51
|
Bailey JV, Orphan VJ, Joye SB, Corsetti FA. Chemotrophic microbial mats and their potential for preservation in the rock record. ASTROBIOLOGY 2009; 9:843-859. [PMID: 19968462 DOI: 10.1089/ast.2008.0314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets.
Collapse
Affiliation(s)
- Jake V Bailey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
52
|
Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proc Natl Acad Sci U S A 2009; 106:19056-60. [PMID: 19858483 DOI: 10.1073/pnas.0904805106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three-dimensionally preserved embryos from the Precambrian Ediacaran Doushantuo Formation, Weng'an, Guizhou, southern China, have attracted great attention as the oldest fossil evidence yet found for multicellular animal life on Earth. Many embryos are early cleavage embryos and most of them yield a limited phylogenetic signal. Here we report the discovery of two Doushantuo embryos that are three-dimensionally preserved and complex. Imaging techniques using propagation phase-contrast based synchrotron radiation microtomography (PPC-SR-microCT) reveal that the organization of cells demonstrates several bilaterian features, including the formation of anterior-posterior, dorso-ventral, and right-left polarities, and cell differentiation. Unexpectedly, our observations show a noticeable difference in organization patterns between the embryos, suggesting that they represent two distinct taxa. These embryos provide further evidence for the presence of bilaterian animals in the Doushantuo biota. Furthermore, these bilaterians had already diverged into distantly related groups at least 40 million years before the Cambrian radiation, indicating that the last common ancestor of the bilaterians lived much earlier than is usually thought.
Collapse
|
53
|
Nielsen C. How did indirect development with planktotrophic larvae evolve? THE BIOLOGICAL BULLETIN 2009; 216:203-215. [PMID: 19556589 DOI: 10.1086/bblv216n3p203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The two main types of theories for the evolution of the biphasic life cycles in marine invertebrates are discussed. The "intercalation" theories propose that the larval stages (planktotrophic or lecithotrophic) have evolved as specializations from the ancestral, direct life cycle. The opposing "terminal addition" theories propose that the ancestor was holopelagic and that the adult stage was added to the life cycle with the pelagic stage retained as a planktotrophic larva. It is emphasized that theories based on hypothetical ancestors that were unable to feed must be rejected. This applies to planula theories based on a compact planula. Various arguments against the theories that consider the feeding larvae as ancestral in the major eumetazoan lineages and in particular against the trochaea theory are discussed and found untenable. It is suggested that the "Cambrian explosion" was actually a rapid Ediacaran radiation of the eubilaterians that was made possible by the evolution of a tubular gut with all the resulting possibilities for new body plans.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
54
|
Matz MV, Frank TM, Marshall NJ, Widder EA, Johnsen S. Giant deep-sea protist produces bilaterian-like traces. Curr Biol 2008; 18:1849-54. [PMID: 19026540 DOI: 10.1016/j.cub.2008.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
One of the strongest paleontological arguments in favor of the origin of bilaterally symmetrical animals (Bilateria) prior to their obvious and explosive appearance in the fossil record in the early Cambrian, 542 million years ago, is the occurrence of trace fossils shaped like elongated sinuous grooves or furrows in the Precambrian. Being restricted to the seafloor surface, these traces are relatively rare and of limited diversity, and they do not show any evidence of the use of hard appendages. They are commonly attributed to the activity of the early nonskeletonized bilaterians or, alternatively, large cnidarians such as sea anemones or sea pens. Here we describe macroscopic groove-like traces produced by a living giant protist and show that these traces bear a remarkable resemblance to the Precambrian trace fossils, including those as old as 1.8 billion years. This is the first evidence that organisms other than multicellular animals can produce such traces, and it prompts re-evaluation of the significance of Precambrian trace fossils as evidence of the early diversification of Bilateria. Our observations also render indirect support to the highly controversial interpretation of the enigmatic Ediacaran biota of the late Precambrian as giant protists.
Collapse
Affiliation(s)
- Mikhail V Matz
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
55
|
Budd GE. The earliest fossil record of the animals and its significance. Philos Trans R Soc Lond B Biol Sci 2008; 363:1425-34. [PMID: 18192192 DOI: 10.1098/rstb.2007.2232] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fossil record of the earliest animals has been enlivened in recent years by a series of spectacular discoveries, including embryos, from the Ediacaran to the Cambrian, but many issues, not least of dating and interpretation, remain controversial. In particular, aspects of taphonomy of the earliest fossils require careful consideration before pronouncements about their affinities. Nevertheless, a reasonable case can now be made for the extension of the fossil record of at least basal animals (sponges and perhaps cnidarians) to a period of time significantly before the beginning of the Cambrian. The Cambrian explosion itself still seems to represent the arrival of the bilaterians, and many new fossils in recent years have added significant data on the origin of the three major bilaterian clades. Why animals appear so late in the fossil record is still unclear, but the recent trend to embrace rising oxygen levels as being the proximate cause remains unproven and may even involve a degree of circularity.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden.
| |
Collapse
|
56
|
Gostling NJ, Thomas CW, Greenwood JM, Dong X, Bengtson S, Raff EC, Raff RA, Degnan BM, Stampanoni M, Donoghue PCJ. Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy. Evol Dev 2008; 10:339-49. [PMID: 18460095 DOI: 10.1111/j.1525-142x.2008.00242.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Experimental analyses of decay in a tunicate deuterostome and three lophotrochozoans indicate that the controls on decay and preservation of embryos, identified previously based on echinoids, are more generally applicable. Four stages of decay are identified regardless of the environment of death and decay. Embryos decay rapidly in oxic and anoxic conditions, although the gross morphology of embryos is maintained for longer under anoxic conditions. Under anoxic reducing conditions, the gross morphology of the embryos is maintained for the longest period of time, compatible with the timescale required for bacterially mediated mineralization of soft tissues. All four stages of decay were encountered under all environmental conditions, matching the spectrum of preservational qualities encountered in all fossil embryo assemblages. The preservation potential of embryos of deuterostomes and lophotrochozoans is at odds with the lack of such embryos in the fossil record. Rather, the fossil record of embryos, as sparse as it is, is dominated by forms interpreted as ecdysozoans, cnidarians, and stem-metazoans. The dearth of deuterostome and lophotrochozoan embryos may be explained by the fact that ecdysozoans, at least, tend to deposit their eggs in the sediment rather than through broadcast spawning. However, fossil embryos remain very rare and the main controlling factor on their fossilization may be the unique conspiracy of environmental conditions at a couple of sites. The preponderance of fossilized embryos of direct developers should not be used in evidence against the existence of indirect development at this time in animal evolutionary history.
Collapse
Affiliation(s)
- Neil J Gostling
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Problematica are taxa that defy robust phylogenetic placement. Traditionally the term was restricted to fossil forms, but it is clear that extant taxa may be just as difficult to place, whether using morphological or molecular (nucleotide, gene or genomic) markers for phylogeny reconstruction. We discuss the kinds and causes of Problematica within the Metazoa, as well as criteria for their recognition and possible solutions. The inclusive set of Problematica changes depending upon the nature and quality of (homologous) data available, the methods of phylogeny reconstruction and the sister taxa inferred by their placement or displacement. We address Problematica in the context of pre-cladistic phylogenetics, numerical morphological cladistics and molecular phylogenetics, and focus on general biological and methodological implications of Problematica, rather than presenting a review of individual taxa. Rather than excluding Problematica from phylogeny reconstruction, as has often been preferred, we conclude that the study of Problematica is crucial for both the resolution of metazoan phylogeny and the proper inference of body plan evolution.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|
58
|
Mußmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 2007; 5:e230. [PMID: 17760503 PMCID: PMC1951784 DOI: 10.1371/journal.pbio.0050230] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022] Open
Abstract
Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.
Collapse
Affiliation(s)
- Marc Mußmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Fen Z Hu
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael Richter
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - André Preisler
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bo B Jørgensen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel Huntemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Werner J. H Koopman
- Department of Membrane Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roger S Lasken
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Justin Hogg
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Robert Boissy
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Garth D Ehrlich
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| |
Collapse
|
59
|
Affiliation(s)
- Neil J Gostling
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.
| | | | | |
Collapse
|
60
|
Xiao S, Zhou C, Yuan X. Palaeontology: undressing and redressing Ediacaran embryos. Nature 2007; 446:E9-10; discussion E10-1. [PMID: 17410133 DOI: 10.1038/nature05753] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 02/20/2007] [Indexed: 11/08/2022]
Abstract
Bailey et al. propose that the Ediacaran microfossils Megasphaera and Parapandorina, previously interpreted as animal resting eggs and blastula embryos, represent Thiomargarita-like sulphide-oxidizing bacteria, claiming that this interpretation better explains their abundance and taphonomy. Here we highlight important observations that significantly weaken the authors' conclusions.
Collapse
Affiliation(s)
- Shuhai Xiao
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
| | | | | |
Collapse
|
61
|
Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA. Undressing and redressing Ediacaran embryos (Reply). Nature 2007. [DOI: 10.1038/nature05754] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Yin L, Zhu M, Knoll AH, Yuan X, Zhang J, Hu J. Doushantuo embryos preserved inside diapause egg cysts. Nature 2007; 446:661-3. [PMID: 17410174 DOI: 10.1038/nature05682] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/13/2007] [Indexed: 11/08/2022]
Abstract
Phosphatized microfossils in the Ediacaran (635-542 Myr ago) Doushantuo Formation, south China, have been interpreted as the embryos of early animals. Despite experimental demonstration that embryos can be preserved, microstructural evidence that the Doushantuo remains are embryonic and an unambiguous record of fossil embryos in Lower Cambrian rocks, questions about the phylogenetic relationships of these fossils remain. Most recently, some researchers have proposed that Doushantuo microfossils may be giant sulphur-oxidizing bacteria comparable to extant Thiomargarita sp. Here we report new observations that provide a test of the bacterial hypothesis. The discovery of embryo-like Doushantuo fossils inside large, highly ornamented organic vesicles (acritarchs) indicates that these organisms were eukaryotic, and most probably early cleavage stage embryos preserved within diapause egg cysts. Large acanthomorphic microfossils of the type observed to contain fossil embryos first appear in rocks just above a 632.5 +/- 0.5-Myr-old ash bed, suggesting that at least stem-group animals inhabited shallow seas in the immediate aftermath of global Neoproterozoic glaciation.
Collapse
Affiliation(s)
- Leiming Yin
- State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|
63
|
|