulations were repeated at various intervals to assess the time course of recovery of the releasable pool. Reuptake is important for the rapid replenishment of the releasable pool, on the 1 min time scale. Synthesis is critical to the longer-term replenishment (10 min) of the releasable pool, especially when reuptake is also inhibited. Concurrent synthesis and reuptake inhibition decreased both serotonin tissue content measured by immunohistochemistry (by 50%) and the initial amount of evoked serotonin (by 65%). Decreases in evoked serotonin are rescued by inhibiting action potential propagation with tetrodotoxin, implicating endogenous activity in the depletion. These results show synthesis is necessary to replenish part of the releasable serotonin pool that is depleted after reuptake inhibition, suggesting that regulation of synthesis may modulate the effects of serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Xenia Borue
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
84
|
Burchfield JG, Lopez JA, Mele K, Vallotton P, Hughes WE. Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic 2010; 11:429-39. [PMID: 20070611 DOI: 10.1111/j.1600-0854.2010.01039.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The regulated trafficking or exocytosis of cargo-containing vesicles to the cell surface is fundamental to all cells. By coupling the technology of fluorescently tagged fusion proteins with total internal reflection fluorescence microscopy (TIRFM), it is possible to achieve the high spatio-temporal resolution required to study the dynamics of sub-plasma membrane vesicle trafficking and exocytosis. TIRFM has been used in a number of cell types to visualize and dissect the various steps of exocytosis revealing how molecules identified via genetic and/or biochemical approaches are involved in the regulation of this process. Here, we summarize the contribution of TIRFM to our understanding of the mechanism of exocytosis and discuss the novel methods of analysis that are required to exploit the large volumes of data that can be produced using this technique.
Collapse
Affiliation(s)
- James G Burchfield
- The Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | | | | | | | | |
Collapse
|
85
|
Webb E, Pringle PJ, Robinson I, Hindmarsh P. Repetitive Stimulation of the Pituitary with Growth-Hormone-Releasing Hormone Alters the Proportion of 22 and 20 Kilodalton Human-Growth Hormone Released. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2010. [DOI: 10.1186/1687-9856-2010-781317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
86
|
Tsuboi T, Kitaguchi T, Karasawa S, Fukuda M, Miyawaki A. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein. Mol Biol Cell 2010; 21:87-94. [PMID: 19889833 PMCID: PMC2801723 DOI: 10.1091/mbc.e09-08-0722] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 10/28/2009] [Indexed: 11/11/2022] Open
Abstract
Although it is evident that only a few secretory vesicles accumulating in neuroendocrine cells are qualified to fuse with the plasma membrane and release their contents to the extracellular space, the molecular mechanisms that regulate their exocytosis are poorly understood. For example, it has been controversial whether secretory vesicles are exocytosed randomly or preferentially according to their age. Using a newly developed protein-based fluorescent timer, monomeric Kusabira Green Orange (mK-GO), which changes color with a predictable time course, here we show that small GTPase Rab27A effectors regulate age-dependent exocytosis of secretory vesicles in PC12 cells. When the vesicles were labeled with mK-GO-tagged neuropeptide Y or tissue-type plasminogen activator, punctate structures with green or red fluorescence were observed. Application of high [K(+)] stimulation induced exocytosis of new (green) fluorescent secretory vesicles but not of old (red) vesicles. Overexpression or depletion of rabphilin and synaptotagmin-like protein4-a (Slp4-a), which regulate exocytosis positively and negatively, respectively, disturbed the age-dependent exocytosis of the secretory vesicles in different manners. Our results suggest that coordinate functions of the two effectors of Rab27A, rabphilin and Slp4-a, are required for regulated secretory pathway.
Collapse
Affiliation(s)
- Takashi Tsuboi
- *Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tetsuya Kitaguchi
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako, Saitama 351-0198, Japan
| | - Satoshi Karasawa
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Amalgaam Co., Ltd., Itabashi, Tokyo 173-0004, Japan; and
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako, Saitama 351-0198, Japan
| |
Collapse
|
87
|
Repetitive Stimulation of the Pituitary with Growth-Hormone-Releasing Hormone Alters the Proportion of 22 and 20 Kilodalton Human-Growth Hormone Released. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2010; 2010:781317. [PMID: 20628515 PMCID: PMC2902052 DOI: 10.1155/2010/781317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 04/02/2010] [Indexed: 11/23/2022]
Abstract
Background/Aims. 20 Kilodalton-hGH (20 K-hGH) is the second most abundant pituitary GH variant after 22 K-hGH. In the steady state the proportion of 20 : 22 K-hGH appears constant; does this proportion change with repetitive somatotroph stimulation? Methods. Forty adult males were randomised to receive a GHRH(1–29)NH2 bolus (0.5 μg/kg (n = 20) or 1.0 μg/kg (n = 20)), preceded or followed by a saline bolus, 1 week apart. Four to six weeks later, 10 subjects received 0.5 μg/kg GHRH(1–29)NH2 at 0, 60, 120, and 180 minutes. Clearance rate of 22 and 20 K-hGH was measured in 10 subjects. Results. Total amount/proportion of 22 K-hGH/20 K-hGH secreted was similar for both GHRH(1–29)NH2 doses. Repetitive stimulation reduced the amount of 22 K-hGH released whereas the amount of 20 K-hGH did not change significantly leading to an increase in the proportion of 20 K-hGH (P = .05). Half-life of 20 and 22 K-hGH were not significantly different (P = .55). Conclusions. Repetitive stimulation of the somatotroph may alter the proportion of GH variant released.
Collapse
|
88
|
GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation. FEBS Lett 2009; 584:537-42. [DOI: 10.1016/j.febslet.2009.11.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023]
|
89
|
Liu Y, Mziaut H, Ivanova A, Solimena M. beta-Cells at the crossroads: choosing between insulin granule production and proliferation. Diabetes Obes Metab 2009; 11 Suppl 4:54-64. [PMID: 19817789 DOI: 10.1111/j.1463-1326.2009.01107.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic beta-cells are the sole source of insulin, the major hormonal regulator of glycaemia. In physiological and pathological conditions with increased insulin demand, beta-cells adjust their insulin output either through increased insulin secretory granule (ISG) biogenesis and secretion, or hyperplasia. Failure of these compensatory mechanisms eventually results in hyperglycaemia and diabetes mellitus. Both of these major adaptive behaviours are positively regulated by several extrinsic factors, such as glucose, GLP-1, insulin and growth hormones (GH). Still unclear, however, it is how beta-cells in response to these stimuli opt for one or the other strategy at a given time. Here we review recent advances concerning the factors and pathways that enhance ISG biogenesis and beta-cell replication, and propose the existence of 'switch factors' that play a key role in regulating the shift between these two adaptive responses.
Collapse
Affiliation(s)
- Yanmei Liu
- Paul Langerhans Institute Dresden, Dresden University of Technology, Germany
| | | | | | | |
Collapse
|
90
|
Wang J, Bao N, Paris LL, Geahlen RL, Lu C. Total internal reflection fluorescence flow cytometry. Anal Chem 2009; 80:9840-4. [PMID: 19007249 DOI: 10.1021/ac801940w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) has been widely used to explore biological events that are close to the cell membrane by illuminating fluorescent molecules using the evanescent wave. However, TIRFM is typically limited to the examination of a low number of cells, and the results do not reveal potential heterogeneity in the cell population. In this report, we develop an analytical tool referred to as total internal reflection fluorescence flow cytometry (TIRF-FC) to examine the region of the cell membrane with a throughput of approximately 100-150 cells/s and single cell resolution. We use an elastomeric valve that is partially closed to force flowing cells in contact with the glass surface where the evanescent field resides. We demonstrate that TIRF-FC is able to detect the differences in the subcellular location of an intracellular fluorescent protein. Proper data processing and analysis allows TIRF-FC to be quantitative. With the high throughput, TIRF-FC will be a very useful tool for generating information on cell populations with events and dynamics close to the cell surface.
Collapse
Affiliation(s)
- Jun Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
91
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
92
|
Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter. Anal Chem 2009; 81:3087-93. [PMID: 19290664 DOI: 10.1021/ac900059s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Etched carbon fiber microelectrodes of different radii have been used for amperometric measurements of single exocytotic events occurring at adrenal chromaffin cells. Frequency, kinetic, and quantitative information on exocytosis provided by amperometric spikes were analyzed as a function of the surface area of the microelectrodes. Interestingly, the percentage of spikes with foot (as well as their own characteristics), a category revealing the existence of sufficient long-lasting fusion pores, was found to be constant whatever the microelectrode diameter was, whereas the probability of overlapping spikes decreased with the electrode size. This confirmed that the prespike foot could not feature accidental superimposition of separated events occurring at different places. Moreover, the features of amperometric spikes investigated here (charge, intensity and kinetics) were found constant for all microelectrode diameters. This demonstrated that the electrochemical measurement does not introduce significant bias onto the kinetics and thermodynamics of release during individual exocytotic events. All in all, this work evidences that information on exocytosis amperometrically recorded with the usual 7 microm diameter carbon fiber electrodes is biologically relevant, although the frequent overlap between spikes requires a censorship of the data during the analytical treatment.
Collapse
Affiliation(s)
- Christian Amatore
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS UPMC Univ Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
93
|
Bittins CM, Eichler TW, Gerdes HH. Expression of the dominant-negative tail of myosin Va enhances exocytosis of large dense core vesicles in neurons. Cell Mol Neurobiol 2009; 29:597-608. [PMID: 19214741 DOI: 10.1007/s10571-009-9352-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/13/2009] [Indexed: 12/11/2022]
Abstract
Regulated exocytosis of secretory vesicles is a fundamental process in neurotransmission and the release of hormones and growth factors. The F-actin-binding motor protein myosin Va was recently shown to be involved in exocytosis of peptide-containing large dense core vesicles of neuroendocrine cells. It has not previously been discussed whether it plays a similar role in neurons. We performed live-cell imaging of cultured hippocampal neurons to measure the exocytosis of large dense core vesicles containing fluorescently labelled neuropeptide Y. To address the role of myosin Va in this process, neurons were transfected with the dominant-negative tail domain of myosin Va (myosinVa-tail). Under control conditions, about 0.75% of the labelled large dense core vesicles underwent exocytosis during 5 min of stimulation. This value was doubled to 1.80% of the vesicles when myosinVa-tail was expressed. Depolymerization of F-actin using latrunculin B resulted in a similar increase in exocytosis in both control and myosinVa-tail expressing cells. Interestingly, the increase in exocytosis caused by myosinVa-tail expression was completely abolished in the presence of KN-62, an inhibitor of calcium-calmodulin-dependent kinase II. We suggest that myosinVa-tail causes the liberation of large dense core vesicles from the actin cytoskeleton, leading to an increase in exocytosis in the cultured hippocampal neurons.
Collapse
|
94
|
Microelectrodes for studying neurobiology. Curr Opin Chem Biol 2009; 12:491-6. [PMID: 18675377 DOI: 10.1016/j.cbpa.2008.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/09/2008] [Accepted: 06/16/2008] [Indexed: 01/09/2023]
Abstract
Microelectrodes have emerged as an important tool used by scientists to study biological changes in the brain and in single cells. This review briefly summarizes the ways in which microelectrodes as chemical sensors have furthered the field of neurobiology by reporting on changes that occur on the subsecond time scale. Microelectrodes have been used in a variety of fields including their use by electrophysiologists to characterize neuronal action potentials and develop neural prosthetics. Here we restrict our review to microelectrodes that have been used as chemical sensors. They have played a major role in many important neurobiological findings.
Collapse
|
95
|
Kreft M, Potokar M, Stenovec M, Pangrsic T, Zorec R. Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 2009; 1152:30-42. [PMID: 19161374 DOI: 10.1111/j.1749-6632.2008.04005.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Astrocytes are increasingly viewed as crucial cells supporting and integrating brain functions. It is thought that the release of gliotransmitters into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. Prior to exocytosis, the membrane-bound vesicles are transported through the astrocyte cytoplasm. Our recent studies have revealed new insights into vesicle trafficking in the cytoplasm of astrocytes and are reviewed in this article. The prefusion mobility of fluorescently labeled peptidergic vesicles was studied in cultured rat and mouse astrocytes. Vesicle delivery to the plasma membrane involved an interaction with the cytoskeleton, in particular with microtubules and actin filaments. Interestingly, vesicle mobility in mouse astrocytes deficient in intermediate filaments show impaired directionality of peptidergic vesicle mobility. To explore whether stimuli that increase the concentration of free calcium ions in the cytoplasm triggered vesicular ATP release from astrocytes, human embryonic kidney-293T cells transfected with a P2X(3) receptor were used as sniffers to detect ATP release. Glutamate stimulation of astrocytes was followed by an increase in the incidence of small, transient, inward currents in sniffer cells, reminiscent of postsynaptic quantal events observed at synapses. Some of the membrane-bound vesicles are retrieved from the plasma membrane to be recycled back into the cytosol. Trafficking velocity of postfusion (recycling) atrial natriuretic peptide vesicles was one order of magnitude slower in comparison to the mobility of prefusion vesicles. However, transport of all vesicle types studied required an intact cytoskeleton.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana and Celica Biomedical Center, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
96
|
Michael DJ, Tapechum S, Rohan JG, Johnson JM, Chow RH. Fluorescent cargo proteins in peptidergic endocrine cells: cell type determines secretion kinetics at exocytosis. Ann N Y Acad Sci 2009; 1152:7-17. [PMID: 19161372 DOI: 10.1111/j.1749-6632.2008.04006.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent fusion proteins are an important tool for the study of vesicle trafficking and exocytosis, especially when combined with newer types of microscopy. We previously reported that the design of a vesicle-targeted fluorescent fusion construct strongly influences the kinetics of fluorescence change at exocytosis. In the present study we demonstrate that the cell in which a construct is expressed also affects the kinetics of fluorescence change at exocytosis. We fused enhanced green fluorescent protein to the carboxy terminus of the vesicular cargo protein rodent islet amyloid polypeptide. The two proteins were separated by a "linker" sequence of 18 amino acids. We then compared kinetics of fluorescence change at exocytosis for this fluorescent cargo protein expressed in three different types of peptidergic endocrine cell: pancreatic alpha cell, pancreatic beta cell, and adrenal chromaffin cell. In resting cells of all three types, fluorescent spots of similar size and membrane-proximal density appeared near the plasma membrane as expected if the probe is stored in large dense-core secretory vesicles. Upon stimulation, the fluorescent spots displayed sudden changes in fluorescence intensity that were consistent with exocytosis. In beta and alpha cells the fluorescent spots consistently brightened and persisted, whereas in chromaffin cells the fluorescent spots always dispersed rapidly. Thus, for fluorescent cargo proteins in peptidergic endocrine cells, cell type influences the kinetics of fluorescence change at exocytosis. Together with our previous findings, this observation strongly highlights the fact that the behavior of vesicle-targeted fluorescent cargo may be unrelated to that of native cargo, and it emphasizes the need for caution in interpreting fluorescence kinetics in terms of an exocytosis mechanism.
Collapse
Affiliation(s)
- Darren J Michael
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
97
|
Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, Verkhusha VV. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 2009; 5:118-26. [PMID: 19136976 PMCID: PMC2662996 DOI: 10.1038/nchembio.138] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/11/2008] [Indexed: 11/08/2022]
Abstract
Based on the mechanism for chromophore formation in red fluorescent proteins, we developed three mCherry-derived monomeric variants, called fluorescent timers (FTs), that change their fluorescence from the blue to red over time. These variants exhibit distinctive fast, medium and slow blue-to-red chromophore maturation rates that depend on the temperature. At 37 degrees C, the maxima of the blue fluorescence are observed at 0.25, 1.2 and 9.8 h for the purified fast-FT, medium-FT and slow-FT, respectively. The half-maxima of the red fluorescence are reached at 7.1, 3.9 and 28 h, respectively. The FTs show similar timing behavior in bacteria, insect and mammalian cells. Medium-FT allowed for tracking of the intracellular dynamics of the lysosome-associated membrane protein type 2A (LAMP-2A) and determination of its age in the targeted compartments. The results indicate that LAMP-2A transport through the plasma membrane and early or recycling endosomes to lysosomes is a major pathway for LAMP-2A trafficking.
Collapse
Affiliation(s)
- Fedor V Subach
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Crivellato E, Nico B, Ribatti D. The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec (Hoboken) 2009; 291:1587-602. [PMID: 19037853 DOI: 10.1002/ar.20763] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chromaffin vesicles (CV) are highly sophisticated secretory organelles synthesized in adrenal medullary chromaffin cells. They contain a complex mixture of structural proteins, catecholamine neurotransmitters, peptide hormones, and the relative processing enzymes, as well as protease inhibitors. In addition, CV store ATP, ascorbic acid, and calcium. During the last decades, extensive studies have contributed to increase our understanding of the molecular composition of CV. Yet, the recent development of biochemical and imaging procedures has greatly increased the list of CV-soluble constituents and opened new horizons as to the complexity of CV involvement in acute stress responses. Thus, a coherent picture of CV molecular composition is still to be drawn. This review article will provide a detailed account of the content of CV soluble molecules as it emerges from the most recent analytical studies. Moreover, this review article will attempt at focussing on the physiological and pathophysiological implications of the products released by CV.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | |
Collapse
|
99
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
100
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|