51
|
Zhu T, Lu XZ, Aoyama T, Fujita K, Nambu Y, Saito T, Takatsu H, Kawasaki T, Terauchi T, Kurosawa S, Yamaji A, Li HB, Tassel C, Ohgushi K, Rondinelli JM, Kageyama H. Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:182-188. [PMID: 38182809 DOI: 10.1038/s41563-023-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Xue-Zeng Lu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Takuya Aoyama
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Koji Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Yusuke Nambu
- Institute for Materials Research, Tohoku University, Sendai, Japan
- Organization for Advanced Studies, Tohoku University, Sendai, Japan
- FOREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takashi Saito
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Japan
| | - Hiroshi Takatsu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Tatsushi Kawasaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Takumi Terauchi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Shunsuke Kurosawa
- Institute for Materials Research, Tohoku University, Sendai, Japan
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
- Institute of Laser Engineering, Osaka University, Suita, Japan
| | - Akihiro Yamaji
- Institute for Materials Research, Tohoku University, Sendai, Japan
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Hao-Bo Li
- SANKEN, Osaka University, Ibaraki, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan
| | - Kenya Ohgushi
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Japan.
| |
Collapse
|
52
|
Cui Z, Sa B, Xue KH, Zhang Y, Xiong R, Wen C, Miao X, Sun Z. Magnetic-ferroelectric synergic control of multilevel conducting states in van der Waals multiferroic tunnel junctions towards in-memory computing. NANOSCALE 2024; 16:1331-1344. [PMID: 38131373 DOI: 10.1039/d3nr04712a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
van der Waals (vdW) multiferroic tunnel junctions (MFTJs) based on two-dimensional materials have gained significant interest due to their potential applications in next-generation data storage and in-memory computing devices. In this study, we construct vdW MFTJs by employing monolayer Mn2Se3 as the spin-filter tunnel barrier, TiTe2 as the electrodes and In2S3 as the tunnel barrier to investigate the spin transport properties based on first-principles quantum transport calculations. It is highlighted that apparent tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects with a maximum TMR ratio of 6237% and TER ratio of 1771% can be realized by using bilayer In2S3 as the tunnel barrier under finite bias. Furthermore, the physical origin of the distinguished TMR and TER effects is unraveled from the k||-resolved transmission spectra and spin-dependent projected local density of states analysis. Interestingly, four distinguishable conductance states reveal the implementation of four-state nonvolatile data storage using one MFTJ unit. More importantly, in-memory logic computing and multilevel data storage can be achieved at the same time by magnetic switching and electrical control, respectively. These results shed light on vdW MFTJs in the applications of in-memory computing as well as multilevel data storage devices.
Collapse
Affiliation(s)
- Zhou Cui
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Baisheng Sa
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Kan-Hao Xue
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinggan Zhang
- College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Rui Xiong
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Cuilian Wen
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhimei Sun
- School of Materials Science and Engineering, and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
53
|
Yanagisawa J, Aoyama T, Fujii K, Yashima M, Inaguma Y, Kuwabara A, Shitara K, Le Ouay B, Hayami S, Ohba M, Ohtani R. Strongly Enhanced Polarization in a Ferroelectric Crystal by Conduction-Proton Flow. J Am Chem Soc 2024; 146:1476-1483. [PMID: 38166110 DOI: 10.1021/jacs.3c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Ion conductors comprising noncentrosymmetric frameworks have emerged as new functional materials. However, strongly correlated polarity functionality and ion transport have not been achieved. Herein, we report a ferroelectric proton conductor, K2MnN(CN)4·H2O (1·H2O), exhibiting the strong correlation between its polar skeleton and conductive ions that generate anomalous ferroelectricity via the proton-bias phenomenon. The application of an electric field of ±1 kV/cm (0.1 Hz) on 1·H2O at 298 K produced the ferroelectricity (polarization = 1.5 × 104 μC/cm2), which was enhanced by the ferroelectric-skeleton-trapped conductive protons. Furthermore, the strong polarity-proton transport coupling of 1·H2O induced a proton-rectification-like directional ion-conductive behavior that could be adjusted by the magnitude and direction of DC electric fields. Moreover, 1·H2O exhibited reversible polarity switching between the polar 1·H2O and its dehydrated form, 1, with a centrosymmetric structure comprising an order-disorder-type transition of the nitrido-bridged chains.
Collapse
Affiliation(s)
- Junichi Yanagisawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuya Aoyama
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-17 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-17 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshiyuki Inaguma
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan
| | - Kazuki Shitara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
54
|
Wang Z, Dong S. Alterferroicity with seesaw-type magnetoelectricity. Proc Natl Acad Sci U S A 2023; 120:e2305197120. [PMID: 38015837 PMCID: PMC10710059 DOI: 10.1073/pnas.2305197120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
Primary ferroicities like ferroelectricity and ferromagnetism are essential physical properties of matter. Multiferroics, with coexisting multiple ferroic orders in a single phase, provide a convenient route to magnetoelectricity. Even so, the general trade-off between magnetism and polarity remains inevitable, which prevents practicable magnetoelectric cross-control in the multiferroic framework. Here, an alternative strategy, i.e., the so-called alterferroicity, is proposed to circumvent the magnetoelectric exclusiveness, which exhibits multiple but noncoexisting ferroic orders. The natural exclusion between magnetism and polarity, as an insurmountable weakness of multiferroicity, becomes a distinct advantage in alterferroicity, making it an inborn rich ore for intrinsic strong magnetoelectricity. The general design rules for alterferroic materials rely on the competition between the instabilities of phononic and electronic structures in covalent systems. Based on primary density functional theory calculations, Ti-based trichalcogenides are predicted to be alterferroic candidates, which exhibit unique seesaw-type magnetoelectricity. This alterferroicity, as an emerging branch of the ferroic family, reshapes the framework of magnetoelectricity, going beyond the established scenario based on multiferroicity.
Collapse
Affiliation(s)
- Ziwen Wang
- School of Physics, Southeast University, Nanjing211189, China
| | - Shuai Dong
- School of Physics, Southeast University, Nanjing211189, China
| |
Collapse
|
55
|
Lu XZ, Zhang HM, Zhou Y, Zhu T, Xiang H, Dong S, Kageyama H, Rondinelli JM. Out-of-plane ferroelectricity and robust magnetoelectricity in quasi-two-dimensional materials. SCIENCE ADVANCES 2023; 9:eadi0138. [PMID: 37992171 PMCID: PMC10665001 DOI: 10.1126/sciadv.adi0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Thin-film ferroelectrics have been pursued for capacitive and nonvolatile memory devices. They rely on polarizations that are oriented in an out-of-plane direction to facilitate integration and addressability with complementary metal-oxide semiconductor architectures. The internal depolarization field, however, formed by surface charges can suppress the out-of-plane polarization in ultrathin ferroelectric films that could otherwise exhibit lower coercive fields and operate with lower power. Here, we unveil stabilization of a polar longitudinal optical (LO) mode in the n = 2 Ruddlesden-Popper family that produces out-of-plane ferroelectricity, persists under open-circuit boundary conditions, and is distinct from hyperferroelectricity. Our first-principles calculations show the stabilization of the LO mode is ubiquitous in chalcogenides and halides and relies on anharmonic trilinear mode coupling. We further show that the out-of-plane ferroelectricity can be predicted with a crystallographic tolerance factor, and we use these insights to design a room-temperature multiferroic with strong magnetoelectric coupling suitable for magneto-electric spin-orbit transistors.
Collapse
Affiliation(s)
- Xue-Zeng Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Hui-Min Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Ying Zhou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Tong Zhu
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200030, People’s Republic of China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - James M. Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
56
|
Dey U, Senn MS, Bristowe NC. First-principles investigation of the magnetoelectric properties of Ba 7Mn 4O 15. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:095701. [PMID: 37972397 DOI: 10.1088/1361-648x/ad0d27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Type-II multiferroics, in which the magnetic order breaks inversion symmetry, are appealing for both fundamental and applied research due their intrinsic coupling between magnetic and electrical orders. Using first-principles calculations we study the ground state magnetic behaviour of Ba7Mn4O15which has been classified as a type-II multiferroic in recent experiments. Our constrained moment calculations with the proposed experimental magnetic structure shows the spontaneous emergence of a polar mode giving rise to an electrical polarisation comparable to other known type-II multiferroics. When the constraints on the magnetic moments are removed, the spins self-consistently relax into a canted antiferromagnetic ground state configuration where two magnetic modes transforming as distinct irreducible representations coexist. While the dominant magnetic mode matches well with the previous experimental observations, the second mode is found to possess a different character resulting in a non-polar ground state. Interestingly, the non-polar magnetic ground state exhibits a significantly strong linear magnetoelectric (ME) coupling comparable to the well-known multiferroic BiFeO3, suggesting strategies to design new linear MEs.
Collapse
Affiliation(s)
- Urmimala Dey
- Centre for Materials Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mark S Senn
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Nicholas C Bristowe
- Centre for Materials Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
57
|
Li H, Zhu W. Spin-Driven Ferroelectricity in Two-Dimensional Magnetic Heterostructures. NANO LETTERS 2023; 23:10651-10656. [PMID: 37955300 DOI: 10.1021/acs.nanolett.3c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Achieving magnetic control of ferroelectricity or electric control of magnetism is usually challenging in material systems as their magnetism and ferroelectricity have distinct fundamental origins and are subject to different symmetry constraints. However, such control has significant promise for a wide range of device applications. In this work, we employ first-principles density functional theory calculations to demonstrate the emergence of spin-driven ferroelectricity in a vertically stacked two-dimensional (2D) van der Waals magnetic heterostructure, formed by two ferromagnetic (FM) CrBr3 layers separated by an antiferromagnetic (AFM) MnPSe3 layer, delicately designed to be structurally inversion symmetric but magnetically asymmetric. The spin-induced out-of-plane electric polarization of the entire heterostructure can be reversibly controlled by an external magnetic field. We further validate the effectiveness of this design strategy in several other lattice-matched FM/AFM/FM heterostructures, thereby providing a novel family of multiferroic systems based on 2D materials.
Collapse
Affiliation(s)
- Huiping Li
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenguang Zhu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
58
|
Paulsen M, Lindner J, Klemke B, Beyer J, Fechner M, Meier D, Kiefer K. An ultra-low field SQUID magnetometer for measuring antiferromagnetic and weakly remanent magnetic materials at low temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103904. [PMID: 37823765 DOI: 10.1063/5.0135877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
A novel setup for measuring magnetic fields of antiferromagnets (i.e., quadrupolar or higher-order magnetic fields) and generally weakly remanent magnetic materials is presented. The setup features a highly sensitive superconducting quantum interference device magnetometer with a magnetic field resolution of ∼ 10 fT and non-electric temperature control of the sample space for a temperature range of 1.5-65 K with a non-electric sample movement drive and optical position encoding. To minimize magnetic susceptibility effects, the setup components are degaussed and realized with plastic materials in sample proximity. Running the setup in magnetically shielded rooms allows for a well-defined ultra-low magnetic background field well below 150 nT in situ. The setup enables studies of inherently weak magnetic materials, which cannot be measured with high field susceptibility setups, optical methods, or neutron scattering techniques, giving new opportunities for the research on, e.g., spin-spiral multiferroics, skyrmion materials, and spin ices.
Collapse
Affiliation(s)
- Michael Paulsen
- Physikalisch-Technische Bundesanstalt Berlin (PTB), 7.6 Cryosensors, Abbestrasse 2-12, 10587 Berlin, Germany
| | - Julian Lindner
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Sample Environment Group, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Sample Environment Group, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Jörn Beyer
- Physikalisch-Technische Bundesanstalt Berlin (PTB), 7.6 Cryosensors, Abbestrasse 2-12, 10587 Berlin, Germany
| | - Michael Fechner
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dennis Meier
- Norwegian University of Science and Technology (NTNU), Department of Materials Science and Engineering, Sem Sælandsvei 12, N-7034 Trondheim, Norway
- Center for Quantum Spintronics, Department of Physics, NTNU, Trondheim 7491, Norway
| | - Klaus Kiefer
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Sample Environment Group, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
59
|
Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu JM, Dong S, Lu C. Colossal Linear Magnetoelectricity in Polar Magnet Fe_{2}Mo_{3}O_{8}. PHYSICAL REVIEW LETTERS 2023; 131:136701. [PMID: 37831994 DOI: 10.1103/physrevlett.131.136701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The linear magnetoelectric effect is an attractive phenomenon in condensed matters and provides indispensable technological functionalities. Here a colossal linear magnetoelectric effect with diagonal component α_{33} reaching up to ∼480 ps/m is reported in a polar magnet Fe_{2}Mo_{3}O_{8}. This effect can persist in a broad range of magnetic field (∼20 T) and is orders of magnitude larger than reported values in literature. Such an exceptional experimental observation can be well reproduced by a theoretical model affirmatively unveiling the vital contributions from the exchange striction, while the sign difference of magnetocrystalline anisotropy can also be reasonably figured out.
Collapse
Affiliation(s)
- Yuting Chang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yakui Weng
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435001, China
| | - Bin You
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junfeng Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Li
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chengliang Lu
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
60
|
Xin C, Song B, Yin Y, Wang A, Sun Z, Jin G, Song Y, Pan F. Charge disproportionation-induced multiferroics and electric field control of magnetism in a 2D MXene - Mo 2NCl 2. NANOSCALE 2023; 15:14923-14930. [PMID: 37655456 DOI: 10.1039/d3nr02600k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Two-dimensional (2D) magnetoelectric multiferroic materials with the coexistence of magnetization and ferroelectric polarization hold potential for application for the development of next-generation nano-memory devices. However, intrinsic 2D multiferroics with a high critical temperature and strong magnetoelectric coupling are still rare to date. Here, we propose a novel mechanism of 2D monolayer multiferroicity. Based on density functional theory (DFT), we predicted that in a Mo2NCl2 monolayer, the non-equilibrium charge disproportionation of Mo ions will induce an out-of-plane electric polarization, making this material a 2D monolayer multiferroic material. More importantly, the magnetic critical temperature is calculated to be ∼168 K, which is larger than those of the recently reported 2D multiferroic and ferromagnetic systems. Our findings also provide a promising platform to control the magnetic properties and electric behavior in 2D multiferroics using an external electric field.
Collapse
Affiliation(s)
- Chao Xin
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun 130022, China.
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Bingqian Song
- Center for Lattice Defectronics & Department of Physics, KAIST, Daejeon 34141, Republic of Korea
| | - Yaohui Yin
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun 130022, China.
| | - Ai Wang
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun 130022, China.
| | - Zhixin Sun
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun 130022, China.
| | - Guangyong Jin
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun 130022, China.
| | - Yongli Song
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
61
|
Du K, Huang FT, Gamage K, Yang J, Mostovoy M, Cheong SW. Strain-Control of Cycloidal Spin Order in a Metallic Van der Waals Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303750. [PMID: 37358066 DOI: 10.1002/adma.202303750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
The manipulation of magnetism through strain control is a captivating area of research with potential applications for low-power devices that do not require dissipative currents. Recent investigations of insulating multiferroics have unveiled tunable relationships among polar lattice distortions, Dzyaloshinskii-Moriya interactions (DMI), and cycloidal spin orders that break inversion symmetry. These findings have raised the possibility of utilizing strain or strain gradient to manipulate intricate magnetic states by changing polarization. However, the effectiveness of manipulating cycloidal spin orders in "metallic" materials with screened magnetism-relevant electric polarization remains uncertain. In this study, the reversible strain control of cycloidal spin textures in a metallic van der Waals magnet, Cr1/3 TaS2 , through the modulation of polarization and DMI induced by strain is demonstrated. With thermally-induced biaxial strains and isothermally-applied uniaxial strains, systematic manipulation of the sign and wavelength of the cycloidal spin textures is realized, respectively. Additionally, unprecedented reflectivity reduction under strain and domain modification at a record-low current density are also discovered. These findings establish a connection between polarization and cycloidal spins in metallic materials and present a new avenue for utilizing the remarkable tunability of cycloidal magnetic textures and optical functionality in van der Waals metals with strain.
Collapse
Affiliation(s)
- Kai Du
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Fei-Ting Huang
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Kasun Gamage
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Junjie Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Maxim Mostovoy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Sang-Wook Cheong
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
62
|
Zhang X, Xu WH, Zheng W, Su SQ, Huang YB, Shui Q, Ji T, Uematsu M, Chen Q, Tokunaga M, Gao K, Okazawa A, Kanegawa S, Wu SQ, Sato O. Magnetoelectricity Enhanced by Electron Redistribution in a Spin Crossover [FeCo] Complex. J Am Chem Soc 2023; 145:15647-15651. [PMID: 37462373 DOI: 10.1021/jacs.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Molecular-based magnetoelectric materials are among the most promising materials for next-generation magnetoelectric memory devices. However, practical application of existing molecular systems has proven difficult largely because the polarization change is far lower than the practical threshold of the ME memory devices. Herein, we successfully obtained an [FeCo] dinuclear complex that exhibits a magnetic field-induced spin crossover process, resulting in a significant polarization change of 0.45 μC cm-2. Mössbauer spectroscopy and theoretical calculations suggest that the asymmetric structural change, coupled with electron redistribution, leads to the observed polarization change. Our approach provides a new strategy toward rationally enhancing the polarization change.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Qirui Shui
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Qian Chen
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masashi Tokunaga
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Kaige Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
63
|
Tóth B, Amelin K, Rõõm T, Nagel U, Bauernfeind A, Tsurkan V, Prodan L, Krug von Nidda HA, Scheffler M, Kézsmárki I, Bordács S. Broadband magnetic resonance spectroscopy in MnSc[Formula: see text]S[Formula: see text]. Sci Rep 2023; 13:11069. [PMID: 37422590 PMCID: PMC10329720 DOI: 10.1038/s41598-023-37911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Recent neutron scattering experiments suggested that frustrated magnetic interactions give rise to antiferromagnetic spiral and fractional skyrmion lattice phases in MnSc[Formula: see text]S[Formula: see text] . Here, to trace the signatures of these modulated phases, we studied the spin excitations of MnSc[Formula: see text]S[Formula: see text] by THz spectroscopy at 300 mK and in magnetic fields up to 12 T and by broadband microwave spectroscopy at various temperatures up to 50 GHz. We found a single magnetic resonance with frequency linearly increasing in field. The small deviation of the Mn[Formula: see text] ion g-factor from 2, g = 1.96, and the absence of other resonances imply very weak anisotropies and negligible contribution of higher harmonics to the spiral state. The significant difference between the dc magnetic susceptibility and the lowest-frequency ac susceptibility in our experiment implies the existence of mode(s) outside of the measured frequency windows. The combination of THz and microwave experiments suggests a spin gap opening below the ordering temperature between 50 GHz and 100 GHz.
Collapse
Affiliation(s)
- Boglárka Tóth
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Kirill Amelin
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Toomas Rõõm
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Urmas Nagel
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anastasia Bauernfeind
- 1. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Vladimir Tsurkan
- Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Institute of Applied Physics, Moldova State University, 5 Academiei Str., 2028 Chisinau, Republic of Moldova
| | - Lilian Prodan
- Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Institute of Applied Physics, Moldova State University, 5 Academiei Str., 2028 Chisinau, Republic of Moldova
| | - Hans-Albrecht Krug von Nidda
- Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Marc Scheffler
- 1. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - István Kézsmárki
- Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Sándor Bordács
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
64
|
Sharifi Dehsari H, Hassanpour Amiri M, Asadi K. Solution-Processed Multiferroic Thin-Films with Large Magnetoelectric Coupling at Room-Temperature. ACS NANO 2023; 17:8064-8073. [PMID: 37067828 PMCID: PMC10173693 DOI: 10.1021/acsnano.2c09769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Experimental realization of thin films with a significant room-temperature magnetoelectric coupling coefficient, αME, in the absence of an external DC magnetic field, has been thus far elusive. Here, a large coupling coefficient of 750 ± 30 mV Oe-1 cm-1 is reported for multiferroic polymer nanocomposites (MPCs) thin-films in the absence of an external DC magnetic field. The MPCs are based on PMMA-grafted cobalt-ferrite nanoparticles uniformly dispersed in the piezoelectric polymer poly(vinylidene fluoride-co-trifluoroethylene, P(VDF-TrFE). It is shown that nanoparticle agglomeration plays a detrimental role and significantly reduces αME. Surface functionalization of the nanoparticles by grafting a layer of poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP) renders the nanoparticle miscible with P(VDF-TRFE) matrix, thus enabling their uniform dispersion in the matrix even in submicrometer thin films. Uniform dispersion yields maximized interfacial interactions between the ferromagnetic nanoparticles and the piezoelectric polymer matrix leading to the experimental demonstration of large αME values in solution-processed thin films, which can be exploited in flexible and printable multiferroic electronic devices for sensing and memory applications.
Collapse
Affiliation(s)
| | | | - Kamal Asadi
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Centre
for Therapeutic Innovations, University
of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
- Department
of Physics, University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| |
Collapse
|
65
|
Chang Y, Gao L, Xie Y, You B, Liu Y, Xiong R, Wang J, Lu C, Liu JM. Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (Fe 1-xMn x) 2Mo 3O 8 (0 ≤ x ≤ 1). ACS APPLIED MATERIALS & INTERFACES 2023; 15:22204-22211. [PMID: 37126663 DOI: 10.1021/acsami.3c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the present work, the magnetic properties of a single crystal (Fe1-xMnx)2Mo3O8 (0 ≤ x ≤ 1) have been studied by performing extensive measurements. A detailed magnetic phase diagram is built up, in which the antiferromagnetic state dominates for x ≤ 0.25 and the ferrimagnetic phase arises for x ≥ 0.3. Meanwhile, a sizeable electric polarization of spin origin is commonly observed in all samples, no matter what the magnetic state is. For the samples hosting a ferrimagnetic state, square-like magnetic hysteresis loops are revealed, while the remnant magnetization and coercive field can be tuned drastically by simply varying the Mn content or temperature. A possible coexistence of the antiferromagnetic and ferrimagnetic phases is proposed to be responsible for the remarkable modulation of magnetic properties in the samples.
Collapse
Affiliation(s)
- Yuting Chang
- School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Gao
- School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435001, China
| | - Bin You
- School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Liu
- School of Physics and Technology, and the Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Rui Xiong
- School of Physics and Technology, and the Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Junfeng Wang
- School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengliang Lu
- School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Ming Liu
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435001, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
66
|
Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. NATURE MATERIALS 2023; 22:542-552. [PMID: 36690757 DOI: 10.1038/s41563-022-01422-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/27/2022] [Indexed: 05/05/2023]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials has brought important functionalities to the 2D materials family, and may trigger a revolution in next-generation nanoelectronics and spintronics. In this Perspective, we briefly review recent progress in the field of 2D vdW ferroelectrics, focusing on the mechanisms that drive spontaneous polarization in 2D systems, unique properties brought about by the reduced lattice dimensionality and promising applications of 2D vdW ferroelectrics. We finish with an outlook for challenges that need to be addressed and our view on possible future research directions.
Collapse
Affiliation(s)
- Chuanshou Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, China.
| | - David Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China.
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
67
|
Xu S, Wang J, Chen P, Jin K, Ma C, Wu S, Guo E, Ge C, Wang C, Xu X, Yao H, Wang J, Xie D, Wang X, Chang K, Bai X, Yang G. Magnetoelectric coupling in multiferroics probed by optical second harmonic generation. Nat Commun 2023; 14:2274. [PMID: 37080982 PMCID: PMC10119081 DOI: 10.1038/s41467-023-38055-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
Magnetoelectric coupling, as a fundamental physical nature and with the potential to add functionality to devices while also reducing energy consumption, has been challenging to be probed in freestanding membranes or two-dimensional materials due to their instability and fragility. In this paper, we report a magnetoelectric coupling probed by optical second harmonic generation with external magnetic field, and show the manipulation of the ferroelectric and antiferromagnetic orders by the magnetic and thermal fields in BiFeO3 films epitaxially grown on the substrates and in the freestanding ones. Here we define an optical magnetoelectric-coupling constant, denoting the ability of controlling light-induced nonlinear polarization by the magnetic field, and found the magnetoelectric-coupling was suppressed by strain releasing but remain robust against thermal fluctuation for freestanding BiFeO3.
Collapse
Affiliation(s)
- Shuai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiesu Wang
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Pan Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China.
| | - Cheng Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shiyao Wu
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Erjia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Xiulai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Hongbao Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xinyan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kai Chang
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
68
|
Zhou L, Wang X, Liu Z, Ye X, Zhang J, Zhao H, Lu D, Pi M, Pan Z, Zhang X, Long Y. High-pressure single crystal growth and magnetoelectric properties of CdMn 7O 12. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:254001. [PMID: 36958045 DOI: 10.1088/1361-648x/acc712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The concurrent presence of large electric polarization and strong magnetoelectric coupling is quite desirable for potential applications of multiferroics. In this paper, we report the growth of CdMn7O12single crystals by flux method under a high pressure of 8 GPa for the first time. An antiferromagnetic (AFM) order with a polar magnetic point group is found to occur at the onset temperature ofTN1= 88 K (AFM1 phase). As a consequence, the pyroelectric current emerges atTN1and gradually increases and reaches its maximum atTset= 63 K, at which the AFM1 phase finally settles down. BelowTset, CdMn7O12single crystal exhibits a large ferroelectric polarization up to 2640µC m-2. Moreover, the spin-induced electric polarization can be readily tuned by applying magnetic fields, giving rise to considerable magnetoelectric coupling effects. Thus, the current CdMn7O12single crystal acts as a rare multiferroic system where both large polarization and strong magnetoelectric coupling merge concurrently.
Collapse
Affiliation(s)
- Long Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhehong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xubin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haoting Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dabiao Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Maocai Pi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhao Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xueqiang Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Youwen Long
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
69
|
Liu X, Liu Q, Zhao H, Zhuang G, Ren Y, Liu T, Long L, Zheng L. Magnetoelectric effect generated through electron transfer from organic radical to metal ion. Natl Sci Rev 2023; 10:nwad059. [PMID: 37200675 PMCID: PMC10187783 DOI: 10.1093/nsr/nwad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 07/27/2023] Open
Abstract
Magnetoelectric (ME) materials induced by electron transfer are extremely rare. Electron transfer in these materials invariably occurs between the metal ions. In contrast, ME properties induced by electron transfer from an organic radical to a metal ion have never been observed. Here, we report the ME coupling effect in a mononuclear molecule-based compound [(CH3)3NCH2CH2Br][Fe(Cl2An)2(H2O)2] (1) [Cl2An = chloranilate, (CH3)3NCH2CH2Br+ = (2-bromoethyl)trimethylammonium]. Investigation of the mechanism revealed that the ME coupling effect is realized through electron transfer from the Cl2An to the Fe ion. Measurement of the magnetodielectric (MD) coefficient of 1 indicated a positive MD of up to ∼12% at 103.0 Hz and 370 K, which is very different from that of ME materials with conventional electron transfer for which the MD is generally negative. Thus, the current work not only presents a novel ME coupling mechanism, but also opens a new route to the synthesis of ME coupling materials.
Collapse
Affiliation(s)
- Xiaolin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | | | | | - Yanping Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | | | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
70
|
Lee WG, Evans LL, Johnson SM, Woo RK. The Evolving Use of Magnets in Surgery: Biomedical Considerations and a Review of Their Current Applications. Bioengineering (Basel) 2023; 10:bioengineering10040442. [PMID: 37106629 PMCID: PMC10136001 DOI: 10.3390/bioengineering10040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The novel use of magnetic force to optimize modern surgical techniques originated in the 1970s. Since then, magnets have been utilized as an adjunct or alternative to a wide array of existing surgical procedures, ranging from gastrointestinal to vascular surgery. As the use of magnets in surgery continues to grow, the body of knowledge on magnetic surgical devices from preclinical development to clinical implementation has expanded significantly; however, the current magnetic surgical devices can be organized based on their core function: serving as a guidance system, creating a new connection, recreating a physiologic function, or utilization of an internal–external paired magnet system. The purpose of this article is to discuss the biomedical considerations during magnetic device development and review the current surgical applications of magnetic devices.
Collapse
Affiliation(s)
- William G. Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lauren L. Evans
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sidney M. Johnson
- Department of Surgery, University of Hawaii, Honolulu, HI 96822, USA
| | - Russell K. Woo
- Department of Surgery, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
71
|
Alam M, Chatterjee S. B-site order/disorder in A 2BB'O 6and its correlation with their magnetic property. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:223001. [PMID: 36888997 DOI: 10.1088/1361-648x/acc295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The disorder in any system affects their physical behavior. In this scenario, we report the possibility of disorder in A2BB'O6oxides and their effect on different magnetic properties. These systems show anti-site disorder by interchanging B and B' elements from their ordered position and giving rise to an anti-phase boundary. The presence of disorder leads to a reduction in saturationMand magnetic transition temperature. The disorder prevents the system from sharp magnetic transition which originates short-range clustered phase (or Griffiths phase) in the paramagnetic region just above the long-range magnetic transition temperature. Further, we report that the presence of anti-site disorder and anti-phase boundary in A2BB'O6oxides give different interesting magnetic phases like metamagnetic transition, spin-glass, exchange bias, magnetocaloric effect, magnetodielectric, magnetoresistance, spin-phonon coupling, etc.
Collapse
Affiliation(s)
- Mohd Alam
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sandip Chatterjee
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
72
|
Xin C, Fan Z, Sun Z, Li H, Jin G, Pan F, Sui Y. Asymmetric Janus functionalization induced magnetization and switchable out-of-plane polarization in 2D MXene Mo 2CXX'. Phys Chem Chem Phys 2023; 25:8676-8683. [PMID: 36892054 DOI: 10.1039/d2cp05668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Exploring two-dimensional (2D) van der Waals materials with out-of-plane polarization and electromagnetic coupling is essential for the development of next-generation nano-memory devices. A novel class of 2D monolayer materials with predicted spin-polarized semi-conductivity, partially compensated antiferromagnetic (AFM) order, fairly high Curie temperature, and out-of-plane polarization is analyzed in this work for the first time. Based on density functional theory calculations, we systematically studied these properties in asymmetrically functionalized MXenes (Janus Mo2C)-Mo2CXX' (X, X' = F, O, and OH). Using ab initio molecular dynamics (AIMD) and phonon spectrum calculations, the thermal and dynamic stabilities of six functionalized Mo2CXX' were identified. Our DFT+U calculation results also provided a switching path for out-of-plane polarizations, where the reverse of electric polarization is driven by terminal-layer atom flipping. More importantly, strong coupling between magnetization and electric polarization originating from spin-charge interactions was observed in this system. Our results confirm that Mo2C-FO would be a novel monolayer electromagnetic material, and its magnetization can be modulated by electric polarization.
Collapse
Affiliation(s)
- Chao Xin
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-state Laser Technology and Application, Changchun 130022, China.
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhen Fan
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-state Laser Technology and Application, Changchun 130022, China.
| | - Zhixin Sun
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-state Laser Technology and Application, Changchun 130022, China.
| | - Hui Li
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-state Laser Technology and Application, Changchun 130022, China.
| | - Guangyong Jin
- School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solid-state Laser Technology and Application, Changchun 130022, China.
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yu Sui
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
73
|
Sekine Y, Nakamura R, Akiyoshi R, Hayami S. Ä-Coupling Dielectric Functionality with Magnetic Properties in Coordination Metal Complexes. Chempluschem 2023:e202200463. [PMID: 36859753 DOI: 10.1002/cplu.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Significant research has been conducted on molecular ferroelectric materials, including pure organic and inorganic compounds; however, studies on ferroelectric materials based on coordination metal complexes are scarce. Ferroelectric materials based on coordination metal complexes have tunable structures and designs, with coexistence or synergy between the ferroelectric behavior and magnetic properties. Compared to inorganic compounds, few coordination metal complexes exhibit coupling between the magnetic and dielectric properties. Coordination metal complexes with strong coupling between the magnetic and dielectric properties exhibit dielectric permittivity variations under external magnetic fields. Therefore, they have attracted substantial interest for their potential use in magnetoelectric devices. In this review, we discuss recent advances in coordination metal complexes, that exhibit coupled magnetic functionalities and ferroelectricity or dielectric properties, including single-molecule magnets, electron delocalization systems, and external stimuli responsive compounds.
Collapse
Affiliation(s)
- Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Rikuto Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
74
|
Soumya S, Vinod K, Harsita M, Sreelatha K, Durga Rao T, Ramesh Kumar K, Rout J, Gangopadhyay P, Bhatnagar A, Sattibabu B. Studies on the effect of In3+ ion on magnetic and magneto caloric properties of polycrystalline TbMnO3. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
75
|
Fodouop FK, Tsokeng AT, Nganyo PN, Tchoffo M, Fai L. A metamagnetoelectric view of the linarite PbCuSO 4(OH)2 cuprate spin chain. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
76
|
Li H, Yang Y, Deng S, Liu H, Li T, Song Y, Bai H, Zhu T, Wang J, Wang H, Guo EJ, Xing X, Xiang H, Chen J. Significantly Enhanced Room-Temperature Ferromagnetism in Multiferroic EuFeO 3-δ Thin Films. NANO LETTERS 2023; 23:1273-1279. [PMID: 36729943 DOI: 10.1021/acs.nanolett.2c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 μB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.
Collapse
Affiliation(s)
- Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yali Yang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai200433, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, China
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing100084, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Tianyu Li
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - He Bai
- Spallation Neutron Source Science Center, Dongguan523803, China
| | - Tao Zhu
- Spallation Neutron Source Science Center, Dongguan523803, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Huanhua Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai200433, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
77
|
Li YQ, Wang P, Zhang H, Zhang H, Fu LB. Nonabelian Ginzburg-Landau theory for ferroelectrics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:155702. [PMID: 36731170 DOI: 10.1088/1361-648x/acb89d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The Ginzburg-Landau theory, which was introduced to phenomenologically describe the destruction of superconductivity by a magnetic field at the beginning, has brought up much more knowledge beyond the original one as a mean-field theory of thermodynamics states. There the complex order parameter plays an important role. Here we propose a macroscopic theory to describe the features of ferroelectrics by a two-component complex order parameter coupled to nonabelian gauge potentials that provide more freedom to reflect interplays between different measurables. Within this theoretical framework, some recently discovered empirical static and time-independent phenomena, such as vortex, anti-vortex, spiral orders can be obtained as solutions for different gauge potentials. It is expected to bring in a new angle of view with more elucidation than the traditional one that takes the polarization as order parameter.
Collapse
Affiliation(s)
- You-Quan Li
- Chern Institute of Mathematics, Nankai University, Weijin Road 94, Tianjin 300071, People's Republic of China
- School of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210008, People's Republic of China
| | - Pei Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hua Zhang
- Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Hong Zhang
- School of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Li-Bin Fu
- Graduate School of China Academy of Engineering Physics, Beijing 100193, People's Republic of China
| |
Collapse
|
78
|
Wang Y, Wang P, Wang H, Xu B, Li H, Cheng M, Feng W, Du R, Song L, Wen X, Li X, Yang J, Cai Y, He J, Wang Z, Shi J. Room-Temperature Magnetoelectric Coupling in Atomically Thin ε-Fe 2 O 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209465. [PMID: 36460029 DOI: 10.1002/adma.202209465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
2D multiferroics with magnetoelectric coupling combine the magnetic order and electric polarization in a single phase, providing a cornerstone for constructing high-density information storages and low-energy-consumption spintronic devices. The strong interactions between various order parameters are crucial for realizing such multifunctional applications, nevertheless, this criterion is rarely met in classical 2D materials at room-temperature. Here an ingenious space-confined chemical vapor deposition strategy is designed to synthesize atomically thin non-layered ε-Fe2 O3 single crystals and disclose the room-temperature long-range ferrimagnetic order. Interestingly, the strong ferroelectricity and its switching behavior are unambiguously discovered in atomically thin ε-Fe2 O3 , accompanied with an anomalous thickness-dependent coercive voltage. More significantly, the robust room-temperature magnetoelectric coupling is uncovered by controlling the magnetism with electric field and verifies the multiferroic feature of atomically thin ε-Fe2 O3 . This work not only represents a substantial leap in terms of the controllable synthesis of 2D multiferroics with robust magnetoelectric coupling, but also provides a crucial step toward the practical applications in low-energy-consumption electric-writing/magnetic-reading devices.
Collapse
Affiliation(s)
- Yuzhu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Peng Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bingqian Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Mo Cheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruofan Du
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xia Wen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Cai
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
79
|
Chan YT, Uykur E, Dressel M. Radio frequency dielectric measurements in diamond anvil cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023905. [PMID: 36859038 DOI: 10.1063/5.0130870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We present the modifications, performance, and test of a diamond anvil cell for radio frequency dielectric spectroscopy studies of single crystals that can be used from room temperature down to 4 K and up to pressures of 5-6 GPa. Continuous frequency-dependent measurements between 5 Hz and 1 MHz can be performed with this modified pressure cell. The cell has an excellent performance with temperature-, frequency-, and pressure-independent stray capacitance of around 2 pF, enabling us to use relatively small samples with a weak dielectric response.
Collapse
Affiliation(s)
- Yuk Tai Chan
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ece Uykur
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Martin Dressel
- Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
80
|
Shen X, Wang F, Lu X, Zhang J. Two-Dimensional Multiferroics with Intrinsic Magnetoelectric Coupling in A-Site Ordered Perovskite Monolayers. NANO LETTERS 2023; 23:735-741. [PMID: 36516835 DOI: 10.1021/acs.nanolett.2c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The magnetoelectric coupling effect in multiferroics provides a route to realize the control of magnetism by electric field. Here, we demonstrate the coexistence and coupling of ferroelectricity and ferromagnetism in designed A-site ordered perovskite oxide monolayers by combining symmetry analysis and first-principles calculation. These monolayers all exhibit a layered ordering and tilt distortion, and some of them exhibit rotation or Jahn-Teller distortion simultaneously, leading to the emergence of in-plane ferroelectricity. The Mn-based monolayers exhibit robust ferromagnetism, while some monolayers tend to form E-type spin order due to the splitting of the nearest-neighbor exchange interactions. Whether polarization reversal can lead to magnetization reversal depends on the mode of ferroelectric switching, that is, only the ferroelectric switching that reversing the tilt distortion can lead to magnetization reversal. This work demonstrates the feasibility of controlling the direction of magnetization by electric field in the monolayer limit of perovskites.
Collapse
Affiliation(s)
- Xiaofan Shen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, China
- National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing210093, China
| | - Fan Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, China
| | - Xiaomei Lu
- National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing210093, China
| | - Junting Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, China
| |
Collapse
|
81
|
Cao Y, Tang YL, Zhu YL, Wang Y, Liu N, Zou MJ, Liu J, Feng YP, Geng WR, Ma XL. Achieving High-Temperature Multiferroism by Atomic Architecture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3163-3171. [PMID: 36621962 DOI: 10.1021/acsami.2c20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Materials with multiple order parameters, typically, in which ferroelectricity and magnetism are coupled, are illuminative for next-generation multifunctional electronics. However, searching for such single-phase multiferroics is challenging owing to antagonistic orbital occupancy and chemical bonding requirements for polarity and magnetism. Appropriate multiferroic candidates have been proposed, but their practical implementation is impeded by the low working temperature, weak coupling between ferroic orders, or antiparallel spin alignment in magnetic sublattices. Here, we report a family of single-phase multiferroic materials in which high-temperature magnetism and voltage-switchable ferroelectricity are coupled. Using pulsed laser deposition, we have fabricated single-crystalline thin films incorporating a uniformly percolated open-shell dn framework, which are composed of Fe cations with B-site occupancy and exhibit long-range spin ordering into the displacive ferroelectric PbTiO3 lattice, as demonstrated by atomically resolved chemical analysis. The tetragonal polar Pb(Ti1-x,Fex)O3 (PFT(x), x ≤ 0.10) family exhibits a switchable ferroelectric nature and magnetic interaction with a moderate coercive field of around 300 Oe at room temperature. Notably, the magnetic order even persists above 500 K, which is higher than already reported potential multiferroic candidates until now. Our strategy of merging a spin-ordered sublattice into inherent ferroelectrics via atomic occupancy engineering provides an available pathway for highly thermally stable multiferroic and spintronic applications.
Collapse
Affiliation(s)
- Yi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang 110016, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
| | - Yin-Lian Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yujia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
| | - Nan Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang 110016, China
| | - Min-Jie Zou
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaqi Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang 110016, China
| | - Yan-Peng Feng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wan-Rong Geng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiu-Liang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
82
|
Wu H, Zhang Y, Ao H, Zhong S, Zeng Z, Li W, Gao R, Fu C, Chen G, Deng X, Wang Z, Lei X, Cai W. Controlling magnetoelectric coupling effect of CoFe 2O 4–Ba 0.8Sr 0.2TiO 3 multiferroic fluids by viscosity. NEW J CHEM 2023. [DOI: 10.1039/d2nj05496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The multiferroic fluids has an obvious magnetodielectric effects, and presents large magnetoelectric coupling coefficient of 89.8 V (cm Oe)−1.
Collapse
Affiliation(s)
- Heng Wu
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Yulin Zhang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Hong Ao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Siqi Zhong
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Zhixin Zeng
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Wenchuan Li
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Rongli Gao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Chunlin Fu
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Gang Chen
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Xiaoling Deng
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Zhenhua Wang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Xiang Lei
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| | - Wei Cai
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing, 401331, China
| |
Collapse
|
83
|
Implementing a sol-gel route to adjust the structural and dielectric characteristics of Bi and Fe co-doped BaTiO3 ceramics. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
84
|
Dutta K, Singh R. Magnetoelastic coupling and critical behavior of some strongly correlated magnetic systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:083001. [PMID: 33412540 DOI: 10.1088/1361-648x/abd99d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The strongly correlated magnetic systems are attracting continuous attention in current condensed matter research due to their very compelling physics and promising technological applications. Being a host to charge, spin, and lattice degrees of freedom, such materials exhibit a variety of phases, and investigation of their physical behavior near such a phase transition bears an immense possibility. This review summarizes the recent progress in elucidating the role of magnetoelastic coupling on the critical behavior of some technologically important class of strongly correlated magnetic systems such as perovskite magnetites, uranium ferromagnetic superconductors, and multiferroic hexagonal manganites. It begins with encapsulation of various experimental findings and then proceeds toward describing how such experiments motivate theories within the Ginzburg-Landau phenomenological picture in order to capture the physics near a magnetic phase transition of such systems. The theoretical results that are obtained by implementing Wilson's renormalization-group to nonlocal Ginzburg-Landau model Hamiltonians are also highlighted. A list of possible experimental realizations of the coupled model Hamiltonians elucidates the importance of spin-lattice coupling near a critical point of strongly correlated magnetic systems.
Collapse
Affiliation(s)
- Kishore Dutta
- Department of Physics, Handique Girls' College, Guwahati 781 001, India
| | - Rohit Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
85
|
Liu MY, Yu JX, Zhu XL, Bian ZP, Zhou X, Liang YH, Luo ZL, Yin YW, Li JY, Chen XM. Hexagonal Lu 1-xIn xFeO 3 Room-Temperature Multiferroic Thin Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52117-52123. [PMID: 36346358 DOI: 10.1021/acsami.2c11927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hexagonal rare earth ferrites h-RFeO3(R = rare earth element) have been recognized as promising candidates for a room-temperature multiferroic system, and the primary issue for these materials is how to get a stable hexagonal structure since the centrosymmetric orthorhombic structure is generally stable for most RFeO3 at room-temperature, while the hexagonal phase is only stable under some strict conditions. In the present work, h-Lu1-xInxFeO3 (x = 0-1) thin films were prepared on a Nb-SrTiO3 (111) single-crystal substrate by a pulsed laser deposition (PLD) process, and the multiferroic characterization was performed at room temperature. With the combined effects of chemical pressure and epitaxial strain, the stable hexagonal structure was achieved in a wide composition range (x = 0.5-0.7), and the results of XRD (X-ray diffraction) and SAED (selected area electron diffraction) indicate the super-cell match relations between the h-Lu0.3In0.7FeO3 thin film and substrate. The saturated P-E hysteresis loop was obtained at room temperature with a remanent polarization of about 4.3 μC/cm2, and polarization switching was also confirmed by PFM measurement. Furthermore, a strong magnetoelectric coupling with a linear magnetoelectric coefficient of 1.9 V/cm Oe was determined, which was about three orders of magnitude larger than that of h-RFeO3 ceramics. The present results indicate that the h-Lu1-xInxFeO3 thin films are expected to have great application potential for magnetoelectric memory and detection devices.
Collapse
Affiliation(s)
- Mei Ying Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jun Xi Yu
- Institute for Advanced Study, Chengdu University, Chengdu610100, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Shenzhen518055, China
| | - Xiao Li Zhu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Zhi Ping Bian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230029, China
| | - Xiang Zhou
- Hefei National Research Center for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei230029, China
| | - Yu Hang Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhen Lin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230029, China
| | - Yue Wei Yin
- Hefei National Research Center for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei230029, China
| | - Jiang Yu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Shenzhen518055, China
| | - Xiang Ming Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
86
|
Terada N, Khalyavin DD, Manuel P, Orlandi F, Ridley CJ, Bull CL, Ono R, Solovyev I, Naka T, Prabhakaran D, Boothroyd AT. Room-Temperature Type-II Multiferroic Phase Induced by Pressure in Cupric Oxide. PHYSICAL REVIEW LETTERS 2022; 129:217601. [PMID: 36461960 DOI: 10.1103/physrevlett.129.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
According to previous theoretical work, the binary oxide CuO can become a room-temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.5 GPa pressure. We also develop a spin Hamiltonian based on density functional theory and employing superexchange theory for the magnetic interactions, which can reproduce the experimental results. The present Letter provides a stimulus to develop room-temperature multiferroic materials by alternative methods based on existing low temperature compounds, such as epitaxial strain, for tunable multifunctional devices and memory applications.
Collapse
Affiliation(s)
- Noriki Terada
- National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - Dmitry D Khalyavin
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Fabio Orlandi
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christopher J Ridley
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Craig L Bull
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
- EaStCHEM School of Chemistry, The University of Edinburgh, Kings Buildings, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Ryota Ono
- Italian Institute of Technology, Via Morego, 30 16163 Genoa, Italy
| | - Igor Solovyev
- National Institute for Materials Science, MANA, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Metal Physics, S. Kovalevskaya street 18, 620108 Ekaterinburg, Russia
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira street 19, 620002 Ekaterinburg, Russia
| | - Takashi Naka
- National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - Dharmalingam Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Andrew T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
87
|
X-ray Absorption Spectroscopy Study of Iron Site Manganese Substituted Yttrium Orthoferrite. Molecules 2022; 27:molecules27217648. [DOI: 10.3390/molecules27217648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
In this work, manganese (Mn)-doped YFeO3, i.e., YFMxO powders with 0 ≤ x ≤ 0.1, was synthesized by a hydrothermal method to study the influences of doping on its structural, morphological, optical, magnetic, and local electrical properties. The experimental results show that all the samples exhibit an orthorhombic structure with space group Pnma. Refined structure parameters are presented. Morphology images show the shape evolution from layered to multilayered with increasing Mn content. Infrared spectra reveal the characteristic vibrations of the obtained YFMxO samples. From the magnetic study, an increased magnetic moment in the range of 0 ≤ x ≤ 0.075 is observed. The Fe and Y K-edge local structure studies indicate that the valency of Fe and Y is mainly found in the trivalent state, which also indicates that the substitution of Mn ions not only affects the nearest neighbor atomic shell of Fe but also affects the nearest neighbor’s local structure of Y atoms. Our results show that the addition of Mn exhibits an evident influence on the local structural and magnetic properties.
Collapse
|
88
|
Yu Z, Zhai K, Wang Q, Ding H, Nie A, Wang B, Xiang J, Wen F, Mu C, Xue T, Shen S, Liu Z. Magnetic field reversal of electric polarization and pressure-temperature-magnetic field magnetoelectric phase diagram of the hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:485804. [PMID: 36174548 DOI: 10.1088/1361-648x/ac965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pressure, as an independent thermodynamic parameter, is an effective tool to obtain novel material system and exotic physical phenomena not accessible at ambient conditions, because it profoundly modifies the charge, orbital and spin state by reducing the interatomic distance in crystal structure. However, the studies of magnetoelectricity and multiferroicity are rarely extended to high pressure dimension due to properties measured inside the high pressure vessel being a challenge. Here we reported the temperature-magnetic field-pressure magnetoelectric (ME) phase diagram of Y type hexaferrite Ba0.4Sr1.6Mg2Fe12O22derived from static pyroelectric current measurement and dynamic magnetodielectric in diamond anvil cell and piston cylinder cell. We found that a new spin-driven ferroelectric phase emerged atP= 0.7 GPa and sequentially ME effect disappeared aroundP= 4.3 GPa. The external pressure may enhance easy plane anisotropy to destabilize the longitudinal conical magnetic structure with the suppression of ME coefficient. These results offer essential clues for the correlation between ME effect and magnetic structure evolution under high pressure.
Collapse
Affiliation(s)
- Zhipeng Yu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Kun Zhai
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Qingkai Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hao Ding
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Anmin Nie
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Bochong Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Jianyong Xiang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Fusheng Wen
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Congpu Mu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tianyu Xue
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Shipeng Shen
- The Institute of Advance Materials, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhongyuan Liu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
89
|
Zhu Y, Sun K, Wu S, Zhou P, Fu Y, Xia J, Li HF. A comprehensive review on the ferroelectric orthochromates: Synthesis, property, and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
90
|
Zhang J, Zhou Y, Wang F, Shen X, Wang J, Lu X. Coexistence and Coupling of Spin-Induced Ferroelectricity and Ferromagnetism in Perovskites. PHYSICAL REVIEW LETTERS 2022; 129:117603. [PMID: 36154411 DOI: 10.1103/physrevlett.129.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/03/2021] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Spin-induced ferroelectricity usually does not occur in perovskites with simple collinear magnetic structures. Here, we demonstrate that in even-layer perovskite systems, some common distortion modes involving octahedral rotation and Jahn-Teller distortion can break the inversion symmetry, allowing the emergence of spin-dependent out-of-plane polarization in a simple magnetic structure. Such spin-induced ferroelectricity is very common in double-perovskite systems and can coexist with ferromagnetism or ferrimagnetism above room temperature. We explain its origin by modifying the spin-dependent p-d hybridization mechanism. Our Letter provides a universal design for two-dimensional multiferroics and enables the control of polarization by means of a magnetic field.
Collapse
Affiliation(s)
- Junting Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ying Zhou
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fan Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaofan Shen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jianli Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaomei Lu
- National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
91
|
Zeng Z, He X, Song Y, Niu H, Jiang D, Zhang X, Wei M, Liang Y, Huang H, Ouyang Z, Cheng Z, Xia Z. High-Magnetic-Sensitivity Magnetoelectric Coupling Origins in a Combination of Anisotropy and Exchange Striction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3092. [PMID: 36144879 PMCID: PMC9501851 DOI: 10.3390/nano12183092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Magnetoelectric (ME) coupling is highly desirable for sensors and memory devices. Herein, the polarization (P) and magnetization (M) of the DyFeO3 single crystal were measured in pulsed magnetic fields, in which the ME behavior is modulated by multi-magnetic order parameters and has high magnetic-field sensitivity. Below the ordering temperature of the Dy3+-sublattice, when the magnetic field is along the c-axis, the P (corresponding to a large critical field of 3 T) is generated due to the exchange striction mechanism. Interestingly, when the magnetic field is in the ab-plane, ME coupling with smaller critical fields of 0.8 T (a-axis) and 0.5 T (b-axis) is triggered. We assume that the high magnetic-field sensitivity results from the combination of the magnetic anisotropy of the Dy3+ spin and the exchange striction between the Fe3+ and Dy3+ spins. This work may help to search for single-phase multiferroic materials with high magnetic-field sensitivity.
Collapse
Affiliation(s)
- Zhuo Zeng
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiong He
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Song
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haoyu Niu
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dequan Jiang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxing Zhang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Wei
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youyuan Liang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Huang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zhengcai Xia
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
92
|
Du S, Su D, Ruan Z, Zhou Y, Deng W, Zhang W, Sun Y, Liu J, Tong M. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022; 61:e202204700. [DOI: 10.1002/anie.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shan‐Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Dan Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ying‐Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei‐Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Young Sun
- Center of Quantum Materials and Devices, and Department of Applied Physics Chongqing University Chongqing 401331 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
93
|
Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr) 3Mn 2O 7. Nat Commun 2022; 13:4927. [PMID: 35995791 PMCID: PMC9395386 DOI: 10.1038/s41467-022-32090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
The layered perovskite Ca3Mn2O7 (CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7 using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric. The competition between the polar and nonpolar phase in the prototypical hybrid improper ferroelectric crystal Ca3Mn2O7 leads to exotic properties. Here, the authors directly imaged the crystal at atomic resolution to understand its nanostructure and discovered the double bilayer polar nanoregion.
Collapse
|
94
|
Shen X, Zhou L, Liu Z, He J, Ye X, Liu G, Qin S, Lu D, Zhang J, Sun Y, Long Y. Magnetoelectric and Magnetostrictive Effects in Scheelite-Type HoCrO 4. Inorg Chem 2022; 61:14030-14037. [PMID: 35984686 DOI: 10.1021/acs.inorgchem.2c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scheelite-type HoCrO4 was prepared by treating the ambient-pressure zircon-type precursor phase under 8 GPa and 700 K. A long-range antiferromagnetic phase transition is found to occur at TN ≈ 23 K due to the spin order of Ho3+ and Cr5+ magnetic ions. However, the antiferromagnetic ground state is sensitive to an external magnetic field and a moderate field of about 1.1 T can induce a metamagnetic transition, giving rise to the presence of a large magnetization up to 8.5 μB/f.u. at 2 K and 7 T. Considerable linear magnetoelectric effect is observed in the antiferromagnetic state, while the induced electric polarization experiences a sharp increase near the critical field of the metamagnetic transition. Ferromagnetism and ferroelectricity thus rarely coexist under higher magnetic fields in scheelite-type HoCrO4. Moreover, a magnetic field also plays an important role in the longitudinal constriction of HoCrO4, and a significant magnetostrictive effect with a value of up to 300 ppm is observed at 2 K and 9 T, which can be attributed to the strong anisotropy of the rare-earth Ho3+ ion. Possible coupling between magnetoelectric and magnetoelastic effects is discussed.
Collapse
Affiliation(s)
- Xudong Shen
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhehong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincheng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Center of Quantum Materials and Devices and Department of Applied Physics, Chongqing University, Chongqing 401331, China
| | - Xubin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxiu Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Qin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dabiao Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Young Sun
- Center of Quantum Materials and Devices and Department of Applied Physics, Chongqing University, Chongqing 401331, China
| | - Youwen Long
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
95
|
Yang Y, Ji J, Feng J, Chen S, Bellaiche L, Xiang H. Two-Dimensional Organic-Inorganic Room-Temperature Multiferroics. J Am Chem Soc 2022; 144:14907-14914. [PMID: 35926166 DOI: 10.1021/jacs.2c06347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic-inorganic multiferroics are promising for the next generation of electronic devices. To date, dozens of organic-inorganic multiferroics have been reported; however, most of them show a magnetic Curie temperature much lower than room temperature, which drastically hampers their application. Here, by performing first-principles calculations and building effective model Hamiltonians, we reveal a molecular orbital-mediated magnetic coupling mechanism in two-dimensional Cr(pyz)2 (pyz = pyrazine) and the role that the valence state of the molecule plays in determining the magnetic coupling type between metal ions. Based on these, we demonstrate that a two-dimensional organic-inorganic room-temperature multiferroic, Cr(h-fpyz)2 (h-fpyz = half-fluoropyrazine), can be rationally designed by introducing ferroelectricity in Cr(pyz)2 while keeping the valence state of the molecule unchanged. Our work not only reveals the origin of magnetic coupling in 2D organic-inorganic systems but also provides a way to design room-temperature multiferroic materials rationally.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Junyi Ji
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Junsheng Feng
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Shiyou Chen
- Shanghai Qi Zhi Institute, Shanghai 200030, China.,State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institute, Shanghai 200030, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
96
|
Dong T, Zhang SJ, Wang NL. Recent Development of Ultrafast Optical Characterizations for Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2110068. [PMID: 35853841 DOI: 10.1002/adma.202110068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The advent of intense ultrashort optical pulses spanning a frequency range from terahertz to the visible has opened a new era in the experimental investigation and manipulation of quantum materials. The generation of strong optical field in an ultrashort time scale enables the steering of quantum materials nonadiabatically, inducing novel phenomenon or creating new phases which may not have an equilibrium counterpart. Ultrafast time-resolved optical techniques have provided rich information and played an important role in characterization of the nonequilibrium and nonlinear properties of solid systems. Here, some of the recent progress of ultrafast optical techniques and their applications to the detection and manipulation of physical properties in selected quantum materials are reviewed. Specifically, the new development in the detection of the Higgs mode and photoinduced nonequilibrium response in the study of superconductors by time-resolved terahertz spectroscopy are discussed.
Collapse
Affiliation(s)
- Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Si-Jie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Nan-Lin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| |
Collapse
|
97
|
Das S, Dokala RK, Weise B, Medwal R, Rawat RS, Mishra PK, Thota S. Effect of Ce substitution on the local magnetic ordering and phonon instabilities in antiferromagnetic DyCrO 3perovskites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:345803. [PMID: 35584687 DOI: 10.1088/1361-648x/ac711f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A detailed crystal structure analysis, temperature and field dependence of magnetic characteristics and phonon instabilities for different compositions (0.1 ⩽x⩽ 0.5) of Dy1-xCexCrO3solid-solutions have been reported. All the investigated compounds exhibit distorted orthorhombic crystal structure with a distortion factor ofdOct/dCell∼ 6 × 10-3/3.5 ppm (forx∼ 0.2) forPbnmspace group that follows Vegard's law. The bonds between apical oxygen atoms (OA1) and Cr atoms stand more rigidly in comparison with the basal oxygen atoms (OB1/OB2) resulting the octahedral distortion and thereby causing the changes in phonon modes. The CrO6octahedral tilt angleθrotates with respect to the Miller pseudocubic axis [101] which varies from 10.36° (x= 0.1) to 12.25° (x= 0.5) and significantly influences the Ag(5) phonon stability by 3% for a change in A-site mean radius from 1.095 Å to 1.141 Å forx= 0.1 and 0.5, respectively. From the magnetization measurements we find that these series of compositions exhibit canted antiferromagnetic (AFM) ordering with Néel temperature,TN1that increases from 151.8 K (x= 0.1) to 162 K (x= 0.5) which also manifests as a significant reduction in the magneto-crystalline anisotropy (HK∼ 2.58 kOe → 2.07 kOe,K1∼ 36.47 J m-3→ 18.97 J m-3) while maintaining the stable Γ4(Gx,Ay,Fz) AFM configuration. Both Dzyaloshinskii-Moriya interaction method and modified Curie-Weiss law are employed to analyse the inverse paramagnetic susceptibility,χ-1(T>TN1). Further, we have evaluated the symmetric (JS) and antisymmetric exchange (DAS) constants, which show progressively increasing trend (JS→ 10.08 K to 11.18 K andDAS→ 1.24 K to 1.73 K) with the incorporation of Ce inside the perovskite lattice. Furthermore, the role of Ce substitution on the low-temperature spin reorientation transition (TSR∼ 3.5 K → 16.8 K pertaining to the Γ25phase configuration) and emergence ofΓ2(Fx,Cy,Gz;FxR,CyR)weak-FM phase between 31 K and 45.5 K are discussed in consonance with the phonon spectra.
Collapse
Affiliation(s)
- S Das
- Department of Physics, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - R K Dokala
- Department of Physics, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - B Weise
- Leibniz-IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
| | - R Medwal
- National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - R S Rawat
- National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - P K Mishra
- Department of Physics, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - S Thota
- Department of Physics, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
98
|
Zhou H, Ding H, Yu Z, Yu T, Zhai K, Wang B, Mu C, Wen F, Xiang J, Xue T, Wang L, Liu Z, Sun Y, Tian Y. Pressure Control of the Structure and Multiferroicity in a Hydrogen-Bonded Metal-Organic Framework. Inorg Chem 2022; 61:9631-9637. [PMID: 35696435 DOI: 10.1021/acs.inorgchem.2c01083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.
Collapse
Affiliation(s)
- Houjian Zhou
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Hao Ding
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhipeng Yu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Tongtong Yu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Tianyu Xue
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lin Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Young Sun
- Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Yongjun Tian
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
99
|
Bertacco R, Panaccione G, Picozzi S. From Quantum Materials to Microsystems. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4478. [PMID: 35806603 PMCID: PMC9267837 DOI: 10.3390/ma15134478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
The expression "quantum materials" identifies materials whose properties "cannot be described in terms of semiclassical particles and low-level quantum mechanics", i.e., where lattice, charge, spin and orbital degrees of freedom are strongly intertwined. Despite their intriguing and exotic properties, overall, they appear far away from the world of microsystems, i.e., micro-nano integrated devices, including electronic, optical, mechanical and biological components. With reference to ferroics, i.e., functional materials with ferromagnetic and/or ferroelectric order, possibly coupled to other degrees of freedom (such as lattice deformations and atomic distortions), here we address a fundamental question: "how can we bridge the gap between fundamental academic research focused on quantum materials and microsystems?". Starting from the successful story of semiconductors, the aim of this paper is to design a roadmap towards the development of a novel technology platform for unconventional computing based on ferroic quantum materials. By describing the paradigmatic case of GeTe, the father compound of a new class of materials (ferroelectric Rashba semiconductors), we outline how an efficient integration among academic sectors and with industry, through a research pipeline going from microscopic modeling to device applications, can bring curiosity-driven discoveries to the level of CMOS compatible technology.
Collapse
Affiliation(s)
- Riccardo Bertacco
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie CNR-IFN, 20133 Milan, Italy
| | | | - Silvia Picozzi
- Consiglio Nazionale delle Ricerche, CNR-SPIN c/o Università G. D’Annunzio, 66100 Chieti, Italy;
| |
Collapse
|
100
|
Clarke GRM, Lees MR, Ritter C, da Silva I, Senn MS. Synthesis and Characterization of Magnetoelectric Ba 7Mn 4O 15. Inorg Chem 2022; 61:10015-10022. [PMID: 35729687 PMCID: PMC9257749 DOI: 10.1021/acs.inorgchem.2c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present the synthesis
of a novel binary metal oxide material:
Ba7Mn4O15. The crystal structure
has been investigated by high-resolution powder synchrotron X-ray
diffraction in the temperature range of 100–300 K as well as
by powder neutron diffraction at 10 and 80 K. This material represents
an isostructural barium-substituted analogue of the layered material
Sr7Mn4O15 that forms its own structural
class. However, we find that Ba7Mn4O15 adopts a distinct magnetic ordering, resulting in a magnetoelectric
ground state below 50 K. The likely magnetoelectric coupling mechanisms
have been inferred from performing a careful symmetry-adapted refinement
against the powder neutron diffraction experiments, as well as by
making a comparison with the nonmagnetoelectric ground state of Sr7Mn4O15. The
synthesis, structural characterization, and magnetic
analysis of a novel solid-state phase, Ba7Mn4O15, are presented. While the high-temperature phase was
found to be isostructural to Sr7Mn4O15, a detailed symmetry-based analysis of low-temperature neutron powder
diffraction data, combined with magnetic susceptibility measurements,
reveals that Ba7Mn4O15 has a multiferroic
ground state.
Collapse
Affiliation(s)
| | - Martin R Lees
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Ivan da Silva
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Mark S Senn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|