51
|
Zhu X, Ricci-Tam C, Hager ER, Sgro AE. Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum. PLoS One 2023; 18:e0281211. [PMID: 36862626 PMCID: PMC9980757 DOI: 10.1371/journal.pone.0281211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum, opening up new possibilities for genetic engineering in this model system.
Collapse
Affiliation(s)
- Xinwen Zhu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Emily R. Hager
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Allyson E. Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
52
|
Alsaffar N, Fang Y, Walters E. Thymoquinone effect on the Dictyostelium discoideum model correlates with functional roles for glutathione S-transferases in eukaryotic proliferation, chemotaxis, and development. PLoS One 2023; 18:e0282399. [PMID: 36857392 PMCID: PMC9977050 DOI: 10.1371/journal.pone.0282399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
An increasing body of literature demonstrates the therapeutic relevance of polyphenols in eukaryotic cell and animal model studies. The phase II glutathione S-transferases (GST) show differential responses to thymoquinone, a major bioactive polyphenol constituent of the black seed, Nigella sativa. Beyond antioxidant defense, GSTs may act in non-enzymatic capacities to effect cell cycle, motility, and differentiation. Here, we report the impact of thymoquinone on the life cycle of the eukaryotic model Dictyostelium discoideum and accompanying profiles of its GST-alpha (DdGSTA) enzyme activity and isozyme expression. In silico molecular modeling revealed strong interaction(s) between thymoquinone and DdGSTA2 and DdGSTA3 isozymes that correlated with in vivo, dose-dependent inhibition of cell proliferation of amoebae at 24, 48, and 72hr. Similarly, cytosolic DdGST enzyme activity (CDNB activity) was also responsive to different thymoquinone concentrations. Thymoquinone generally reduced expression of DdGSTA2 and DdGSTA3 isozymes in proliferating cells, however differential expression of the isozymes occurred during starvation. Thymoquinone effectively reduced early-stage aggregation of starved amoeba, accompanied by increased reactive oxygen species and altered expression of tubulin and contact site A (gp80), which resulted in reduced morphogenesis and fruiting body formation. These observations reveal that thymoquinone can impact signaling mechanisms that regulate proliferation and development in D. discoideum.
Collapse
Affiliation(s)
- Nida Alsaffar
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
53
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
54
|
Hall G, Kelly S, Schaap P, Schilde C. Phylogeny-wide analysis of G-protein coupled receptors in social amoebas and implications for the evolution of multicellularity. OPEN RESEARCH EUROPE 2023; 2:134. [PMID: 37645274 PMCID: PMC10445921 DOI: 10.12688/openreseurope.15250.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 08/31/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven-transmembrane proteins and constitute the largest group of receptors within eukaryotes. The presence of a large set of GPCRs in the unicellular Amoebozoa was surprising and is indicative of the largely undiscovered environmental sensing capabilities in this group. Evolutionary transitions from unicellular to multicellular lifestyles, like we see in social amoebas, have occurred several times independently in the Amoebozoa, and GPCRs may have been co-opted for new functions in cell-cell communication. Methods We have analysed a set of GPCRs from fully sequenced Amoebozoan genomes by Bayesian inference, compared their phylogenetic distribution and domain composition, and analysed their temporal and spatial expression patterns in five species of dictyostelids. Results We found evidence that most GPCRs are conserved deeply in the Amoebozoa and are probably performing roles in general cell functions and complex environmental sensing. All families of GPCRs (apart from the family 4 fungal pheromone receptors) are present in dictyostelids with family 5 being the largest and family 2 the one with the fewest members. For the first time, we identify the presence of family 1 rhodopsin-like GPCRs in dictyostelids. Some GPCRs have been amplified in the dictyostelids and in specific lineages thereof and through changes in expression patterns may have been repurposed for signalling in multicellular development. Discussion Our phylogenetic analysis suggests that GPCR families 1, 2 and 6 already diverged early in the Amoebozoa, whereas families 3 and 5 expanded later within the dictyostelids. The family 6 cAMP receptors that have experimentally supported roles in multicellular development in dictyostelids ( carA-carD; tasA/B) originated at the root of all dictyostelids and only have weakly associated homologs in Physarum polycephalum. Our analysis identified candidate GPCRs which have evolved in the dictyostelids and could have been co-opted for multicellular development.
Collapse
Affiliation(s)
- Grant Hall
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sarah Kelly
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
55
|
Dereeper A, Allouch N, Guerlais V, Garnier M, Ma L, De Jonckheere JF, Joseph SJ, Ali IKM, Talarmin A, Marcelino I. Naegleria genus pangenome reveals new structural and functional insights into the versatility of these free-living amoebae. Front Microbiol 2023; 13:1056418. [PMID: 36817109 PMCID: PMC9928731 DOI: 10.3389/fmicb.2022.1056418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Laurence Ma
- Institut Pasteur de Paris, Biomics, Paris, France
| | | | - Sandeep J. Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Ibne Karim M. Ali
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France,*Correspondence: Isabel Marcelino,
| |
Collapse
|
56
|
Gill SE, Chain FJJ. Very Low Rates of Spontaneous Gene Deletions and Gene Duplications in Dictyostelium discoideum. J Mol Evol 2023; 91:24-32. [PMID: 36484794 PMCID: PMC9849192 DOI: 10.1007/s00239-022-10081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
The study of spontaneous mutation rates has revealed a wide range of heritable point mutation rates across species, but there are comparatively few estimates for large-scale deletion and duplication rates. The handful of studies that have directly calculated spontaneous rates of deletion and duplication using mutation accumulation lines have estimated that genes are duplicated and deleted at orders of magnitude greater rates than the spontaneous point mutation rate. In our study, we tested whether spontaneous gene deletion and gene duplication rates are also high in Dictyostelium discoideum, a eukaryote with among the lowest point mutation rates (2.5 × 10-11 per site per generation) and an AT-rich genome (GC content of 22%). We calculated mutation rates of gene deletions and duplications using whole-genome sequencing data originating from a mutation accumulation experiment and determined the association between the copy number mutations and GC content. Overall, we estimated an average of 3.93 × 10-8 gene deletions and 1.18 × 10-8 gene duplications per gene per generation. While orders of magnitude greater than their point mutation rate, these rates are much lower compared to gene deletion and duplication rates estimated from mutation accumulation lines in other organisms (that are on the order of ~ 10-6 per gene/generation). The deletions and duplications were enriched in regions that were AT-rich even compared to the genomic background, in contrast to our expectations if low GC content was contributing to low mutation rates. The low deletion and duplication mutation rates in D. discoideum compared to other eukaryotes mirror their low point mutation rates, supporting previous work suggesting that this organism has high replication fidelity and effective molecular machinery to avoid the accumulation of mutations in their genome.
Collapse
Affiliation(s)
- Shelbi E Gill
- Department of Biology, University of Massachusetts Lowell, Lowell, MA, 01854-2874, USA.
| | - Frédéric J J Chain
- Department of Biology, University of Massachusetts Lowell, Lowell, MA, 01854-2874, USA.
| |
Collapse
|
57
|
Götze S, Vij R, Burow K, Thome N, Urbat L, Schlosser N, Pflanze S, Müller R, Hänsch VG, Schlabach K, Fazlikhani L, Walther G, Dahse HM, Regestein L, Brunke S, Hube B, Hertweck C, Franken P, Stallforth P. Ecological Niche-Inspired Genome Mining Leads to the Discovery of Crop-Protecting Nonribosomal Lipopeptides Featuring a Transient Amino Acid Building Block. J Am Chem Soc 2023; 145:2342-2353. [PMID: 36669196 PMCID: PMC9897216 DOI: 10.1021/jacs.2c11107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/22/2023]
Abstract
Investigating the ecological context of microbial predator-prey interactions enables the identification of microorganisms, which produce multiple secondary metabolites to evade predation or to kill the predator. In addition, genome mining combined with molecular biology methods can be used to identify further biosynthetic gene clusters that yield new antimicrobials to fight the antimicrobial crisis. In contrast, classical screening-based approaches have limitations since they do not aim to unlock the entire biosynthetic potential of a given organism. Here, we describe the genomics-based identification of keanumycins A-C. These nonribosomal peptides enable bacteria of the genus Pseudomonas to evade amoebal predation. While being amoebicidal at a nanomolar level, these compounds also exhibit a strong antimycotic activity in particular against the devastating plant pathogen Botrytis cinerea and they drastically inhibit the infection of Hydrangea macrophylla leaves using only supernatants of Pseudomonas cultures. The structures of the keanumycins were fully elucidated through a combination of nuclear magnetic resonance, tandem mass spectrometry, and degradation experiments revealing an unprecedented terminal imine motif in keanumycin C extending the family of nonribosomal amino acids by a highly reactive building block. In addition, chemical synthesis unveiled the absolute configuration of the unusual dihydroxylated fatty acid of keanumycin A, which has not yet been reported for this lipodepsipeptide class. Finally, a detailed genome-wide microarray analysis of Candida albicans exposed to keanumycin A shed light on the mode-of-action of this potential natural product lead, which will aid the development of new pharmaceutical and agrochemical antifungals.
Collapse
Affiliation(s)
- Sebastian Götze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Raghav Vij
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Katja Burow
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Nicola Thome
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lennart Urbat
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Nicolas Schlosser
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sebastian Pflanze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Rita Müller
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Veit G. Hänsch
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Kevin Schlabach
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Leila Fazlikhani
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Grit Walther
- National
Reference Center for Invasive Fungal Infections, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department
of Infection Biology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lars Regestein
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sascha Brunke
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Philipp Franken
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
- Molecular
Phytopathology, Friedrich Schiller University, 07745 Jena, Germany
| | - Pierre Stallforth
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, Humboldtstraße 10, 07743 Jena, Germany
| |
Collapse
|
58
|
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
59
|
Yellow polyketide pigment suppresses premature hatching in social amoeba. Proc Natl Acad Sci U S A 2022; 119:e2116122119. [PMID: 36252029 PMCID: PMC9618038 DOI: 10.1073/pnas.2116122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.
Collapse
|
60
|
Muljadi M, Fu YC, Cheng CM. Understanding the Cell's Response to Chemical Signals: Utilisation of Microfluidic Technology in Studies of Cellular and Dictyostelium discoideum Chemotaxis. MICROMACHINES 2022; 13:1737. [PMID: 36296089 PMCID: PMC9611482 DOI: 10.3390/mi13101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.
Collapse
Affiliation(s)
- Michael Muljadi
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
61
|
Kay RR, Weijer CJ. Jeffrey G. Williams (1948-2022): a pioneer molecular biologist in development. Development 2022. [DOI: 10.1242/dev.201254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Robert R. Kay
- MRC Laboratory of Molecular Biology 1 , Francis Crick Avenue, Cambridge, CB1 0QH , UK
| | - Cornelis J. Weijer
- School of Life Sciences, University of Dundee 2 , Dowstreet, Dundee, DD1 5EH , UK
| |
Collapse
|
62
|
Saito T, Iijima T, Koyama K, Shinagawa T, Yamanaka A, Araki T, Suzuki N, Usuki T, Kay RR. Generating polyketide diversity in Dictyostelium: a Steely hybrid polyketide synthase produces alternate products at different developmental stages. Proc Biol Sci 2022; 289:20221176. [PMID: 36126683 PMCID: PMC9489281 DOI: 10.1098/rspb.2022.1176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The soil is a rich ecosystem where many ecological interactions are mediated by small molecules, and in which amoebae are low-level predators and also prey. The social amoeba Dictyostelium discoideum has a high genomic potential for producing polyketides to mediate its ecological interactions, including the unique 'Steely' enzymes, consisting of a fusion between a fatty acid synthase and a chalcone synthase. We report here that D. discoideum further increases its polyketide potential by using the StlB Steely enzyme, and a downstream chlorinating enzyme, to make both a chlorinated signal molecule, DIF-1, during its multi-cellular development, and a set of abundant polyketides in terminally differentiated stalk cells. We identify one of these as a chlorinated dibenzofuran with potent anti-bacterial activity. To do this, StlB switches expression from prespore to stalk cells in late development and is cleaved to release the chalcone synthase domain. Expression of this domain alone in StlB null cells allows synthesis of the stalk-associated, chlorinated polyketides. Thus, by altered expression and processing of StlB, cells make first a signal molecule, and then abundant secondary metabolites, which we speculate help to protect the mature spores from bacterial infection.
Collapse
Affiliation(s)
- Tamao Saito
- Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Tomoyuki Iijima
- Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Kohei Koyama
- Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Tomonori Shinagawa
- Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Ayaka Yamanaka
- Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Tsuyoshi Araki
- Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Noriyuki Suzuki
- Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
63
|
Boland AW, Gas-Pascual E, Nottingham BL, van der Wel H, Daniel NG, Sheikh MO, Schafer CM, West CM. Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium. J Biol Chem 2022; 298:102305. [PMID: 35933019 PMCID: PMC9485057 DOI: 10.1016/j.jbc.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.
Collapse
Affiliation(s)
- Andrew W Boland
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Braxton L Nottingham
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nitin G Daniel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M Schafer
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
64
|
Yamasaki DT, Araki T, Narita TB. The polyketide synthase StlA is involved in inducing aggregation in Polysphondylium violaceum. Biosci Biotechnol Biochem 2022; 86:1590-1598. [PMID: 35998316 DOI: 10.1093/bbb/zbac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
In the social amoeba Dictyostelium discoideum, the polyketide MPBD (4-methyl-5-pentylbenzene-1,3-diol) regulates the gene expressions of cAMP signaling to make cells aggregation-competent and also induces spore maturation. The polyketide synthase StlA is responsible for MPBD biosynthesis in D. discoideum and appears to be conserved throughout the major groups of the social amoeba (Dictyostelia). In this study, we analyzed the function of StlA in Polysphondylium violaceum by identifying the gene sequence and creating the knockout mutants. We found that Pv-stlA- mutants had defects only in cell aggregation but not in spore maturation, indicating that the function of StlA in inducing spore maturation is species-specific. We also found that MPBD could rescue the aggregation defect in Pv-stlA- mutants whereas the mutants normally exhibited chemotaxis to their chemoattractant, glorin. Our data suggest that StlA is involved in inducing aggregation in P. violaceum by acting on signaling pathways other than chemotaxis in P. violaceum.
Collapse
Affiliation(s)
- Daiki T Yamasaki
- Graduate School of Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Tsuyoshi Araki
- Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takaaki B Narita
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| |
Collapse
|
65
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
66
|
Kufs JE, Reimer C, Stallforth P, Hillmann F, Regestein L. The potential of amoeba-based processes for natural product syntheses. Curr Opin Biotechnol 2022; 77:102766. [PMID: 35944344 DOI: 10.1016/j.copbio.2022.102766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Stallforth
- Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
67
|
Tekle YI, Wang F, Tran H, Hayes TD, Ryan JF. The draft genome of Cochliopodium minus reveals a complete meiosis toolkit and provides insight into the evolution of sexual mechanisms in Amoebozoa. Sci Rep 2022; 12:9841. [PMID: 35701521 PMCID: PMC9198077 DOI: 10.1038/s41598-022-14131-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
To date, genomic analyses in amoebozoans have been mostly limited to model organisms or medically important lineages. Consequently, the vast diversity of Amoebozoa genomes remain unexplored. A draft genome of Cochliopodium minus, an amoeba characterized by extensive cellular and nuclear fusions, is presented. C. minus has been a subject of recent investigation for its unusual sexual behavior. Cochliopodium's sexual activity occurs during vegetative stage making it an ideal model for studying sexual development, which is sorely lacking in the group. Here we generate a C. minus draft genome assembly. From this genome, we detect a substantial number of lateral gene transfer (LGT) instances from bacteria (15%), archaea (0.9%) and viruses (0.7%) the majority of which are detected in our transcriptome data. We identify the complete meiosis toolkit genes in the C. minus genome, as well as the absence of several key genes involved in plasmogamy and karyogamy. Comparative genomics of amoebozoans reveals variation in sexual mechanism exist in the group. Similar to complex eukaryotes, C. minus (some amoebae) possesses Tyrosine kinases and duplicate copies of SPO11. We report a first example of alternative splicing in a key meiosis gene and draw important insights on molecular mechanism of sex in C. minus using genomic and transcriptomic data.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Hanh Tran
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - T Danielle Hayes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Iowa State University, Ames, IA, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
68
|
Williams FN, Scaglione KM. Insights on Microsatellite Characteristics, Evolution, and Function From the Social Amoeba Dictyostelium discoideum. Front Neurosci 2022; 16:886837. [PMID: 35769695 PMCID: PMC9234386 DOI: 10.3389/fnins.2022.886837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Microsatellites are repetitive sequences commonly found in the genomes of higher organisms. These repetitive sequences are prone to expansion or contraction, and when microsatellite expansion occurs in the regulatory or coding regions of genes this can result in a number of diseases including many neurodegenerative diseases. Unlike in humans and other organisms, the social amoeba Dictyostelium discoideum contains an unusually high number of microsatellites. Intriguingly, many of these microsatellites fall within the coding region of genes, resulting in nearly 10,000 homopolymeric repeat proteins within the Dictyostelium proteome. Surprisingly, among the most common of these repeats are polyglutamine repeats, a type of repeat that causes a class of nine neurodegenerative diseases in humans. In this minireview, we summarize what is currently known about homopolymeric repeats and microsatellites in Dictyostelium discoideum and discuss the potential utility of Dictyostelium for identifying novel mechanisms that utilize and regulate regions of repetitive DNA.
Collapse
Affiliation(s)
- Felicia N. Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
- *Correspondence: K. Matthew Scaglione,
| |
Collapse
|
69
|
Pan L, Luo Y, Wang J, Li X, Tang B, Yang H, Hou X, Liu F, Zou X. Evolution and functional diversification of catalase genes in the green lineage. BMC Genomics 2022; 23:411. [PMID: 35650553 PMCID: PMC9158360 DOI: 10.1186/s12864-022-08621-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Catalases (CATs) break down hydrogen peroxide into water and oxygen to prevent cellular oxidative damage, and play key roles in the development, biotic and abiotic stresses of plants. However, the evolutionary relationships of the plant CAT gene family have not been systematically reported. Results Here, we conducted genome-wide comparative, phylogenetic, and structural analyses of CAT orthologs from 29 out of 31 representative green lineage species to characterize the evolution and functional diversity of CATs. We found that CAT genes in land plants were derived from core chlorophytes and detected a lineage-specific loss of CAT genes in Fabaceae, suggesting that the CAT genes in this group possess divergent functions. All CAT genes were split into three major groups (group α, β1, and β2) based on the phylogeny. CAT genes were transferred from bacteria to core chlorophytes and charophytes by lateral gene transfer, and this led to the independent evolution of two types of CAT genes: α and β types. Ten common motifs were detected in both α and β groups, and β CAT genes had five unique motifs, respectively. The findings of our study are inconsistent with two previous hypotheses proposing that (i) new CAT genes are acquired through intron loss and that (ii) the Cys-343 residue is highly conserved in plants. We found that new CAT genes in most higher plants were produced through intron acquisition and that the Cys-343 residue was only present in monocots, Brassicaceae and Pp_CatX7 in P. patens, which indicates the functional specificity of the CATs in these three lineages. Finally, our finding that CAT genes show high overall sequence identity but that individual CAT genes showed developmental stage and organ-specific expression patterns suggests that CAT genes have functionally diverged independently. Conclusions Overall, our analyses of the CAT gene family provide new insights into their evolution and functional diversification in green lineage species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08621-6.
Collapse
|
70
|
Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 2022; 18:e1010239. [PMID: 35731825 PMCID: PMC9255765 DOI: 10.1371/journal.pgen.1010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
71
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
72
|
Forbes G, Chen ZH, Kin K, Schaap P. Novel RNAseq-Informed Cell-type Markers and Their Regulation Alter Paradigms of Dictyostelium Developmental Control. Front Cell Dev Biol 2022; 10:899316. [PMID: 35602609 PMCID: PMC9117722 DOI: 10.3389/fcell.2022.899316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell differentiation is traditionally monitored with a few marker genes, which may bias results. To understand the evolution and regulation of the spore, stalk, cup and basal disc cells in Dictyostelia, we previously performed RNAseq on purified cell-types of taxon-group representative dictyostelids. Using promoter-lacZ constructs in D. discoideum, we here investigate the spatio-temporal expression pattern of 29 cell-type specific genes. Genes selected for spore- or cup-specificity in RNAseq were validated as such by lacZ expression, but genes selected for stalk-specificity showed variable additional expression in basal disc, early cup or prestalk populations. We measured responses of 25 genes to 15 single or combined regimes of induction by stimuli known to regulate cell differentiation. The outcomes of these experiments were subjected to hierarchical clustering to identify whether common modes of regulation were correlated with specific expression patterns. The analysis identified a cluster combining the spore and cup genes, which shared upregulation by 8-bromo cyclic AMP and down-regulation by Differentiation Inducing Factor 1 (DIF-1). Most stalk-expressed genes combined into a single cluster and shared strong upregulation by cyclic di-guanylate (c-di-GMP), and synergistic upregulation by combined DIF-1 and c-di-GMP. There was no clustering of genes expressed in other soma besides the stalk, but two genes that were only expressed in the stalk did not respond to any stimuli. In contrast to current models, the study indicates the existence of a stem-cell like soma population in slugs, whose members only acquire ultimate cell fate after progressing to their terminal location during fruiting body morphogenesis.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- *Correspondence: Pauline Schaap,
| |
Collapse
|
73
|
Lay S, Pearce X, Sanislav O, Fisher PR, Annesley SJ. Cytopathological Outcomes of Knocking Down Expression of Mitochondrial Complex II Subunits in Dictyostelium discoideum. Int J Mol Sci 2022; 23:ijms23095039. [PMID: 35563430 PMCID: PMC9105181 DOI: 10.3390/ijms23095039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial Complex II is composed of four core subunits and mutations to any of the subunits result in lowered Complex II activity. Surprisingly, although mutations in any of the subunits can yield similar clinical outcomes, there are distinct differences in the patterns of clinical disease most commonly associated with mutations in different subunits. Thus, mutations to the SdhA subunit most often result in mitochondrial disease phenotypes, whilst mutations to the other subunits SdhB-D more commonly result in tumour formation. The reason the clinical outcomes are so different is unknown. Here, we individually antisense-inhibited three of the Complex II subunits, SdhA, SdhB or SdhC, in the simple model organism Dictyostelium discoideum. Whilst SdhB and SdhC knockdown resulted in growth defects on bacterial lawns, antisense inhibition of SdhA expression resulted in a different pattern of phenotypic defects, including impairments of growth in liquid medium, enhanced intracellular proliferation of the bacterial pathogen Legionella pneumophila and phagocytosis. Knockdown of the individual subunits also produced different abnormalities in mitochondrial function with only SdhA knockdown resulting in broad mitochondrial dysfunction. Furthermore, these defects were shown to be mediated by the chronic activation of the cellular energy sensor AMP-activated protein kinase. Our results are in agreement with a role for loss of function of SdhA but not the other Complex II subunits in impairing mitochondrial oxidative phosphorylation and they suggest a role for AMP-activated protein kinase in mediating the cytopathological outcomes.
Collapse
|
74
|
Huber RJ, Williams RSB, Müller-Taubenberger A. Editorial: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. Front Cell Dev Biol 2022; 10:909619. [PMID: 35557953 PMCID: PMC9087560 DOI: 10.3389/fcell.2022.909619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Robin SB Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | |
Collapse
|
75
|
Fulton C. The Amazing Evolutionary Complexity of Eukaryotic Tubulins: Lessons from Naegleria and the Multi-tubulin Hypothesis. Front Cell Dev Biol 2022; 10:867374. [PMID: 35547824 PMCID: PMC9081340 DOI: 10.3389/fcell.2022.867374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-tubulin hypothesis proposed in 1976 was motivated by finding that the tubulin to build the flagellar apparatus was synthesized de novo during the optional differentiation of Naegleria from walking amoebae to swimming flagellates. In the next decade, with the tools of cloning and sequencing, we were able to establish that the rate of flagellar tubulin synthesis in Naegleria is determined by the abundance of flagellar α- and β-tubulin mRNAs. These experiments also established that the tubulins for Naegleria mitosis were encoded by separate, divergent genes, candidates for which remain incompletely characterized. Meanwhile an unanticipated abundance of tubulin isotypes has been discovered by other researchers. Together with the surprises of genome complexity, these tubulin isotypes require us to rethink how we might utilize the opportunities and challenges offered by the evolutionary diversity of eukaryotes.
Collapse
Affiliation(s)
- Chandler Fulton
- Department of Biology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
76
|
Symbiont-Induced Phagosome Changes Rather than Extracellular Discrimination Contribute to the Formation of Social Amoeba Farming Symbiosis. Microbiol Spectr 2022; 10:e0172721. [PMID: 35442071 PMCID: PMC9241765 DOI: 10.1128/spectrum.01727-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbiont recognition is essential in many symbiotic relationships, especially for horizontally transferred symbionts. Therefore, how to find the right partner is a crucial challenge in these symbiotic relationships. Previous studies have demonstrated that both animals and plants have evolved various mechanisms to recognize their symbionts. However, studies about the mechanistic basis of establishing protist-bacterium symbioses are scarce. This study investigated this question using a social amoeba Dictyostelium discoideum and their Burkholderia symbionts. We found no evidence that D. discoideum hosts could distinguish different Burkholderia extracellularly in chemotaxis assays. Instead, symbiont-induced phagosome biogenesis contributed to the formation of social amoeba symbiosis, and D. discoideum hosts have a higher phagosome pH when carrying symbiotic Burkholderia than nonsymbiotic Burkholderia. In conclusion, the establishment of social amoeba symbiosis is not linked with extracellular discrimination but related to symbiont-induced phagosome biogenesis, which provides new insights into the mechanisms of endosymbiosis formation between protists and their symbionts. IMPORTANCE Protists are single-celled, extremely diverse eukaryotic microbes. Like animals and plants, they live with bacterial symbionts and have complex relationships. In protist-bacterium symbiosis, while some symbionts are strictly vertically transmitted, others need to reestablish and acquire symbionts from the environment frequently. However, the mechanistic basis of establishing protist-bacterium symbioses is mostly unclear. This study uses a novel amoeba-symbiont system to show that the establishment of this symbiosis is not linked with extracellular discrimination. Instead, symbiont-induced phagosome biogenesis contributes to the formation of social amoeba-bacterium symbiosis. This study increases our understanding of the mechanistic basis of establishing protist-bacterium symbioses.
Collapse
|
77
|
Umachandran S, Mohamed W, Jayaraman M, Hyde G, Brazill D, Baskar R. A PKC that controls polyphosphate levels, pinocytosis and exocytosis, regulates stationary phase onset in Dictyostelium. J Cell Sci 2022; 135:274945. [PMID: 35362518 DOI: 10.1242/jcs.259289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Many cells can pause their growth cycle, a topic much enriched by studies of the stationary phase (SP) of model microorganisms. While several kinases are implicated in SP onset, a possible role for protein kinase C remains unknown. We show that Dictyostelium discoideum cells lacking pkcA entered SP at a reduced cell density, but only in shaking conditions. Precocious SP entry occurs because extracellular polyphosphate (polyP) levels reach a threshold at the lower cell density; adding exopolyphosphatase to pkcA- cells reverses the effect and mimics wild type growth. PkcA's regulation of polyP depended on inositol hexakisphosphate kinase and phospholipase D. PkcA- mutants also had higher actin levels, higher rates of exocytosis and lower pinocytosis rates. Postlysosomes were smaller and present in fewer pkcA- cells, compared to the wildtype. Overall, the results suggest that a reduced PkcA level triggers SP primarily because cells do not acquire or retain nutrients as efficiently, thus mimicking, or amplifying, the conditions of actual starvation.
Collapse
Affiliation(s)
- Shalini Umachandran
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Wasima Mohamed
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Meenakshi Jayaraman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Geoff Hyde
- Independent Researcher, Randwick, New South Wales, Australia
| | - Derrick Brazill
- Department of Biological Sciences, Hunter College, New York, NY 10065, USA
| | - Ramamurthy Baskar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| |
Collapse
|
78
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
79
|
Barth E, Burggraaff J, Srivastava A, Winckler T. Nanopore sequencing for mapping of retrotransposon integration sites in the Dictyostelium discoideum genome. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000543. [PMID: 35622503 PMCID: PMC9012585 DOI: 10.17912/micropub.biology.000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022]
Abstract
The unicellular eukaryote
Dictyostelium discoideum
has a gene-dense haploid genome. This configuration presents mobile elements with the particular challenge of replicating without causing excessive damage to the host through insertional mutagenesis or recombination between repetitive sequences.
D. discoideum
harbors an active population of the retrotransposon TRE5-A that integrates in a narrow window of ~50 bp upstream of tRNA genes. We assume that this integration preference was developed to avoid the disruption of protein-coding genes. Therefore, we recently mapped new integrations of a genetically tagged TRE5-A element at tRNA genes using PCR-based enrichment of integration junctions. However, the PCR-based enrichment produced several artificial DNA fusions that prevented the mapping of integration sites in unknown places of the genome. Here, we reanalyzed the previous experiment using nanopore sequencing. We summarize the advantages and limitations of direct genome resequencing for the mapping of mobile element integrations.
Collapse
Affiliation(s)
- Emanuel Barth
- Friedrich Schiller University Jena, Bioinformatics Core Facility
,
Friedrich Schiller University Jena, Chair of RNA Bioinformatics and High Throughput Analysis
| | - Johannes Burggraaff
- Friedrich Schiller University Jena, Institute of Pharmacy, Chair of Pharmaceutical Biology
| | - Akash Srivastava
- Friedrich Schiller University Jena, Chair of RNA Bioinformatics and High Throughput Analysis
| | - Thomas Winckler
- Friedrich Schiller University Jena, Institute of Pharmacy, Chair of Pharmaceutical Biology
,
Correspondence to: Thomas Winckler (
)
| |
Collapse
|
80
|
Zubair M, Hamzah R, Griffin R, Ali N. Identification and functional characterization of multiple inositol polyphosphate phosphatase1 (Minpp1) isoform-2 in exosomes with potential to modulate tumor microenvironment. PLoS One 2022; 17:e0264451. [PMID: 35235602 PMCID: PMC8890658 DOI: 10.1371/journal.pone.0264451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Inositol polyphosphates (InsPs) play key signaling roles in diverse cellular functions, including calcium homeostasis, cell survival and death. Multiple inositol polyphosphate phosphatase 1 (Minpp1) affects the cellular levels of InsPs and cell functions. The Minpp1 is an endoplasmic reticulum (ER) resident but localizes away from its cytosolic InsPs substrates. The current study examines the heterogeneity of Minpp1 and the potential physiologic impact of Minpp1 isoforms, distinct motifs, subcellular distribution, and enzymatic potential. The NCBI database was used to analyze the proteome diversity of Minpp1 using bioinformatics tools. The analysis revealed that translation of three different Minpp1 variants resulted in three isoforms of Minpp1 of varying molecular weights. A link between the minpp1 variant-2 gene and ER-stress, using real-time PCR, suggests a functional similarity between minpp1 variant-1 and variant-2. A detailed study on motifs revealed Minpp1 isoform-2 is the only other isoform, besides isoform-1, that carries a phosphatase motif for InsPs hydrolysis but no ER-retention signal. The confocal microscopy revealed that the Minpp1 isoform-1 predominantly localized near the nucleus with a GRP-78 ER marker, while Minpp1 isoform-2 was scattered more towards the cell periphery where it co-localizes with the plasma membrane-destined multivesicular bodies biomarker CD63. MCF-7 cells were used to establish that Minpp1 isoform-2 is secreted into exosomes. Brefeldin A treatment resulted in overexpression of the exosome-associated Minpp1 isoform-2, suggesting its secretion via an unconventional route involving endocytic-generated vesicles and a link to ER stress. Results further demonstrated that the exosome-associated Minpp1 isoform-2 was enzymatically active. Overall, the data support the possibility that an extracellular form of enzymatically active Minpp1 isoform-2 mitigates any anti-proliferative actions of extracellular InsPs, thereby also impacting the makeup of the tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Rabab Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Robert Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| |
Collapse
|
81
|
Song L, Luo J, Wang H, Huang D, Tan Y, Liu Y, Wang Y, Yu K, Zhang Y, Liu X, Li D, Luo ZQ. Legionella pneumophila regulates host cell motility by targeting Phldb2 with a 14-3-3ζ-dependent protease effector. eLife 2022; 11:73220. [PMID: 35175192 PMCID: PMC8871388 DOI: 10.7554/elife.73220] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton network of eukaryotic cells is essential for diverse cellular processes, including vesicle trafficking, cell motility, and immunity, thus is a common target for bacterial virulence factors. A number of effectors from the bacterial pathogen Legionella pneumophila have been shown to modulate the function of host actin cytoskeleton to construct the Legionella-containing vacuole (LCV) permissive for its intracellular replication. In this study, we found that the Dot/Icm effector Lem8 (Lpg1290) is a protease whose activity is catalyzed by a Cys-His-Asp motif known to be associated with diverse biochemical activities. Intriguingly, we found that Lem8 interacts with the host regulatory protein 14-3-3ζ, which activates its protease activity. Furthermore, Lem8 undergoes self-cleavage in a process that requires 14-3-3ζ. We identified the Pleckstrin homology-like domain-containing protein Phldb2 involved in cytoskeleton organization as a target of Lem8 and demonstrated that Lem8 plays a role in the inhibition of host cell migration by attacking Phldb2.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Hongou Wang
- Department of Microbiology, Peking University Health Science Center, Peking, China
| | - Dan Huang
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Yunhao Tan
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Yingwu Wang
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Kaiwen Yu
- Department of Microbiology, Peking University Health Science Center, Peking, China
| | - Yong Zhang
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology, Peking University Health Science Center, Peking, China
| | - Dan Li
- Department of Respiratory Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Science, Purdue University, West Lafayette, United States
| |
Collapse
|
82
|
Microscopic Swarms: From Active Matter Physics to Biomedical and Environmental Applications. MICROMACHINES 2022; 13:mi13020295. [PMID: 35208419 PMCID: PMC8876490 DOI: 10.3390/mi13020295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Microscopic swarms consisting of, e.g., active colloidal particles or microorganisms, display emergent behaviors not seen in equilibrium systems. They represent an emerging field of research that generates both fundamental scientific interest and practical technological value. This review seeks to unite the perspective of fundamental active matter physics and the perspective of practical applications of microscopic swarms. We first summarize experimental and theoretical results related to a few key aspects unique to active matter systems: the existence of long-range order, the prediction and observation of giant number fluctuations and motility-induced phase separation, and the exploration of the relations between information and order in the self-organizing patterns. Then we discuss microscopic swarms, particularly microrobotic swarms, from the perspective of applications. We introduce common methods to control and manipulate microrobotic swarms and summarize their potential applications in fields such as targeted delivery, in vivo imaging, biofilm removal, and wastewater treatment. We aim at bridging the gap between the community of active matter physics and the community of micromachines or microrobotics, and in doing so, we seek to inspire fruitful collaborations between the two communities.
Collapse
|
83
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
84
|
Reimer C, Kufs JE, Rautschek J, Regestein L, Valiante V, Hillmann F. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol 2022; 40:751-758. [PMID: 34992245 DOI: 10.1038/s41587-021-01143-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.
Collapse
Affiliation(s)
- Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Johann E Kufs
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Julia Rautschek
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
85
|
Abstract
Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
86
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
87
|
Forbes G, Schilde C, Lawal H, Kin K, Du Q, Chen ZH, Rivero F, Schaap P. Interactome and evolutionary conservation of Dictyostelid small GTPases and their direct regulators. Small GTPases 2022; 13:239-254. [PMID: 34565293 PMCID: PMC8923023 DOI: 10.1080/21541248.2021.1984829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored. Dictyostelid social amoebas have been particularly useful in unravelling the roles of many proteins in the Rac-Rho and Ras-Rap families of GTPases in directional cell migration and regulation of the actin cytoskeleton. Genomes and cell-type specific and developmental transcriptomes are available for Dictyostelium species that span the 0.5 billion years of evolution of the group from their unicellular ancestors. In this work, we identified all GTPases, GEFs and GAPs from genomes representative of the four major taxon groups and investigated their phylogenetic relationships and evolutionary conservation and changes in their functional domain architecture and in their developmental and cell-type specific expression. We performed a hierarchical cluster analysis of the expression profiles of the ~2000 analysed genes to identify putative interacting sets of GTPases, GEFs and GAPs, which highlight sets known to interact experimentally and many novel combinations. This work represents a valuable resource for research into all fields of cellular regulation.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Hajara Lawal
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, UK,CSIC-Universitat Pompeu Fabra, Institut de Biologia Evolutiva (Csic-universitat Pompeu Fabra), Barcelona, Spain
| | - Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi-hui Chen
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, UK,CONTACT Pauline Schaap ; School of Life Sciences, University of Dundee, Msi/wtb Complex, Dundee, DD15EH, UK
| |
Collapse
|
88
|
Kay RR, Lutton J, Coker H, Paschke P, King JS, Bretschneider T. The Amoebal Model for Macropinocytosis. Subcell Biochem 2022; 98:41-59. [PMID: 35378702 DOI: 10.1007/978-3-030-94004-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Helena Coker
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jason S King
- School of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
89
|
Porfírio-Sousa AL, Tice AK, Brown MW, J. G. Lahr D. Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa. Small GTPases 2022; 13:100-113. [PMID: 33779495 PMCID: PMC9707542 DOI: 10.1080/21541248.2021.1903794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.
Collapse
Affiliation(s)
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,CONTACT Daniel J. G. Lahr Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
90
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
91
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
92
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
93
|
Bai W, Wells ML, Lai WS, Hicks SN, Burkholder AB, Perera L, Kimmel AR, Blackshear PJ. A post-transcriptional regulon controlled by TtpA, the single tristetraprolin family member expressed in Dictyostelium discoideum. Nucleic Acids Res 2021; 49:11920-11937. [PMID: 34718768 DOI: 10.1093/nar/gkab983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.
Collapse
Affiliation(s)
- Wenli Bai
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Melissa L Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wi S Lai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephanie N Hicks
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.,The Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
94
|
Mita T, Hirai M, Maki Y, Nahar S, Yoshida N, Oshima Y, Kikuchi H, Kubohara Y. Derivatives of Dictyostelium differentiation-inducing factors suppress the growth of Plasmodium parasites in vitro and in vivo. Biochem Pharmacol 2021; 194:114834. [PMID: 34774530 DOI: 10.1016/j.bcp.2021.114834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Malaria, which is caused by protozoa of the genus Plasmodium, remains a major endemic public health problem worldwide. Since artemisinin combination therapies are used as a first-line treatment in all endemic regions, the emergence of parasites resistant to these regimens has become a serious problem. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone originally found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivatives exhibit a range of biological activities. In the present study, we investigated the effects of 41 DIF derivatives on the growth of Plasmodium falciparum in vitro using four laboratory strains and 12 field isolates. Micromolar concentrations of several DIF derivatives strongly suppressed the growth of the four laboratory strains, including strains that exhibited resistance to chloroquine and artemisinin, as well as strains that were susceptible to these drugs. In addition, DIF-1(+2), the most potent derivative, strongly suppressed the growth of 12 field isolates. We also examined the effects of DIF-1(+2) on the activity of the rodent malarial parasite Plasmodium berghei in mice. Intraperitoneal administration of DIF-1(+2) over 4 days (50 or 70 mg/kg/day) significantly suppressed the growth of the parasite in the blood with no apparent adverse effects, and a dose of 70 mg/kg/day significantly prolonged animal survival. These results suggest that DIF derivatives, such as DIF-1(+2), could serve as new lead compounds for the development of antimalarial agents.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiko Maki
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saifun Nahar
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiteru Oshima
- Head Office for Open Innovation Strategy, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| |
Collapse
|
95
|
Katic A, Hüsler D, Letourneur F, Hilbi H. Dictyostelium Dynamin Superfamily GTPases Implicated in Vesicle Trafficking and Host-Pathogen Interactions. Front Cell Dev Biol 2021; 9:731964. [PMID: 34746129 PMCID: PMC8565484 DOI: 10.3389/fcell.2021.731964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
The haploid social amoeba Dictyostelium discoideum is a powerful model organism to study vesicle trafficking, motility and migration, cell division, developmental processes, and host cell-pathogen interactions. Dynamin superfamily proteins (DSPs) are large GTPases, which promote membrane fission and fusion, as well as membrane-independent cellular processes. Accordingly, DSPs play crucial roles for vesicle biogenesis and transport, organelle homeostasis, cytokinesis and cell-autonomous immunity. Major progress has been made over the last years in elucidating the function and structure of mammalian DSPs. D. discoideum produces at least eight DSPs, which are involved in membrane dynamics and other processes. The function and structure of these large GTPases has not been fully explored, despite the elaborate genetic and cell biological tools available for D. discoideum. In this review, we focus on the current knowledge about mammalian and D. discoideum DSPs, and we advocate the use of the genetically tractable amoeba to further study the role of DSPs in cell and infection biology. Particular emphasis is put on the virulence mechanisms of the facultative intracellular bacterium Legionella pneumophila.
Collapse
Affiliation(s)
- Ana Katic
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
96
|
Wu Y, Williams FN, Scaglione KM. Assessing the necessity of a family of genes that encode small proteins in Dictyostelium discoideum development. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34723153 PMCID: PMC8554618 DOI: 10.17912/micropub.biology.000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Dictyostelium discoideum’s genome encodes for a large class of small proteins that are developmentally regulated. We deleted six of the genes that encode these proteins to determine if they play an essential role in Dictyostelium discoideum development. Deletion of these genes had no significant effect on Dictyostelium discoideum development. These results suggest that the selected genes do not play an essential role in Dictyostelium discoideum development.
Collapse
Affiliation(s)
- Yumei Wu
- Department of Molecular Genetics and Microbiology, Duke University
| | | | - K Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University.,Department of Neurology, Duke University.,Duke Center for Neurodegeneration and Neurotherapeutics, Duke University
| |
Collapse
|
97
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
98
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
99
|
Pears CJ, Brustel J, Lakin ND. Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Front Cell Dev Biol 2021; 9:752175. [PMID: 34692705 PMCID: PMC8529158 DOI: 10.3389/fcell.2021.752175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.
Collapse
Affiliation(s)
- Catherine J. Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
100
|
Rosenbusch KE, Oun A, Sanislav O, Lay ST, Keizer-Gunnink I, Annesley SJ, Fisher PR, Dolga AM, Kortholt A. A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Front Cell Dev Biol 2021; 9:734554. [PMID: 34568343 PMCID: PMC8455996 DOI: 10.3389/fcell.2021.734554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease world-wide. Mutations in the multidomain protein Leucine Rich Repeat Kinase 2 (LRRK2) are the most frequent cause of hereditary PD. Furthermore, recent data suggest that independent of mutations, increased kinase activity of LRRK2 plays an essential role in PD pathogenesis. Isolated mitochondria of tissue samples from PD patients carrying LRRK2 mutations display a significant impairment of mitochondrial function. However, due to the complexity of the mitochondrial signaling network, the role of LRRK2 in mitochondrial metabolism is still not well understood. Previously we have shown that D. discoideum Roco4 is a suitable model to study the activation mechanism of LRRK2 in vivo. To get more insight in the LRRK2 pathways regulating mitochondrial activity we used this Roco4 model system in combination with murine RAW macrophages. Here we show that both Dictyostelium roco4 knockout and cells expressing PD-mutants show behavioral and developmental phenotypes that are characteristic for mitochondrial impairment. Mitochondrial activity measured by Seahorse technology revealed that the basal respiration of D. discoideum roco4- cells is significantly increased compared to the WT strain, while the basal and maximal respiration values of cells overexpressing Roco4 are reduced compared to the WT strain. Consistently, LRRK2 KO RAW 264.7 cells exhibit higher maximal mitochondrial respiration activity compared to the LRRK2 parental RAW264.7 cells. Measurement on isolated mitochondria from LRRK2 KO and parental RAW 264.7 cells revealed no difference in activity compared to the parental cells. Furthermore, neither D. discoideum roco4- nor LRRK2 KO RAW 264.7 showed a difference in either the number or the morphology of mitochondria compared to their respective parental strains. This suggests that the observed effects on the mitochondrial respiratory in cells are indirect and that LRRK2/Roco proteins most likely require other cytosolic cofactors to elicit mitochondrial effects.
Collapse
Affiliation(s)
| | - Asmaa Oun
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sui T Lay
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Ineke Keizer-Gunnink
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Amalia M Dolga
- Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|