51
|
Zhao Z, Chu W, Zheng Y, Wang C, Yang Y, Xu T, Yang X, Zhang W, Ding X, Li G, Zhang H, Zhou J, Ye J, Wu H, Song X, Wu Y. Cytoplasmic eIF6 promotes OSCC malignant behavior through AKT pathway. Cell Commun Signal 2021; 19:121. [PMID: 34922580 PMCID: PMC8684100 DOI: 10.1186/s12964-021-00800-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/30/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.
Collapse
Affiliation(s)
- Zechen Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Weiming Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu People’s Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai, 200011 China
| | - Chao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yuemei Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Teng Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No.1 Peoples Hospital, Xuzhou, Jiangsu People’s Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu People’s Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
52
|
Smith PR, Loerch S, Kunder N, Stanowick AD, Lou TF, Campbell ZT. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 2021; 12:6789. [PMID: 34815424 PMCID: PMC8611098 DOI: 10.1038/s41467-021-27160-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022] Open
Abstract
Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.
Collapse
Affiliation(s)
- Patrick R. Smith
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Sarah Loerch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA ,grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA USA
| | - Nikesh Kunder
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Alexander D. Stanowick
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Tzu-Fang Lou
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Zachary T. Campbell
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA ,grid.267323.10000 0001 2151 7939The Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
53
|
De Ponte Conti B, Miluzio A, Grassi F, Abrignani S, Biffo S, Ricciardi S. mTOR-dependent translation drives tumor infiltrating CD8 + effector and CD4 + Treg cells expansion. eLife 2021; 10:69015. [PMID: 34787568 PMCID: PMC8598161 DOI: 10.7554/elife.69015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
We performed a systematic analysis of the translation rate of tumor-infiltrating lymphocytes (TILs) and the microenvironment inputs affecting it, both in humans and in mice. Measurement of puromycin incorporation, a proxy of protein synthesis, revealed an increase of translating CD4+ and CD8+ cells in tumors, compared to normal tissues. High translation levels are associated with phospho-S6 labeling downstream of mTORC1 activation, whereas low levels correlate with hypoxic areas, in agreement with data showing that T cell receptor stimulation and hypoxia act as translation stimulators and inhibitors, respectively. Additional analyses revealed the specific phenotype of translating TILs. CD8+ translating cells have enriched expression of IFN-γ and CD-39, and reduced SLAMF6, pointing to a cytotoxic phenotype. CD4+ translating cells are mostly regulatory T cells (Tregs) with enriched levels of CTLA-4 and Ki67, suggesting an expanding immunosuppressive phenotype. In conclusion, the majority of translationally active TILs is represented by cytotoxic CD8+ and suppressive CD4+ Tregs, implying that other subsets may be largely composed by inactive bystanders.
Collapse
Affiliation(s)
- Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Annarita Miluzio
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, Universita` degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
54
|
Schatz C, Sprung S, Schartinger V, Codina-Martínez H, Lechner M, Hermsen M, Haybaeck J. Dysregulation of Translation Factors EIF2S1, EIF5A and EIF6 in Intestinal-Type Adenocarcinoma (ITAC). Cancers (Basel) 2021; 13:cancers13225649. [PMID: 34830804 PMCID: PMC8616251 DOI: 10.3390/cancers13225649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Intestinal-type adenocarcinoma (ITAC) is a rare cancer of the nasal cavity and paranasal sinuses that occurs sporadically or secondary to exposure to occupational hazards, such as wood dust and leather. Eukaryotic translation initiation factors have been described as promising targets for novel cancer treatments in many cancers, but hardly anything is known about these factors in ITAC. Here we performed in silico analyses, evaluated the protein levels of EIF2S1, EIF5A and EIF6 in tumour samples and non-neoplastic tissue controls obtained from 145 patients, and correlated these results with clinical outcome data, including tumour site, stage, adjuvant radiotherapy and survival. In silico analyses revealed significant upregulation of the translation factors EIF6 (ITGB4BP), EIF5, EIF2S1 and EIF2S2 (p < 0.05) with a higher arithmetic mean expression in ITAC compared to non-neoplastic tissue (NNT). Immunohistochemical analyses using antibodies against EIF2S1 and EIF6 confirmed a significantly different expression at the protein level (p < 0.05). In conclusion, this work identifies the eukaryotic translation initiation factors EIF2S1 and EIF6 to be significantly upregulated in ITAC. As these factors have been described as promising therapeutic targets in other cancers, this work identifies candidate therapeutic targets in this rare but often deadly cancer.
Collapse
Affiliation(s)
- Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (S.S.)
| | - Susanne Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (S.S.)
| | - Volker Schartinger
- Institute of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Helena Codina-Martínez
- Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (H.C.-M.); (M.H.)
| | - Matt Lechner
- UCL Cancer Institute, University College London, London WC1E 6AG, UK;
- Barts Health NHS Trust, London E1 1BB, UK
| | - Mario Hermsen
- Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (H.C.-M.); (M.H.)
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (S.S.)
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
55
|
Challa S, Khulpateea BR, Nandu T, Camacho CV, Ryu KW, Chen H, Peng Y, Lea JS, Kraus WL. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell 2021; 184:4531-4546.e26. [PMID: 34314702 PMCID: PMC8380725 DOI: 10.1016/j.cell.2021.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Defects in translation lead to changes in the expression of proteins that can serve as drivers of cancer formation. Here, we show that cytosolic NAD+ synthesis plays an essential role in ovarian cancer by regulating translation and maintaining protein homeostasis. Expression of NMNAT-2, a cytosolic NAD+ synthase, is highly upregulated in ovarian cancers. NMNAT-2 supports the catalytic activity of the mono(ADP-ribosyl) transferase (MART) PARP-16, which mono(ADP-ribosyl)ates (MARylates) ribosomal proteins. Depletion of NMNAT-2 or PARP-16 leads to inhibition of MARylation, increased polysome association and enhanced translation of specific mRNAs, aggregation of their translated protein products, and reduced growth of ovarian cancer cells. Furthermore, MARylation of the ribosomal proteins, such as RPL24 and RPS6, inhibits polysome assembly by stabilizing eIF6 binding to ribosomes. Collectively, our results demonstrate that ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein synthesis and preventing toxic protein aggregation.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beman R Khulpateea
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keun W Ryu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jayanthi S Lea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
56
|
Abstract
Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.
Collapse
|
57
|
Pasca S, Gondek LP. Clonal hematopoiesis and bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101273. [PMID: 34404525 DOI: 10.1016/j.beha.2021.101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Bone marrow failure syndromes (BMF) are a group of conditions characterized by inefficient hematopoiesis frequently associated with extra-hematopoietic phenotypes and variable risk of progression to myeloid malignancies. They can be acquired or inherited and mediated by either cell extrinsic factors or cell intrinsic impairment of hematopoietic stem cell (HSC) function. The pathophysiology includes immune-mediated attack (e.g., acquired BMFs) or germline defects in DNA damage repair machinery, telomeres maintenance or ribosomes biogenesis. (e.g., inherited BMF). Clonal hematopoiesis (CH) that frequently accompanies BMF may provide a mechanism of improved HSC fitness through the evasion of extracellular pressure or somatic reversion of germline defects. The mechanism for the CH selective advantage differs depending on the condition in which it occurs. However, this adaptation mechanism, particularly when involving putative oncogenes or tumor suppressors, may lead to increased risk of myeloid malignancies. Surveillance and early detection of leukemogenic clones may lead to timely implementation of curative therapies and improved survival.
Collapse
Affiliation(s)
- Sergiu Pasca
- Department of Oncology, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Lukasz P Gondek
- Department of Oncology, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
58
|
Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, D'Ambrosio R, Maggioni M, Brina D, Bresciani A, Biffo S. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun 2021; 12:4878. [PMID: 34385447 PMCID: PMC8361022 DOI: 10.1038/s41467-021-25195-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPβ, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.
Collapse
Affiliation(s)
- Alessandra Scagliola
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Delia Cirino
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta D'Ambrosio
- Department of Hepatology, Fondazione IRCCS Ca' Granda Granda Ospedale Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia (Roma), Italy
| | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
59
|
Shaheen F, Stephany-Brassesco I, Kelly BL. Dynamic modulation of Leishmania cytochrome c oxidase subunit IV (LmCOX4) expression in response to mammalian temperature. Mol Biochem Parasitol 2021; 244:111391. [PMID: 34144085 DOI: 10.1016/j.molbiopara.2021.111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The Leishmania LACK antigen is a ribosome-associated protein that facilitates expression of mitochondrial cytochrome c oxidase subunit IV (LmCOX4) to support parasite mitochondrial fitness and virulence within the vertebrate host. To further examine the relationship between LACK, its putative ribosome binding motif and LmCOX4, we compared the kinetics of LmCOX4 expression following temperature elevation in wildtype LACK (LACK WT) and LACK-putative ribosome-binding mutant (LACKDDE) L. major. We found that, after initial exposure to mammalian temperature, LmCOX4 levels became undetectable in LACKDDE L. major and also, surprisingly, in wild type (WT) control strains. Upon sustained exposure to mammalian temperature, LmCOX4 expression returned in WT control strains only. The initial loss of LmCOX4 in WT L. major was substantially reversed by treatment with the proteasome inhibitor MG132. Our findings indicate that initial loss of LmCOX4 under mammalian conditions is dependent upon proteasome degradation and LmCOX4 re-expression is dependent upon LACK possessing a WT putative ribosome binding motif.
Collapse
Affiliation(s)
- Farhana Shaheen
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Isabel Stephany-Brassesco
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ben L Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
60
|
Sun L, Liu S, Wang X, Zheng X, Chen Y, Shen H. eIF6 promotes the malignant progression of human hepatocellular carcinoma via the mTOR signaling pathway. J Transl Med 2021; 19:216. [PMID: 34016142 PMCID: PMC8139032 DOI: 10.1186/s12967-021-02877-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Liping Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaopai Wang
- Department of Pathology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Ya Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
61
|
RACK1 modulates polyglutamine-induced neurodegeneration by promoting ERK degradation in Drosophila. PLoS Genet 2021; 17:e1009558. [PMID: 33983927 PMCID: PMC8118270 DOI: 10.1371/journal.pgen.1009558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Polyglutamine diseases are neurodegenerative diseases caused by the expansion of polyglutamine (polyQ) tracts within different proteins. Although multiple pathways have been found to modulate aggregation of the expanded polyQ proteins, the mechanisms by which polyQ tracts induced neuronal cell death remain unknown. We conducted a genome-wide genetic screen to identify genes that suppress polyQ-induced neurodegeneration when mutated. Loss of the scaffold protein RACK1 alleviated cell death associated with the expression of polyQ tracts alone, as well as in models of Machado-Joseph disease (MJD) and Huntington's disease (HD), without affecting proteostasis of polyQ proteins. A genome-wide RNAi screen for modifiers of this rack1 suppression phenotype revealed that knockdown of the E3 ubiquitin ligase, POE (Purity of essence), further suppressed polyQ-induced cell death, resulting in nearly wild-type looking eyes. Biochemical analyses demonstrated that RACK1 interacts with POE and ERK to promote ERK degradation. These results suggest that RACK1 plays a key role in polyQ pathogenesis by promoting POE-dependent degradation of ERK, and implicate RACK1/POE/ERK as potent drug targets for treatment of polyQ diseases.
Collapse
|
62
|
Lo Gullo G, De Santis ML, Paiardini A, Rosignoli S, Romagnoli A, La Teana A, Londei P, Benelli D. The Archaeal Elongation Factor EF-2 Induces the Release of aIF6 From 50S Ribosomal Subunit. Front Microbiol 2021; 12:631297. [PMID: 33841359 PMCID: PMC8024482 DOI: 10.3389/fmicb.2021.631297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
The translation factor IF6 is a protein of about 25 kDa shared by the Archaea and the Eukarya but absent in Bacteria. It acts as a ribosome anti-association factor that binds to the large subunit preventing the joining to the small subunit. It must be released from the large ribosomal subunit to permit its entry to the translation cycle. In Eukarya, this process occurs by the coordinated action of the GTPase Efl1 and the docking protein SBDS. Archaea do not possess a homolog of the former factor while they have a homolog of SBDS. In the past, we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homolog (aIF6) highlighting its similarity to the eukaryotic counterpart. Here, we analyzed the mechanism of aIF6 release from the large ribosomal subunit. We found that, similarly to the Eukarya, the detachment of aIF6 from the 50S subunit requires a GTPase activity which involves the archaeal elongation factor 2 (aEF-2). However, the release of aIF6 from the 50S subunits does not require the archaeal homolog of SBDS, being on the contrary inhibited by its presence. Molecular modeling, using published structural data of closely related homologous proteins, elucidated the mechanistic interplay between the aIF6, aSBDS, and aEF2 on the ribosome surface. The results suggest that a conformational rearrangement of aEF2, upon GTP hydrolysis, promotes aIF6 ejection. On the other hand, aSBDS and aEF2 share the same binding site, whose occupation by SBDS prevents aEF2 binding, thereby inhibiting aIF6 release.
Collapse
Affiliation(s)
- Giada Lo Gullo
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | | | | | - Serena Rosignoli
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Science, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Anna La Teana
- Department of Life and Environmental Science, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Paola Londei
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
63
|
Nikolay R, Hilal T, Schmidt S, Qin B, Schwefel D, Vieira-Vieira CH, Mielke T, Bürger J, Loerke J, Amikura K, Flügel T, Ueda T, Selbach M, Deuerling E, Spahn CMT. Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization. Mol Cell 2021; 81:1200-1215.e9. [PMID: 33639093 DOI: 10.1016/j.molcel.2021.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/13/2023]
Abstract
Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Freie Universität Berlin, Research Centre for Electron Microscopy, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Sabine Schmidt
- Molekulare Mikrobiologie, Universität Konstanz, Konstanz, Germany
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Schwefel
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carlos H Vieira-Vieira
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Timo Flügel
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Elke Deuerling
- Molekulare Mikrobiologie, Universität Konstanz, Konstanz, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
64
|
Kennedy AL, Myers KC, Bowman J, Gibson CJ, Camarda ND, Furutani E, Muscato GM, Klein RH, Ballotti K, Liu S, Harris CE, Galvin A, Malsch M, Dale D, Gansner JM, Nakano TA, Bertuch A, Vlachos A, Lipton JM, Castillo P, Connelly J, Churpek J, Edwards JR, Hijiya N, Ho RH, Hofmann I, Huang JN, Keel S, Lamble A, Lau BW, Norkin M, Stieglitz E, Stock W, Walkovich K, Boettcher S, Brendel C, Fleming MD, Davies SM, Weller EA, Bahl C, Carter SL, Shimamura A, Lindsley RC. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun 2021; 12:1334. [PMID: 33637765 PMCID: PMC7910481 DOI: 10.1038/s41467-021-21588-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
To understand the mechanisms that mediate germline genetic leukemia predisposition, we studied the inherited ribosomopathy Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with high risk of myeloid malignancies at an early age. To define the mechanistic basis of clonal hematopoiesis in SDS, we investigate somatic mutations acquired by patients with SDS followed longitudinally. Here we report that multiple independent somatic hematopoietic clones arise early in life, most commonly harboring heterozygous mutations in EIF6 or TP53. We show that germline SBDS deficiency establishes a fitness constraint that drives selection of somatic clones via two distinct mechanisms with different clinical consequences. EIF6 inactivation mediates a compensatory pathway with limited leukemic potential by ameliorating the underlying SDS ribosome defect and enhancing clone fitness. TP53 mutations define a maladaptive pathway with enhanced leukemic potential by inactivating tumor suppressor checkpoints without correcting the ribosome defect. Subsequent development of leukemia was associated with acquisition of biallelic TP53 alterations. These results mechanistically link leukemia predisposition to germline genetic constraints on cellular fitness, and provide a rational framework for clinical surveillance strategies.
Collapse
Affiliation(s)
- Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James Bowman
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Institute for Protein Innovation, Boston, MA, USA
| | - Christopher J Gibson
- Department of Medical Oncology, Division of Hematological Malignancies Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Elissa Furutani
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Robert H Klein
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Boston, MA, USA
| | | | - Shanshan Liu
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - David Dale
- Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Taizo A Nakano
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alison Bertuch
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Adrianna Vlachos
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
- Zucker School of Medicine at Hofstra/Northwell School of Medicine, Hempstead, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
- Zucker School of Medicine at Hofstra/Northwell School of Medicine, Hempstead, NY, USA
| | - Paul Castillo
- Shands Children's Hospital, Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL, USA
| | - James Connelly
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jane Churpek
- Department of Medicine, Section of Hematology, Oncology, and Palliative Care, The University of Wisconsin-Madison, Madison, WI, USA
| | - John R Edwards
- Indiana Blood and Marrow Transplantation, Indianapolis, IN, USA
| | - Nobuko Hijiya
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Inga Hofmann
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and BMT, University of Wisconsin, Madison, WI, USA
| | - James N Huang
- Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
- Division of Pediatric Allergy, Immunology, and Blood & Marrow Transplantation, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Siobán Keel
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Lamble
- Division of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Bonnie W Lau
- Dartmouth-Hitchcock Medical Center, Pediatric Hematology Oncology, Geisel School of Medicine, Lebanon, NH, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Maxim Norkin
- Division of Cancer Medicine, Baptist MD Anderson Cancer Center, Jacksonville, FL, USA
| | - Elliot Stieglitz
- Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kelly Walkovich
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Edie A Weller
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Christopher Bahl
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Institute for Protein Innovation, Boston, MA, USA
| | - Scott L Carter
- Broad Institute, Boston, MA, USA
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Division of Hematological Malignancies Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
65
|
Ye C, Liu B, Lu H, Liu J, Rabson AB, Jacinto E, Pestov DG, Shen Z. BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic Acids Res 2021; 48:12817-12832. [PMID: 33245766 PMCID: PMC7736804 DOI: 10.1093/nar/gkaa1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.
Collapse
Affiliation(s)
- Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Arnold B Rabson
- Department of Pharmacology, and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
66
|
Xiong W, Lan T, Mo B. Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:607157. [PMID: 33968093 PMCID: PMC8096920 DOI: 10.3389/fpls.2021.607157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Ribosomes are basic translational machines in all living cells. The plant cytosolic ribosome is composed of four rRNAs and approximately 81 ribosomal proteins (RPs). In addition to the fundamental functions of RPs in the messenger RNA decoding process as well as in polypeptide synthesis and ribosome assembly, extraribosomal functions of RPs that occur in the absence of the ribosome have been proposed and studied with respect to RPs' ability to interact with RNAs and non-ribosomal proteins. In a few cases, extraribosomal functions of several RPs have been demonstrated with solid evidences in plants, including microRNA biogenesis, anti-virus defenses, and plant immunity, which have fascinated biologists. We believe that the widespread duplication of RP genes in plants may increase the potential of extraribosomal functions of RPs and more extraribosomal functions of plant RPs will be discovered in the future. In this article we review the current knowledge concerning the extraribosomal functions of RPs in plants and described the prospects for future research in this fascinating area.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Beixin Mo,
| |
Collapse
|
67
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
68
|
Pollutri D, Penzo M. Ribosomal Protein L10: From Function to Dysfunction. Cells 2020; 9:cells9112503. [PMID: 33227977 PMCID: PMC7699173 DOI: 10.3390/cells9112503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify RPL10 (ribosomal protein L10 gene), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function. Here, we reviewed the literature to give an overview of the role of RPL10 in physiologic and pathologic processes, including inherited disease and cancer.
Collapse
Affiliation(s)
- Daniela Pollutri
- Department of Experimental, Diagnostic and Specialty Medicine Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-214-3521
| |
Collapse
|
69
|
Tsai FD, Lindsley RC. Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood 2020; 136:1615-1622. [PMID: 32736377 PMCID: PMC7530647 DOI: 10.1182/blood.2019000990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are characterized by ineffective hematopoiesis and increased risk for developing myeloid malignancy. The pathophysiologies of different IBMFSs are variable and can relate to defects in diverse biological processes, including DNA damage repair (Fanconi anemia), telomere maintenance (dyskeratosis congenita), and ribosome biogenesis (Diamond-Blackfan anemia, Shwachman-Diamond syndrome). Somatic mutations leading to clonal hematopoiesis have been described in IBMFSs, but the distinct mechanisms by which mutations drive clonal advantage in each disease and their associations with leukemia risk are not well understood. Clinical observations and laboratory models of IBMFSs suggest that the germline deficiencies establish a qualitatively impaired functional state at baseline. In this context, somatic alterations can promote clonal hematopoiesis by improving the competitive fitness of specific hematopoietic stem cell clones. Some somatic alterations relieve baseline fitness constraints by normalizing the underlying germline deficit through direct reversion or indirect compensation, whereas others do so by subverting senescence or tumor-suppressor pathways. Clones with normalizing somatic mutations may have limited transformation potential that is due to retention of functionally intact fitness-sensing and tumor-suppressor pathways, whereas those with mutations that impair cellular elimination may have increased risk for malignant transformation that is due to subversion of tumor-suppressor pathways. Because clonal hematopoiesis is not deterministic of malignant transformation, rational surveillance strategies will depend on the ability to prospectively identify specific clones with increased leukemic potential. We describe a framework by which an understanding of the processes that promote clonal hematopoiesis in IBMFSs may inform clinical surveillance strategies.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Coleman Lindsley
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
70
|
Jungers CF, Elliff JM, Masson-Meyers DS, Phiel CJ, Origanti S. Regulation of eukaryotic translation initiation factor 6 dynamics through multisite phosphorylation by GSK3. J Biol Chem 2020; 295:12796-12813. [PMID: 32703900 DOI: 10.1074/jbc.ra120.013324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3β phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.
Collapse
Affiliation(s)
- Courtney F Jungers
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Jonah M Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Colorado, USA
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA .,Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
71
|
Manfrini N, Ricciardi S, Alfieri R, Ventura G, Calamita P, Favalli A, Biffo S. Ribosome profiling unveils translational regulation of metabolic enzymes in primary CD4 + Th1 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103697. [PMID: 32330465 DOI: 10.1016/j.dci.2020.103697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 05/22/2023]
Abstract
The transition from a naïve to an effector T cell is an essential event that requires metabolic reprogramming. We have recently demonstrated that the rapid metabolic changes that occur following stimulation of naïve T cells require the translation of preexisting mRNAs. Here, we provide evidence that translation regulates the metabolic asset of effector T cells. By performing ribosome profiling in human CD4+ Th1 cells, we show that the metabolism of glucose, fatty acids and pentose phosphates is regulated at the translational level. In Th1 cells, each pathway has at least one enzyme regulated at the translational level and selected enzymes have high translational efficiencies. mRNA expression does not predict protein expression. For instance, PKM2 mRNA is equally present in naïve T and Th1 cells, but the protein is abundant only in Th1. 5'-untranslated regions (UTRs) may partly account for this regulation. Overall we suggest that immunometabolism is controlled by translation.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy
| | - Gabriele Ventura
- Department of Biological Sciences, University of Milan, Milan, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Andrea Favalli
- Department of Biological Sciences, University of Milan, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
72
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
73
|
Koh AL, Bonnard C, Lim JY, Liew WK, Thoon KC, Thomas T, Ali NAB, Ng AYJ, Tohari S, Phua KB, Venkatesh B, Reversade B, Jamuar SS. Heterozygous missense variant in EIF6 gene: A novel form of Shwachman-Diamond syndrome? Am J Med Genet A 2020; 182:2010-2020. [PMID: 32657013 DOI: 10.1002/ajmg.a.61758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare multisystem ribosomal biogenesis disorder characterized by exocrine pancreatic insufficiency, hematologic abnormalities and bony abnormalities. About 90% of patients have biallelic mutations in SBDS gene. Three additional genes-EFL1, DNAJC21 and SRP54 have been reported in association with a SDS phenotype. However, the cause remains unknown for ~10% of patients. Herein, we report a 6-year-old Chinese boy, who presented in the neonatal period with pancytopenia, liver transaminitis with hepatosplenomegaly and developmental delay, and subsequently developed pancreatic insufficiency complicated by malabsorption and poor growth. Exome sequencing identified a novel de novo heterozygous variant in EIF6 (c.182G>T, p.Arg61Leu). EIF6 protein inhibits ribosomal maturation and is removed in the late steps of ribosomal maturation by SBDS and EFL1 protein. Given the interaction of EIF6 with SBDS and EFL1, we postulate heterozygous variants in EIF6 as a novel cause of Shwachman-Diamond-like phenotype. We compared the phenotype of our patient with those in patients with mutation in SBDS, EFL1, DNAJC21, and SRP54 genes to support this association. Identification of more cases of this novel phenotype would strengthen the association with the genetic etiology.
Collapse
Affiliation(s)
- Ai Ling Koh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Jiin Ying Lim
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Woei Kang Liew
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore
| | - Koh Cheng Thoon
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Terrence Thomas
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Kong Boo Phua
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Saumya Shekhar Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| |
Collapse
|
74
|
DiGiuseppe S, Rollins MG, Astar H, Khalatyan N, Savas JN, Walsh D. Proteomic and mechanistic dissection of the poxvirus-customized ribosome. J Cell Sci 2020; 134:jcs246603. [PMID: 32467327 PMCID: PMC7358139 DOI: 10.1242/jcs.246603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are often viewed as protein synthesis machines that lack intrinsic regulatory capacity. However, studies have established that ribosomes can functionally diversify through changes in the composition of, or post-translational modifications to ribosomal subunit proteins (RPs). We recently found that poxviruses phosphorylate unique sites in the RP, receptor for activated C kinase 1 (RACK1) to enhance viral protein synthesis. Here, we developed approaches for large-scale proteomic analysis of ribosomes isolated from cells infected with different viruses. Beyond RACK1, we identified additional phosphorylation events within RPS2 and RPS28 that arise during poxvirus infection, but not other viruses tested. The modified sites lie within unstructured loop domains that position around the mRNA entry and exit channel, respectively, and site-substitution mutants revealed that each modified residue contributed differently to poxvirus replication. Our findings reveal the broader extent to which poxviruses customize host ribosomes and provide new insights into how ribosomes can functionally diversify.
Collapse
Affiliation(s)
- Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
75
|
LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 2020; 545:53-62. [PMID: 32308198 DOI: 10.1016/j.virol.2020.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/09/2023]
Abstract
Viruses have evolved strategies to ensure efficient translation using host cell ribosomes and translation factors. In addition to cleaving translation initiation factors required for host cell translation, poliovirus (PV) uses an internal ribosome entry site (IRES). Recent studies suggest that viruses exploit specific ribosomal proteins to enhance translation of their viral proteins. The ribosomal protein receptor for activated C kinase 1 (RACK1), a protein of the 40S ribosomal subunit, was previously shown to mediate translation from the 5' cricket paralysis virus and hepatitis C virus IRESs. Here we found that translation of a PV dual-luciferase reporter shows a moderate dependence on RACK1. However, in the context of a viral infection we observed significantly reduced poliovirus plaque size and titers and delayed host cell translational shut-off. Our findings further illustrate the involvement of the cellular translational machinery during PV infection and how viruses usurp the function of specific ribosomal proteins.
Collapse
Affiliation(s)
- Ethan LaFontaine
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Natasha Permaul
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Elliot T Martin
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA; The RNA Institute, University at Albany, NY, 12222, USA.
| |
Collapse
|
76
|
Romano N, Catalani A, Lattante S, Belardo A, Proietti S, Bertini L, Silvestri F, Catalani E, Cervia D, Zolla L, Sabatelli M, Welshhans K, Ceci M. ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cell Signal 2020; 70:109591. [PMID: 32126264 DOI: 10.1016/j.cellsig.2020.109591] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
The main hallmark of many forms of familiar and sporadic amyotrophic lateral sclerosis (ALS) is a reduction in nuclear TDP-43 protein and its inclusion in cytoplasmic aggregates in motor neurons. In order to understand which cellular and molecular mechanisms underlie the mislocalization of TDP-43, we examined human skin fibroblasts from two individuals with familial ALS, both with mutations in TDP-43, and two individuals with sporadic ALS, both without TDP-43 mutations or mutations in other ALS related genes. We found that all ALS fibroblasts had a partially cytoplasmic localization of TDP-43 and had reduced cell metabolism as compared to fibroblasts from apparently healthy individuals. ALS fibroblasts showed an increase in global protein synthesis and an increase in 4E-BP1 and rpS6 phosphorylation, which is indicative of mTORC1 activity. We also observed a decrease in glutathione (GSH), which suggests that oxidative stress is elevated in ALS. ERK1/2 activity regulated the extent of oxidative stress and the localization of TDP-43 in the cytoplasm in all ALS fibroblasts. Lastly, ALS fibroblasts showed reduced stress granule formation in response to H2O2 stress. In conclusion, these findings identify specific cellular and molecular defects in ALS fibroblasts, thus providing insight into potential mechanisms that may also occur in degenerating motor neurons.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Alessia Catalani
- Department of Molecular Sciences, University of Urbino "Carlo Bo", Via Santa Chiara, 27 61029 Urbino, PU, Italy
| | - Serena Lattante
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Unità Operativa Complessa di Genetica Medica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Medicina Genomica, 00168 Roma, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia (DAFNE), 01100 Viterbo, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Dipartimento Scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Neurologia, Centro Clinico NEMO, 00168 Roma, Italy
| | - Kristy Welshhans
- Department of Biological Sciences, School of Biomedical Sciences and Brain Health Research Institute, Kent State University, Kent, OH 44236, USA
| | - Marcello Ceci
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
77
|
Persson H, Søkilde R, Häkkinen J, Vallon-Christersson J, Mitelman F, Borg Å, Höglund M, Rovira C. Analysis of fusion transcripts indicates widespread deregulation of snoRNAs and their host genes in breast cancer. Int J Cancer 2020; 146:3343-3353. [PMID: 32067223 DOI: 10.1002/ijc.32927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or noncoding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology.
Collapse
Affiliation(s)
- Helena Persson
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Jari Häkkinen
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | | | - Felix Mitelman
- Department of Laboratory Medicine, Clinical Genetics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Åke Borg
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden.,CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
| | - Mattias Höglund
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| |
Collapse
|
78
|
Watson SF, Bellora N, Macias S. ILF3 contributes to the establishment of the antiviral type I interferon program. Nucleic Acids Res 2020; 48:116-129. [PMID: 31701124 PMCID: PMC7145544 DOI: 10.1093/nar/gkz1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Upon detection of viral infections, cells activate the expression of type I interferons (IFNs) and pro-inflammatory cytokines to control viral dissemination. As part of their antiviral response, cells also trigger the translational shutoff response which prevents translation of viral mRNAs and cellular mRNAs in a non-selective manner. Intriguingly, mRNAs encoding for antiviral factors bypass this translational shutoff, suggesting the presence of additional regulatory mechanisms enabling expression of the self-defence genes. Here, we identified the dsRNA binding protein ILF3 as an essential host factor required for efficient translation of the central antiviral cytokine, IFNB1, and a subset of interferon-stimulated genes. By combining polysome profiling and next-generation sequencing, ILF3 was also found to be necessary to establish the dsRNA-induced transcriptional and translational programs. We propose a central role for the host factor ILF3 in enhancing expression of the antiviral defence mRNAs in cellular conditions where cap-dependent translation is compromised.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| |
Collapse
|
79
|
Pesce E, Miluzio A, Turcano L, Minici C, Cirino D, Calamita P, Manfrini N, Oliveto S, Ricciardi S, Grifantini R, Degano M, Bresciani A, Biffo S. Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits. Cells 2020; 9:cells9010172. [PMID: 31936702 PMCID: PMC7017188 DOI: 10.3390/cells9010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible.
Collapse
Affiliation(s)
- Elisa Pesce
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Lorenzo Turcano
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
| | - Claudia Minici
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Delia Cirino
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Piera Calamita
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Massimo Degano
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
- Correspondence: (A.B.); (S.B.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (A.B.); (S.B.)
| |
Collapse
|
80
|
Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development. Dev Biol 2019; 455:100-111. [DOI: 10.1016/j.ydbio.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
|
81
|
Jiang W, Zhang Z, Sun Y, Zhang Y, Zhang L, Liu H, Peng R. Construction and analysis of a diabetic nephropathy related protein-protein interaction network reveals nine critical and functionally associated genes. Comput Biol Chem 2019; 83:107115. [PMID: 31561072 DOI: 10.1016/j.compbiolchem.2019.107115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the common diabetic complications, but the mechanisms are still largely unknown. In this study, we constructed a DN related protein-protein interaction network (DNPPIN) on the basis of RNA-seq analysis of renal cortices of DN and normal mice, and the STRING database. We analyzed DNPPIN in detail revealing nine critical proteins which are central in DNPPIN, and contained in one network module which is functionally enriched in ribosome, nucleic acid binding and metabolic process. Overall, this study identified nine critical and functionally associated protein-coding genes concerning DN. These genes could be a starting point of future research towards the goal of elucidating the mechanisms of DN pathogenesis and progression.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yajuan Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
82
|
Kisly I, Remme J, Tamm T. Ribosomal protein eL24, involved in two intersubunit bridges, stimulates translation initiation and elongation. Nucleic Acids Res 2019; 47:406-420. [PMID: 30407570 PMCID: PMC6326817 DOI: 10.1093/nar/gky1083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023] Open
Abstract
Interactions between subunits in the Saccharomyces cerevisiae ribosome are mediated by universal and eukaryote-specific intersubunit bridges. Universal bridges are positioned close to the ribosomal functional centers, while eukaryote-specific bridges are mainly located on the periphery of the ribosome. Two bridges, eB13 and B6, are formed by the ribosomal protein eL24. The eukaryotic eL24 is composed of an N-terminal domain, a linker region and a C-terminal α-helix. Here, the functions of different domains of eL24 in the S. cerevisiae ribosome were evaluated. The C-terminal domain and the linker region of the eL24 form eukaryote-specific eB13 bridge. Phenotypic characterization of the eL24 deletion mutants indicated that the functional integrity of the eB13 bridge mainly depends on the protein-protein contacts between eL24 and eS6. Further investigation showed importance of the eB13 bridge in the subunit joining in vivo and in vitro. In vitro translation assay demonstrated the role of the eB13 bridge in both initiation and elongation steps of translation. Intriguingly, results of in vitro translation experiment suggest involvement of the N-terminal domain of eL24 in the translation initiation. Therefore, eL24 performs number of tasks required for the optimal ribosome functionality.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
83
|
Tan S, Kermasson L, Hoslin A, Jaako P, Faille A, Acevedo-Arozena A, Lengline E, Ranta D, Poirée M, Fenneteau O, Ducou le Pointe H, Fumagalli S, Beaupain B, Nitschké P, Bôle-Feysot C, de Villartay JP, Bellanné-Chantelot C, Donadieu J, Kannengiesser C, Warren AJ, Revy P. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood 2019; 134:277-290. [PMID: 31151987 PMCID: PMC6754720 DOI: 10.1182/blood.2018893404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.
Collapse
Affiliation(s)
- Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laëtitia Kermasson
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Angela Hoslin
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
| | - Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abraham Acevedo-Arozena
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, La Laguna, Spain
| | - Etienne Lengline
- Department of Hematology, CRNMR Aplasie Médullaire, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dana Ranta
- Department of Haematology, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Maryline Poirée
- Department of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Lenval, Nice, France
| | - Odile Fenneteau
- Assistance Publique-Hôpitaux de Paris, Laboratory of Hematology, Robert Debré University Hospital, Paris, France
| | - Hubert Ducou le Pointe
- Radiology Department, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Pediatric Imaging, Armand Trousseau Hospital, Sorbonne Universités, Pierre et Marie Curie-Paris University, Paris, France
| | - Stefano Fumagalli
- Institut Necker Enfants Malades, Paris, France
- INSERM, U1151, Université Paris Descartes Sorbonne Cité, Paris, France
| | - Blandine Beaupain
- French Neutropenia Registry, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, Paris, France
| | - Patrick Nitschké
- INSERM Unité Mixte de Recherche 1163, Bioinformatics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bôle-Feysot
- INSERM Unité Mixte de Recherche 1163, Genomics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Pierre de Villartay
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bellanné-Chantelot
- Department of Genetics, Hospital Pitié Salpétriére Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique, Assistance Publique-Hôpitaux de Paris Hôpital Trousseau, Registre des neutropénies-Centre de référence des neutropénies chroniques, Paris, France
| | - Caroline Kannengiesser
- Assistance Publique-Hôpitaux de Paris Service de Génétique, Hôpital Bichat, Paris, France; and
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Revy
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
84
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
85
|
Rollins MG, Jha S, Bartom ET, Walsh D. RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity within a loop domain. J Cell Sci 2019; 132:jcs.228908. [PMID: 31118235 DOI: 10.1242/jcs.228908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Receptor of activated protein C kinase 1 (RACK1) is a highly conserved eukaryotic protein that regulates several aspects of mRNA translation; yet, how it does so, remains poorly understood. Here we show that, although RACK1 consists largely of conserved β-propeller domains that mediate binding to several other proteins, a short interconnecting loop between two of these blades varies across species to control distinct RACK1 functions during translation. Mutants and chimeras revealed that the amino acid composition of the loop is optimized to regulate interactions with eIF6, a eukaryotic initiation factor that controls 60S biogenesis and 80S ribosome assembly. Separately, phylogenetics revealed that, despite broad sequence divergence of the loop, there is striking conservation of negatively charged residues amongst protists and dicot plants, which is reintroduced to mammalian RACK1 by poxviruses through phosphorylation. Although both charged and uncharged loop mutants affect eIF6 interactions, only a negatively charged plant - but not uncharged yeast or human loop - enhances translation of mRNAs with adenosine-rich 5' untranslated regions (UTRs). Our findings reveal how sequence plasticity within the RACK1 loop confers multifunctionality in translational control across species.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sujata Jha
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
86
|
Cooperative energetic effects elicited by the yeast Shwachman-Diamond syndrome protein (Sdo1) and guanine nucleotides modulate the complex conformational landscape of the elongation factor-like 1 (Efl1) GTPase. Biophys Chem 2019; 247:13-24. [PMID: 30780079 DOI: 10.1016/j.bpc.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
One of the final maturation steps of the large ribosomal subunit requires the joint action of the elongation factor-like 1 (human EFL1, yeast Efl1) GTPase and the Shwachman-Diamond syndrome protein (human SBDS, yeast Sdo1) to release the eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) and allow the assembly of mature ribosomes. EFL1 function is driven by conformational changes. However, the nature of such conformational changes or the mechanism by which they are prompted are still largely unknown. In previous studies, it has been established that this GTPase interacts with its cofactor in solution in an inverted orientation with respect to the binding mode derived from 60S ribosome subunit cryo-EM data. To shed new light on this conundrum, we characterized calorimetrically the energetic basis describing the recognition of Efl1 to GT(D)P, Sdo1 and their intercommunication in solution. A structural-based analysis of the binding signatures indicates that Efl1 has a large structural flexibility. The mutual effects of Sdo1 and nucleotides on Efl1 modulate in a very specific and robust way the complex conformational landscape of Efl1, resembling the behavior observed with other GTPases and their cofactors.
Collapse
|
87
|
Romano N, Veronese M, Manfrini N, Zolla L, Ceci M. Ribosomal RACK1 promotes proliferation of neuroblastoma cells independently of global translation upregulation. Cell Signal 2019; 53:102-110. [DOI: 10.1016/j.cellsig.2018.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/04/2023]
|
88
|
Li X, Li J, Qian J, Zhang D, Shen H, Li X, Li H, Chen G. Loss of Ribosomal RACK1 (Receptor for Activated Protein Kinase C 1) Induced by Phosphorylation at T50 Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Stroke 2019; 50:162-171. [PMID: 30580718 DOI: 10.1161/strokeaha.118.022404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose- RACK1 (receptor for activated protein kinase C 1) is an integral component of ribosomes with neuroprotective functions. The goal of this study was to determine the role of RACK1 in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms. Methods- A middle cerebral artery occlusion/reperfusion model in adult male Sprague Dawley rats (250-280 g) was established, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation to mimic I/R injury in vitro. Expression vectors encoding wild-type RACK1 and RACK1 with T50A mutation (T50A) were constructed and administered to rats by intracerebroventricular injection. Results- The potential role of RACK1 in cerebral I/R injury was confirmed by the decreased protein levels of RACK1 within penumbra tissue, especially of neurons. Second, there was an increase in the phosphorylation ratio of RACK1 at the threonine/serine residues at 1.5 hours after middle cerebral artery occlusion onset. Third, based on site-specific mutagenesis, we identified T50 as a key site for RACK1 phosphorylation during I/R. Fourth, wild-type RACK1 overexpression reduced infarct size, neuronal death, neuronal tissue loss, and neurobehavioral dysfunction, while RACK1 (T50A) overexpression exerted opposite effects. Finally, we found that RACK1 phosphorylation at T50 induced a loss of ribosomal RACK1, which switched RACK1 from beclin-1 translation inhibition to autophagy induction following I/R. Conclusions- RACK1 phosphorylation may be a potential intervention target for neurons during I/R; thus, exogenous supplementation of RACK1 may be a novel approach for ameliorating I/R injury.
Collapse
Affiliation(s)
- Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinquan Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Qian
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Zhang
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
89
|
Gijsbers A, Montagut DC, Méndez-Godoy A, Altamura D, Saviano M, Siliqi D, Sánchez-Puig N. Interaction of the GTPase Elongation Factor Like-1 with the Shwachman-Diamond Syndrome Protein and Its Missense Mutations. Int J Mol Sci 2018; 19:E4012. [PMID: 30545121 PMCID: PMC6321010 DOI: 10.3390/ijms19124012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
The Shwachman-Diamond Syndrome (SDS) is a disorder arising from mutations in the genes encoding for the Shwachman-Bodian-Diamond Syndrome (SBDS) protein and the GTPase known as Elongation Factor Like-1 (EFL1). Together, these proteins remove the anti-association factor eIF6 from the surface of the pre-60S ribosomal subunit to promote the formation of mature ribosomes. SBDS missense mutations can either destabilize the protein fold or affect surface epitopes. The molecular alterations resulting from the latter remain largely unknown, although some evidence suggest that binding to EFL1 may be affected. We further explored the effect of these SBDS mutations on the interaction with EFL1, and showed that all tested mutations disrupted the binding to EFL1. Binding was either severely weakened or almost abolished, depending on the assessed mutation. In higher eukaryotes, SBDS is essential for development, and lack of the protein results in early lethality. The existence of patients whose only source of SBDS consists of that with surface missense mutations highlights the importance of the interaction with EFL1 for their function. Additionally, we studied the interaction mechanism of the proteins in solution and demonstrated that binding consists of two independent and cooperative events, with domains 2⁻3 of SBDS directing the initial interaction with EFL1, followed by docking of domain 1. In solution, both proteins exhibited large flexibility and consisted of an ensemble of conformations, as demonstrated by Small Angle X-ray Scattering (SAXS) experiments.
Collapse
Affiliation(s)
- Abril Gijsbers
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Diana Carolina Montagut
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Alfonso Méndez-Godoy
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
90
|
Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, Müller R, Pagani M, Abrignani S, Biffo S. The Translational Machinery of Human CD4 + T Cells Is Poised for Activation and Controls the Switch from Quiescence to Metabolic Remodeling. Cell Metab 2018; 28:895-906.e5. [PMID: 30197303 PMCID: PMC6773601 DOI: 10.1016/j.cmet.2018.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/24/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Naive T cells respond to T cell receptor (TCR) activation by leaving quiescence, remodeling metabolism, initiating expansion, and differentiating toward effector T cells. The molecular mechanisms coordinating the naive to effector transition are central to the functioning of the immune system, but remain elusive. Here, we discover that T cells fulfill this transitional process through translational control. Naive cells accumulate untranslated mRNAs encoding for glycolysis and fatty acid synthesis factors and possess a translational machinery poised for immediate protein synthesis. Upon TCR engagement, activation of the translational machinery leads to synthesis of GLUT1 protein to drive glucose entry. Subsequently, translation of ACC1 mRNA completes metabolic reprogramming toward an effector phenotype. Notably, inhibition of the eIF4F complex abrogates lymphocyte metabolic activation and differentiation, suggesting ACC1 to be a key regulatory node. Thus, our results demonstrate that translation is a direct mediator of T cell metabolism and indicate translation factors as targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sara Ricciardi
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Maria Cristina Crosti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Simone Gallo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University Campus, Building C2.3, Saarbrücken 66123, Germany
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
91
|
Gerbasi VR, Browne CM, Samir P, Shen B, Sun M, Hazelbaker DZ, Galassie AC, Frank J, Link AJ. Critical Role for Saccharomyces cerevisiae Asc1p in Translational Initiation at Elevated Temperatures. Proteomics 2018; 18:e1800208. [PMID: 30285306 PMCID: PMC6461043 DOI: 10.1002/pmic.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/29/2018] [Indexed: 11/11/2022]
Abstract
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Collapse
Affiliation(s)
- Vincent R. Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher M. Browne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Dane Z. Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
92
|
Sanchez-Marinas M, Gimenez-Zaragoza D, Martin-Ramos E, Llanes J, Cansado J, Pujol MJ, Bachs O, Aligue R. Cmk2 kinase is essential for survival in arsenite by modulating translation together with RACK1 orthologue Cpc2 in Schizosaccharomyces pombe. Free Radic Biol Med 2018; 129:116-126. [PMID: 30236788 DOI: 10.1016/j.freeradbiomed.2018.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Different studies have demonstrated multiple effects of arsenite on human physiology. However, there are many open questions concerning the mechanism of response to arsenite. Schizosaccharomyces pombe activates the Sty1 MAPK pathway as a common response to several stress conditions. The specificity of the response is due to the activation of different transcription factors and specific targets such the Cmk2 MAPKAP kinase. We have previously shown that Cmk2 is phosphorylated and activated by the MAPK Sty1 in response to oxidative stress. Here, we report that Cmk2 kinase is specifically necessary to overcome the stress caused by metalloid agents, in particular arsenite. Deletion of cmk2 increases the protein level of various components of the MAPK pathway. Moreover, Cmk2 negatively regulates translation through the Cpc2 kinase: the RACK1 orthologue in fission yeast. RACK1 is a receptor for activated C-kinase. Interestingly, RACK1 is a constituent of the eukaryotic ribosome specifically localized in the head region of the 40 S subunit. Cmk2 controls arsenite response through Cpc2 and it does so through Cpc2 ribosomal function, as observed in genetic analysis using a Cpc2 mutant unable to bind to ribosome. These findings suggest a role for Cmk2 in regulating translation and facilitating adaptation to arsenite stress in the ribosome.
Collapse
Affiliation(s)
- Marta Sanchez-Marinas
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - David Gimenez-Zaragoza
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Julia Llanes
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain.
| |
Collapse
|
93
|
Vives Corrons JL, Mañú Pereira MDM, Trujillo JP, Surrallés J, Sevilla J. Anemias raras y fallos medulares hereditarios. ACTA ACUST UNITED AC 2018. [DOI: 10.3989/arbor.2018.789n3005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Las anemias raras y los fallos medulares hereditarios son enfermedades hematológicas caracterizadas, respectivamente, por una disminución de la concentración de hemoglobina o por diversos grados de defectos en la producción de células hematopoyéticas que conducen desde una citopenia de un solo linaje hasta una de múltiples linajes. Son enfermedades raras y difíciles de diagnosticar debido a la heterogeneidad clínica, citológica y genética. En este artículo abordaremos en primer lugar el diagnóstico de las anemias raras y sus causas principales: fallos medulares, defectos del hematíe y trastornos del metabolismo de los factores de maduración eritrocitario. Seguidamente introduciremos los fallos medulares hereditarios y su patología asociada, como son las malformaciones congénitas y la predisposición tumoral, haciendo especial hincapié en los más frecuentes: la anemia de Fanconi, la disqueratosis congénitca, la anemia de Diamond-Blackfan y el síndrome de Shwachman-Diamond.
Collapse
|
94
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
95
|
RACK1 Specifically Regulates Translation through Its Binding to Ribosomes. Mol Cell Biol 2018; 38:MCB.00230-18. [PMID: 30201806 PMCID: PMC6234289 DOI: 10.1128/mcb.00230-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. RACK1 (receptor for activated C kinase 1) is a highly conserved scaffold protein, located on the 40S subunit near the mRNA exit channel. RACK1 is involved in a variety of intracellular contexts, both on and off the ribosomes, acting as a receptor for proteins in signaling, such as the protein kinase C (PKC) family. Here we show that the binding of RACK1 to ribosomes is essential for full translation of capped mRNAs and efficient recruitment of eukaryotic initiation factor 4E (eIF4E). In vitro, when RACK1 is partially depleted, supplementing the ribosome machinery with wild-type RACK1 restores the translational capability, whereas the addition of a RACK1 mutant that is unable to bind ribosomes does not. Outside the ribosome, RACK1 has a reduced half-life. By accumulating in living cells, free RACK1 exerts an inhibitory phenotype, impairing cell cycle progression and repressing global translation. Here we present RACK1 binding to ribosomes as a crucial way to regulate translation, possibly through interaction with known partners on or off the ribosome that are involved in signaling.
Collapse
|
96
|
Lou S, Sun T, Li H, Hu Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:244. [PMID: 30202439 PMCID: PMC6129010 DOI: 10.1186/s13068-018-1249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 05/30/2023]
Abstract
MicroRNAs are a class of endogenous non-coding RNAs that play a vital role in post-transcriptional gene regulation in eukaryotic cells. In plants and animals, miRNAs are implicated in diverse roles ranging from immunity against viral infections, developmental pathways, molecular pathology of cancer and regulation of protein expression. However, the role of miRNAs in the unicellular model green alga Chlamydomonas reinhardtii remains unclear. The mode of action of miRNA-induced gene silencing in C. reinhardtii is very similar to that of higher eukaryotes, in terms of the activation of the RNA-induced silencing complex and mRNA targeting. Certain studies indicate that destabilization of mRNAs and mRNA turnover could be the major possible functions of miRNAs in eukaryotic algae. Here, we summarize recent findings that have advanced our understanding of miRNA regulatory mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sulin Lou
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
97
|
Yin Z, Zhang X, Wang J, Yang L, Feng W, Chen C, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2018; 20:3168-3185. [PMID: 29727050 PMCID: PMC6162116 DOI: 10.1111/1462-2920.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
Abstract
The rice blast fungus Magnaporthe oryzae has eight regulators of G-protein signaling (RGS) and RGS-like proteins (MoRgs1 to MoRgs8) that exhibit both distinct and shared regulatory functions in the growth, differentiation and pathogenicity of the fungus. We found MoRgs7 with a unique RGS-seven transmembrane (7-TM) domain motif is localized to the highly dynamic tubule-vesicular compartments during early appressorium differentiation followed by gradually degradation. To explore whether this involves an active signal perception of MoRgs7, we identified a Gbeta-like/RACK1 protein homolog in M. oryzae MoMip11 that interacts with MoRgs7. Interestingly, MoMip11 selectively interacted with several components of the cAMP regulatory pathway, including Gα MoMagA and the high-affinity phosphodiesterase MoPdeH. We further showed that MoMip11 promotes MoMagA activation and suppresses MoPdeH activity thereby upregulating intracellular cAMP levels. Moreover, MoMip11 is required for the response to multiple stresses, a role also shared by Gbeta-like/RACK1 adaptor proteins. In summary, we revealed a unique mechanism by which MoMip11 links MoRgs7 and G-proteins to reugulate cAMP signaling, stress responses and pathogenicity of M. oryzae. Our studies revealed the multitude of regulatory networks that govern growth, development and pathogenicity in this important causal agent of rice blast.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Jingzhen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chen Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
98
|
Islas-Flores T, Pérez-Cervantes E, Nava-Galeana J, Loredo-Guillén M, Guillén G, Villanueva MA. Molecular Features and mRNA Expression of the Receptor for Activated C Kinase 1 from Symbiodinium microadriaticum ssp. microadriaticum During Growth and the Light/Dark cycle. J Eukaryot Microbiol 2018; 66:254-266. [PMID: 30027647 DOI: 10.1111/jeu.12667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 01/27/2023]
Abstract
Two genes of the RACK1 homolog from the photosynthetic dinoflagellate Symbiodinium microadriaticum ssp. microadriaticum (SmicRACK1), termed SmicRACK1A and SmicRACK1B, were found tandemly arrayed and displayed a single synonymous substitution (T/C) encoding threonine. They included two exons of 942 bp each, encoding 313 amino acids with seven WD-40 repeats and two PKC-binding motifs. The protein theoretical mass and pI were 34,200 Da and 5.9, respectively. SmicRACK1 showed maximum identities with RACK1 homologs at the amino acid and nucleotide level, respectively, of 92 and 84% with S. minutum, and phylogenetic analysis revealed clustered related RACK1 sequences from the marine dinoflagellates S. minutum, Heterocapsa triquetra, Karenia brevis, and Alexandrium tamarense. Interestingly, light-dependent regulatory elements were found both within the 282 bp SmicRACK1A promotor sequence, and within an intergenic sequence of 359 nucleotides that separated both genes, which strongly suggest light-related functions. This was further supported by mRNA accumulation analysis, which fluctuated along the light and dark phases of the growth cycle showing maximum specific peaks under either condition. Finally, qRT-PCR analysis revealed differential SmicRACK1 mRNA accumulation with maxima at 6 and 20 d of culture. Our SmicRACK1 characterization suggests roles in active growth and proliferation, as well as light/dark cycle regulation in S. microadriaticum.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, U. N. A. M., Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo, 77580, México
| | - Esmeralda Pérez-Cervantes
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, U. N. A. M., Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo, 77580, México.,Posgrado en Ciencias del Mar y Limnología-UNAM, Circuito Exterior S/N Ciudad Universitaria, Ciudad de México, CP 04510, México
| | - Jessica Nava-Galeana
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, U. N. A. M., Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo, 77580, México
| | - Montserrat Loredo-Guillén
- Grupo QUAE, S. de R.L., Laboratorio de Diagnóstico Molecular, Int. Hospital Morelos, Calle de la Luz 44, Col. Chapultepec, Cuernavaca, Morelos, CP 62450, México
| | - Gabriel Guillén
- Grupo QUAE, S. de R.L., Laboratorio de Diagnóstico Molecular, Int. Hospital Morelos, Calle de la Luz 44, Col. Chapultepec, Cuernavaca, Morelos, CP 62450, México.,Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, U. N. A. M., Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Marco A Villanueva
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, U. N. A. M., Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo, 77580, México
| |
Collapse
|
99
|
Gantenbein N, Bernhart E, Anders I, Golob-Schwarzl N, Krassnig S, Wodlej C, Brcic L, Lindenmann J, Fink-Neuboeck N, Gollowitsch F, Stacher-Priehse E, Asslaber M, Gogg-Kamerer M, Rolff J, Hoffmann J, Silvestri A, Regenbrecht C, Reinhard C, Pehserl AM, Pichler M, Sokolova O, Naumann M, Mitterer V, Pertschy B, Bergler H, Popper H, Sattler W, Haybaeck J. Influence of eukaryotic translation initiation factor 6 on non-small cell lung cancer development and progression. Eur J Cancer 2018; 101:165-180. [PMID: 30077122 DOI: 10.1016/j.ejca.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Dysregulation of protein synthesis plays a major role in carcinogenesis, a process regulated at multiple levels, including translation of mRNA into proteins. Ribosome assembly requires correct association of ribosome subunits, which is ensured by eukaryotic translation initiation factors (eIFs). eIFs have become targets in cancer therapy studies, and promising data on eIF6 in various cancer entities have been reported. Therefore, we hypothesised that eIF6 represents a crossroad for pulmonary carcinogenesis. High levels of eIF6 are associated with shorter patient overall survival in adenocarcinoma (ADC), but not in squamous cell carcinoma (SQC) of the lung. We demonstrate significantly higher protein expression of eIF6 in ADC and SQC than in healthy lung tissue based on immunohistochemical data from tissue microarrays (TMAs) and on fresh frozen lung tissue. Depletion of eIF6 in ADC and SQC lung cancer cell lines inhibited cell proliferation and induced apoptosis. Knockdown of eIF6 led to pre-rRNA processing and ribosomal 60S maturation defects. Our data indicate that eIF6 is upregulated in NSCLC, suggesting an important contribution of eIF6 to the development and progression of NSCLC and a potential for new treatment strategies against NSCLC.
Collapse
Affiliation(s)
- Nadine Gantenbein
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Ines Anders
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Stefanie Krassnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Christina Wodlej
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| | - Nicole Fink-Neuboeck
- Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| | - Franz Gollowitsch
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Elvira Stacher-Priehse
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Margit Gogg-Kamerer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Jana Rolff
- Experimental Pharmacology & Oncology Berlin GmbH-Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology Berlin GmbH-Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany
| | - Alessandra Silvestri
- Cpo - Cellular Phenomics & Oncology Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany
| | - Christian Regenbrecht
- Cpo - Cellular Phenomics & Oncology Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany
| | - Christoph Reinhard
- Eli Lilly & Company, Lilly Corporate Center, 46285 Indiana, Indianapolis, USA
| | - Anna-Maria Pehserl
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Olga Sokolova
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Valentin Mitterer
- Institute of Molecular Biosciences, Karl-Franzens-University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, Karl-Franzens-University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Helmut Bergler
- Institute of Molecular Biosciences, Karl-Franzens-University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Wolfgang Sattler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
100
|
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks. Cell Rep 2018; 21:1507-1520. [PMID: 29117557 PMCID: PMC5695912 DOI: 10.1016/j.celrep.2017.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis. Endurance exercise profoundly affects the structure of gene networks Eif6 is a hub in gene networks responsible for muscle metabolism and protein synthesis Mitochondrial metabolic capacity altered in muscle from Eif6+/− mice Eif6 haploinsufficiency increased ROS generation and reduced exercise performance
Collapse
|