51
|
Cre-dependent ACR2-expressing reporter mouse strain for efficient long-lasting inhibition of neuronal activity. Sci Rep 2023; 13:3966. [PMID: 36894577 PMCID: PMC9998869 DOI: 10.1038/s41598-023-30907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Optogenetics is a powerful tool for manipulating neuronal activity by light illumination with high temporal and spatial resolution. Anion-channelrhodopsins (ACRs) are light-gated anion channels that allow researchers to efficiently inhibit neuronal activity. A blue light-sensitive ACR2 has recently been used in several in vivo studies; however, the reporter mouse strain expressing ACR2 has not yet been reported. Here, we generated a new reporter mouse strain, LSL-ACR2, in which ACR2 is expressed under the control of Cre recombinase. We crossed this strain with a noradrenergic neuron-specific driver mouse (NAT-Cre) to generate NAT-ACR2 mice. We confirmed Cre-dependent expression and function of ACR2 in the targeted neurons by immunohistochemistry and electrophysiological recordings in vitro, and confirmed physiological function using an in vivo behavioral experiment. Our results show that the LSL-ACR2 mouse strain can be applied for optogenetic inhibition of targeted neurons, particularly for long-lasting continuous inhibition, upon crossing with Cre-driver mouse strains. The LSL-ACR2 strain can be used to prepare transgenic mice with homogenous expression of ACR2 in targeted neurons with a high penetration ratio, good reproducibility, and no tissue invasion.
Collapse
|
52
|
Gu L, Ren M, Lin L, Xu J. Calbindin-Expressing CA1 Pyramidal Neurons Encode Spatial Information More Efficiently. eNeuro 2023; 10:ENEURO.0411-22.2023. [PMID: 36810150 PMCID: PMC10016193 DOI: 10.1523/eneuro.0411-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Hippocampal pyramidal neurons (PNs) are traditionally conceptualized as homogeneous population. For the past few years, cumulating evidence has revealed the structural and functional heterogeneity of hippocampal pyramidal neurons. But the in vivo neuronal firing pattern of molecularly identified pyramidal neuron subclasses is still absent. In this study, we investigated the firing patterns of hippocampal PNs based on different expression profile of Calbindin (CB) during a spatial shuttle task in free moving male mice. We found that CB+ place cells can represent spatial information more efficiently than CB- place cells, albeit lower firing rates during running epochs. Furthermore, a subset of CB+ PNs shifted their theta firing phase during rapid-eye movement (REM) sleep states compared with running states. Although CB- PNs are more actively engaged in ripple oscillations, CB+ PNs showed stronger ripple modulation during slow-wave sleep (SWS). Our results pointed out the heterogeneity in neuronal representation between hippocampal CB+ and CB- PNs. Particularly, CB+ PNs encode spatial information more efficiently, which might be contributed by stronger afferents from the lateral entorhinal cortex to CB+ PNs.
Collapse
Affiliation(s)
- Liqin Gu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Minglong Ren
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- New York University - East China Normal University Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Tongji University Brain and Spinal Cord Clinical Center, Shanghai 200062, China
| | - Jiamin Xu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- New York University - East China Normal University Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
53
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
54
|
Parrish RR, MacKenzie-Gray Scott C, Jackson-Taylor T, Grundmann A, McLeod F, Codadu NK, Călin A, Alfonsa H, Wykes RC, Voipio J, Trevelyan AJ. Indirect Effects of Halorhodopsin Activation: Potassium Redistribution, Nonspecific Inhibition, and Spreading Depolarization. J Neurosci 2023; 43:685-692. [PMID: 36639898 PMCID: PMC9899079 DOI: 10.1523/jneurosci.1141-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.
Collapse
Affiliation(s)
- R Ryley Parrish
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Department of Cell Biology and Physiology, Brigham Young University, Provo 84602, Utah
| | | | - Tom Jackson-Taylor
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alex Grundmann
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Faye McLeod
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Neela K Codadu
- Queen Square Institute of Neurology, University College London, WC1N 3BG, United Kingdom
| | - Alexandru Călin
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Hannah Alfonsa
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Rob C Wykes
- Nanomedicine Lab, University of Manchester, Manchester, M13 9PL, United Kingdom
- Queen Square Institute of Neurology, University College London, WC1N 3BG, United Kingdom
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
55
|
The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Rep 2023; 42:112000. [PMID: 36656714 DOI: 10.1016/j.celrep.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Cerebellar-thalamo-striatal synaptic communication has been implicated in a wide range of behaviors, including goal-directed actions, and is altered in cerebellar dystonia. However, its detailed connectivity through the thalamus and its contribution to the execution of forelimb movements is unclear. Here, we use trans-synaptic and retrograde tracing, ex vivo slice recordings, and optogenetic inhibitions during the execution of unidirectional or sequential joystick displacements to demonstrate that the deep cerebellar nuclei (DCN) influence the dorsal striatum with a very high probability. We show that this mainly occurs through the centrolateral (CL), parafascicular (PF), and ventrolateral (VL) nuclei of the thalamus, observing that the DCN→VL and DCN→CL pathways contribute to the execution of unidirectional forelimb displacements while the DCN→PF and DCN→thalamo→striatal pathways contribute to the appropriate execution of forelimb reaching and sequential displacements. These findings highlight specific contributions of the different cerebellar-thalamo-striatal paths to the control of skilled forelimb movement.
Collapse
|
56
|
Kintscher M, Kochubey O, Schneggenburger R. A striatal circuit balances learned fear in the presence and absence of sensory cues. eLife 2023; 12:75703. [PMID: 36655978 PMCID: PMC9897731 DOI: 10.7554/elife.75703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
During fear learning, defensive behaviors like freezing need to be finely balanced in the presence or absence of threat-predicting cues (conditioned stimulus, CS). Nevertheless, the circuits underlying such balancing are largely unknown. Here, we investigate the role of the ventral tail striatum (vTS) in auditory-cued fear learning of male mice. In vivo Ca2+ imaging showed that sizable sub-populations of direct (D1R+) and indirect pathway neurons (Adora+) in the vTS responded to footshocks, and to the initiation of movements after freezing; moreover, a sub-population of D1R+ neurons increased its responsiveness to an auditory CS during fear learning. In-vivo optogenetic silencing shows that footshock-driven activity of D1R+ neurons contributes to fear memory formation, whereas Adora+ neurons modulate freezing in the absence of a learned CS. Circuit tracing identified the posterior insular cortex (pInsCx) as an important cortical input to the vTS, and recording of optogenetically evoked EPSCs revealed long-term plasticity with opposite outcomes at the pInsCx synapses onto D1R+ - and Adora+ neurons. Thus, direct- and indirect pathways neurons of the vTS show differential signs of plasticity after fear learning, and balance defensive behaviors in the presence and absence of learned sensory cues.
Collapse
Affiliation(s)
- Michael Kintscher
- Laboratory for Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Olexiy Kochubey
- Laboratory for Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Ralf Schneggenburger
- Laboratory for Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
57
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
58
|
Pedraza-González L, Barneschi L, Marszałek M, Padula D, De Vico L, Olivucci M. Automated QM/MM Screening of Rhodopsin Variants with Enhanced Fluorescence. J Chem Theory Comput 2023; 19:293-310. [PMID: 36516450 DOI: 10.1021/acs.jctc.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a computational protocol for the fast and automated screening of excited-state hybrid quantum mechanics/molecular mechanics (QM/MM) models of rhodopsins to be used as fluorescent probes based on the automatic rhodopsin modeling protocol (a-ARM). Such "a-ARM fluorescence screening protocol" is implemented through a general Python-based driver, PyARM, that is also proposed here. The implementation and performance of the protocol are benchmarked using different sets of rhodopsin variants whose absorption and, more relevantly, emission spectra have been experimentally measured. We show that, despite important limitations that make unsafe to use it as a black-box tool, the protocol reproduces the observed trends in fluorescence and it is capable of selecting novel potentially fluorescent rhodopsins. We also show that the protocol can be used in mechanistic investigations to discern fluorescence enhancement effects associated with a near degeneracy of the S1/S2 states or, alternatively, with a barrier generated via coupling of the S0/S1 wave functions.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Leonardo Barneschi
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Michał Marszałek
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiaǹskiego 27, 50-370 Wrocław, Poland
| | - Daniele Padula
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
59
|
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat Biotechnol 2023:10.1038/s41587-022-01581-y. [PMID: 36593411 DOI: 10.1038/s41587-022-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Abstract
Ultrasound allows imaging at a much greater depth than optical methods, but existing genetically encoded acoustic reporters for in vivo cellular imaging have been limited by poor sensitivity, specificity and in vivo expression. Here we describe two acoustic reporter genes (ARGs)-one for use in bacteria and one for use in mammalian cells-identified through a phylogenetic screen of candidate gas vesicle gene clusters from diverse bacteria and archaea that provide stronger ultrasound contrast, produce non-linear signals distinguishable from background tissue and have stable long-term expression. Compared to their first-generation counterparts, these improved bacterial and mammalian ARGs produce 9-fold and 38-fold stronger non-linear contrast, respectively. Using these new ARGs, we non-invasively imaged in situ tumor colonization and gene expression in tumor-homing therapeutic bacteria, tracked the progression of tumor gene expression and growth in a mouse model of breast cancer, and performed gene-expression-guided needle biopsies of a genetically mosaic tumor, demonstrating non-invasive access to dynamic biological processes at centimeter depth.
Collapse
|
60
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
61
|
Dorigo A, Valishetti K, Hetsch F, Matsui H, Meier JC, Namikawa K, Köster RW. Functional regionalization of the differentiating cerebellar Purkinje cell population occurs in an activity-dependent manner. Front Mol Neurosci 2023; 16:1166900. [PMID: 37181649 PMCID: PMC10174242 DOI: 10.3389/fnmol.2023.1166900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The cerebellum is organized into functional regions each dedicated to process different motor or sensory inputs for controlling different locomotor behaviors. This functional regionalization is prominent in the evolutionary conserved single-cell layered Purkinje cell (PC) population. Fragmented gene expression domains suggest a genetic organization of PC layer regionalization during cerebellum development. However, the establishment of such functionally specific domains during PC differentiation remained elusive. Methods and results We show the progressive emergence of functional regionalization of PCs from broad responses to spatially restricted regions in zebrafish by means of in vivo Ca2+-imaging during stereotypic locomotive behavior. Moreover, we reveal that formation of new dendritic spines during cerebellar development using in vivo imaging parallels the time course of functional domain development. Pharmacological as well as cell-type specific optogenetic inhibition of PC neuronal activity results in reduced PC dendritic spine density and an altered stagnant pattern of functional domain formation in the PC layer. Discussion Hence, our study suggests that functional regionalization of the PC layer is driven by physiological activity of maturing PCs themselves.
Collapse
Affiliation(s)
- Alessandro Dorigo
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Hetsch
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hideaki Matsui
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jochen C. Meier
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kazuhiko Namikawa,
| | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Reinhard W. Köster,
| |
Collapse
|
62
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
63
|
Zhao YN, Jiang JB, Tao SY, Zhang Y, Chen ZK, Qu WM, Huang ZL, Yang SR. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat Commun 2022; 13:7552. [PMID: 36477665 PMCID: PMC9729601 DOI: 10.1038/s41467-022-35299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep disturbances are prevalent in various psychiatric disorders. However, the neural circuits that regulate REM sleep remain poorly understood. Here, we found that in male mice, optogenetic activation of rostromedial tegmental nucleus (RMTg) GABAergic neurons immediately converted REM sleep to arousal and then initiated non-REM (NREM) sleep. Conversely, laser-mediated inactivation completely converted NREM to REM sleep and prolonged REM sleep duration. The activity of RMTg GABAergic neurons increased to a high discharge level at the termination of REM sleep. RMTg GABAergic neurons directly converted REM sleep to wakefulness and NREM sleep via inhibitory projections to the laterodorsal tegmentum (LDT) and lateral hypothalamus (LH), respectively. Furthermore, LDT glutamatergic neurons were responsible for the REM sleep-wake transitions following photostimulation of the RMTgGABA-LDT circuit. Thus, RMTg GABAergic neurons are essential for suppressing the induction and maintenance of REM sleep.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Jian-Bo Jiang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Shi-Yuan Tao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Ze-Ka Chen
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wei-Min Qu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhi-Li Huang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Su-Rong Yang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
64
|
Lu Y, Ahamed T, Mulcahy B, Meng J, Witvliet D, Guan SA, Holmyard D, Hung W, Wen Q, Chisholm AD, Samuel ADT, Zhen M. Extrasynaptic signaling enables an asymmetric juvenile motor circuit to produce symmetric undulation. Curr Biol 2022; 32:4631-4644.e5. [PMID: 36182701 PMCID: PMC9643663 DOI: 10.1016/j.cub.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 01/28/2023]
Abstract
In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.
Collapse
Affiliation(s)
- Yangning Lu
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tosif Ahamed
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jun Meng
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Sihui Asuka Guan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; School of Life Sciences, University of Science and Technology, Hefei, Anhui 230027, China
| | - Andrew D Chisholm
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mei Zhen
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
65
|
Entorhinal cortex directs learning-related changes in CA1 representations. Nature 2022; 611:554-562. [DOI: 10.1038/s41586-022-05378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
AbstractLearning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3–6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.
Collapse
|
66
|
De Silva SR, Moore AT. Optogenetic approaches to therapy for inherited retinal degenerations. J Physiol 2022; 600:4623-4632. [PMID: 35908243 DOI: 10.1113/jp282076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Inherited retinal degenerations such as retinitis pigmentosa (RP) affect around one in 4000 people and are the leading cause of blindness in working age adults in several countries. In these typically monogenic conditions, there is progressive degeneration of photoreceptors; however, inner retinal neurons such as bipolar cells and ganglion cells remain largely structurally intact, even in end-stage disease. Therapeutic approaches aiming to stimulate these residual cells, independent of the underlying genetic cause, could potentially restore visual function in patients with advanced vision loss, and benefit many more patients than therapies directed at the specific gene implicated in each disorder. One approach investigated for this purpose is that of optogenetics, a method of neuromodulation that utilises light to activate neurons engineered to ectopically express a light-sensitive protein. Using gene therapy via adeno-associated viral vectors, a range of photosensitive proteins have been expressed in remaining retinal cells in advanced retinal degeneration with in vivo studies demonstrating restoration of visual function. Developing an effective optogenetic strategy requires consideration of multiple factors, including the light-sensitive protein that is used, the vector and method for gene delivery, and the target cell for expression because these in turn may affect the quality of vision that can be restored. Currently, at least four clinical trials are ongoing to investigate optogenetic therapies in patients, with the ultimate aim of reversing visual loss in end-stage disease.
Collapse
Affiliation(s)
- Samantha R De Silva
- Oxford Eye Hospital, Oxford, UK.,UCL Institute of Ophthalmology, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK.,Ophthalmology Department, University of California, San Francisco, CA, USA
| |
Collapse
|
67
|
Barneschi L, Marsili E, Pedraza-González L, Padula D, De Vico L, Kaliakin D, Blanco-González A, Ferré N, Huix-Rotllant M, Filatov M, Olivucci M. On the fluorescence enhancement of arch neuronal optogenetic reporters. Nat Commun 2022; 13:6432. [PMID: 36307417 PMCID: PMC9616920 DOI: 10.1038/s41467-022-33993-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter.
Collapse
Affiliation(s)
- Leonardo Barneschi
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Emanuele Marsili
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.8250.f0000 0000 8700 0572University of Durham, Department of Chemistry, South Road, Durham, DH1 3LE United Kingdom ,grid.5337.20000 0004 1936 7603Present Address: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Laura Pedraza-González
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.5395.a0000 0004 1757 3729Present Address: Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy
| | - Daniele Padula
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Danil Kaliakin
- grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Alejandro Blanco-González
- grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Nicolas Ferré
- grid.462456.70000 0004 4902 8637Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille, Cedex 20 France
| | - Miquel Huix-Rotllant
- grid.462456.70000 0004 4902 8637Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille, Cedex 20 France
| | - Michael Filatov
- grid.258803.40000 0001 0661 1556Department of Chemistry, Kyungpook National University, Daegu, 702-701 South Korea
| | - Massimo Olivucci
- grid.9024.f0000 0004 1757 4641Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy ,grid.253248.a0000 0001 0661 0035Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403 USA ,grid.11843.3f0000 0001 2157 9291University of Strasbourg Institute for Advanced Studies, 5, alleé duGeń eŕ al Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
68
|
Eybposh MH, Curtis VR, Rodríguez-Romaguera J, Pégard NC. Advances in computer-generated holography for targeted neuronal modulation. NEUROPHOTONICS 2022; 9:041409. [PMID: 35719844 PMCID: PMC9201973 DOI: 10.1117/1.nph.9.4.041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 05/08/2023]
Abstract
Genetically encoded calcium indicators and optogenetics have revolutionized neuroscience by enabling the detection and modulation of neural activity with single-cell precision using light. To fully leverage the immense potential of these techniques, advanced optical instruments that can place a light on custom ensembles of neurons with a high level of spatial and temporal precision are required. Modern light sculpting techniques that have the capacity to shape a beam of light are preferred because they can precisely target multiple neurons simultaneously and modulate the activity of large ensembles of individual neurons at rates that match natural neuronal dynamics. The most versatile approach, computer-generated holography (CGH), relies on a computer-controlled light modulator placed in the path of a coherent laser beam to synthesize custom three-dimensional (3D) illumination patterns and illuminate neural ensembles on demand. Here, we review recent progress in the development and implementation of fast and spatiotemporally precise CGH techniques that sculpt light in 3D to optically interrogate neural circuit functions.
Collapse
Affiliation(s)
- M. Hossein Eybposh
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
| | - Vincent R. Curtis
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina, Department of Psychiatry, Chapel Hill, North Carolina, United States
| | - Jose Rodríguez-Romaguera
- University of North Carolina, Department of Psychiatry, Chapel Hill, North Carolina, United States
- University of North Carolina, Neuroscience Center, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Institute for Developmental Disabilities, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Stress Initiative, Chapel Hill, North Carolina, United States
| | - Nicolas C. Pégard
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
- University of North Carolina, Neuroscience Center, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Stress Initiative, Chapel Hill, North Carolina, United States
| |
Collapse
|
69
|
Hari K, Lucas-Osma AM, Metz K, Lin S, Pardell N, Roszko DA, Black S, Minarik A, Singla R, Stephens MJ, Pearce RA, Fouad K, Jones KE, Gorassini MA, Fenrich KK, Li Y, Bennett DJ. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nat Neurosci 2022; 25:1288-1299. [PMID: 36163283 PMCID: PMC10042549 DOI: 10.1038/s41593-022-01162-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Movement and posture depend on sensory feedback that is regulated by specialized GABAergic neurons (GAD2+) that form axo-axonic contacts onto myelinated proprioceptive sensory axons and are thought to be inhibitory. However, we report here that activating GAD2+ neurons directly with optogenetics or indirectly by cutaneous stimulation actually facilitates sensory feedback to motor neurons in rodents and humans. GABAA receptors located at or near nodes of Ranvier of sensory axons cause this facilitation by preventing spike propagation failure at the many axon branch points, which is otherwise common without GABA. In contrast, GABAA receptors are generally lacking from axon terminals and so cannot inhibit transmitter release onto motor neurons, unlike GABAB receptors that cause presynaptic inhibition. GABAergic innervation near nodes and branch points allows individual branches to function autonomously, with GAD2+ neurons regulating which branches conduct, adding a computational layer to the neuronal networks generating movement and likely generalizing to other central nervous system axons.
Collapse
Affiliation(s)
- Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Krista Metz
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Noah Pardell
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David A Roszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anna Minarik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kelvin E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
70
|
Zhang H, Fang H, Liu D, Zhang Y, Adu-Amankwaah J, Yuan J, Tan R, Zhu J. Applications and challenges of rhodopsin-based optogenetics in biomedicine. Front Neurosci 2022; 16:966772. [PMID: 36213746 PMCID: PMC9537737 DOI: 10.3389/fnins.2022.966772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Optogenetics is an emerging bioengineering technology that has been rapidly developed in recent years by cross-integrating optics, genetic engineering, electrophysiology, software control, and other disciplines. Since the first demonstration of the millisecond neuromodulation ability of the channelrhodopsin-2 (ChR2), the application of optogenetic technology in basic life science research has been rapidly progressed, especially in neurobiology, which has driven the development of the discipline. As the optogenetic tool protein, microbial rhodopsins have been continuously explored, modified, and optimized, with many variants becoming available, with structural characteristics and functions that are highly diversified. Their applicability has been broadened, encouraging more researchers and clinicians to utilize optogenetics technology in research. In this review, we summarize the species and variant types of the most important class of tool proteins in optogenetic techniques, the microbial rhodopsins, and review the current applications of optogenetics based on rhodopsin qualitative light in biology and other fields. We also review the challenges facing this technology, to ultimately provide an in-depth technical reference to support the application of optogenetics in translational and clinical research.
Collapse
Affiliation(s)
- Hanci Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Fang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Deqiang Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jinxiang Yuan
- College of Life Sciences, Shandong Normal University, Jinan, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan,
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan,
| | - Jianping Zhu
- College of Life Sciences, Shandong Normal University, Jinan, China
- Jianping Zhu,
| |
Collapse
|
71
|
Cummings KA, Bayshtok S, Dong TN, Kenny PJ, Clem RL. Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron 2022; 110:3036-3052.e5. [PMID: 35944526 PMCID: PMC10009874 DOI: 10.1016/j.neuron.2022.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Neurons activated by learning have been ascribed the unique potential to encode memory, but the functional contribution of discrete cell types remains poorly understood. In particular, it is unclear whether learning engages specific GABAergic interneurons and, if so, whether they differ functionally from interneurons recruited by other experiences. Here, we show that fear conditioning activates a heterogeneous neuronal population in the medial prefrontal cortex (mPFC) that is largely comprised of somatostatin-expressing interneurons (SST-INs). Using intersectional genetic approaches, we demonstrate that fear-learning-activated SST-INs exhibit distinct circuit properties and are selectively reactivated to mediate cue-evoked memory expression. In contrast, an orthogonal population of SST-INs activated by morphine experience exerts opposing control over fear and supports reward-like motivational effects. These results outline an important role for discrete subsets of GABAergic cells in emotional learning and point to an unappreciated capacity for functional specialization among SST-INs.
Collapse
Affiliation(s)
- Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| | - Sabina Bayshtok
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tri N Dong
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
72
|
Tan N, Shi J, Xu L, Zheng Y, Wang X, Lai N, Fang Z, Chen J, Wang Y, Chen Z. Lateral Hypothalamus Calcium/Calmodulin-Dependent Protein Kinase II α Neurons Encode Novelty-Seeking Signals to Promote Predatory Eating. Research (Wash D C) 2022; 2022:9802382. [PMID: 36061821 PMCID: PMC9394055 DOI: 10.34133/2022/9802382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Predatory hunting is an innate appetite-driven and evolutionarily conserved behavior essential for animal survival, integrating sequential behaviors including searching, pursuit, attack, retrieval, and ultimately consumption. Nevertheless, neural circuits underlying hunting behavior with different features remain largely unexplored. Here, we deciphered a novel function of lateral hypothalamus (LH) calcium/calmodulin-dependent protein kinase II α (CaMKIIα+) neurons in hunting behavior and uncovered upstream/downstream circuit basis. LH CaMKIIα+ neurons bidirectionally modulate novelty-seeking behavior, predatory attack, and eating in hunting behavior. LH CaMKIIα+ neurons integrate hunting-related novelty-seeking information from the medial preoptic area (MPOA) and project to the ventral periaqueductal gray (vPAG) to promote predatory eating. Our results demonstrate that LH CaMKIIα+ neurons are the key hub that integrate MPOA-conveyed novelty-seeking signals and encode predatory eating in hunting behavior, which enriched the neuronal substrate of hunting behavior.
Collapse
Affiliation(s)
- Na Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Shi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingyu Xu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhuowen Fang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jialu Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
73
|
Takahashi A, Durand-de Cuttoli R, Flanigan ME, Hasegawa E, Tsunematsu T, Aleyasin H, Cherasse Y, Miya K, Okada T, Keino-Masu K, Mitsui K, Li L, Patel V, Blitzer RD, Lazarus M, Tanaka KF, Yamanaka A, Sakurai T, Ogawa S, Russo SJ. Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice. Nat Commun 2022; 13:4039. [PMID: 35864121 PMCID: PMC9304121 DOI: 10.1038/s41467-022-31728-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The dorsal raphe nucleus (DRN) is known to control aggressive behavior in mice. Here, we found that glutamatergic projections from the lateral habenula (LHb) to the DRN were activated in male mice that experienced pre-exposure to a rival male mouse ("social instigation") resulting in heightened intermale aggression. Both chemogenetic and optogenetic suppression of the LHb-DRN projection blocked heightened aggression after social instigation in male mice. In contrast, inhibition of this pathway did not affect basal levels of aggressive behavior, suggesting that the activity of the LHb-DRN projection is not necessary for the expression of species-typical aggressive behavior, but required for the increase of aggressive behavior resulting from social instigation. Anatomical analysis showed that LHb neurons synapse on non-serotonergic DRN neurons that project to the ventral tegmental area (VTA), and optogenetic activation of the DRN-VTA projection increased aggressive behaviors. Our results demonstrate that the LHb glutamatergic inputs to the DRN promote aggressive arousal induced by social instigation, which contributes to aggressive behavior by activating VTA-projecting non-serotonergic DRN neurons as one of its potential targets.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meghan E Flanigan
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, 27599, NC, USA
| | - Emi Hasegawa
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomomi Tsunematsu
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Hossein Aleyasin
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ken Miya
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuya Okada
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuko Keino-Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Long Li
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vishwendra Patel
- Department of Pharmacological Sciences and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Sakurai
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Scott J Russo
- Nash Family Department of Neuroscience and Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
74
|
Abstract
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.
Collapse
|
75
|
Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022; 5:687. [PMID: 35810216 PMCID: PMC9271052 DOI: 10.1038/s42003-022-03636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision. Aion is an anion-conducting, bistable channelrhodopsin that enables long-term silencing of neuronal networks, as demonstrated in organotypic hippocampal cultures and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Neena Dhiman
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
76
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
77
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
78
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
79
|
Barykina NV, Karasev MM, Verkhusha VV, Shcherbakova DM. Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Prog Neurobiol 2022; 216:102290. [PMID: 35654210 DOI: 10.1016/j.pneurobio.2022.102290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
The mapping of neural circuits activated during behavior down to individual neurons is crucial for decoding how the brain processes information. Technologies allowing activity-dependent labeling of neurons during user-defined restricted time windows are rapidly developing. Precise marking of the time window with light, in addition to chemicals, is now possible. In these technologies, genetically encoded molecules integrate molecular events resulting from neuronal activity with light/drug-dependent events. The outputs are either changes in fluorescence or activation of gene expression. Molecular reporters allow labeling of activated neurons for visualization and cell-type identification. The transcriptional readout also allows further control of activated neuronal populations using optogenetic tools as reporters. Here we review the design of these technologies and discuss their demonstrated applications to reveal previously unknown connections in the mammalian brain. We also consider the strengths and weaknesses of the current approaches and provide a perspective for the future.
Collapse
Affiliation(s)
- Natalia V Barykina
- P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V Verkhusha
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Daria M Shcherbakova
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
80
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
81
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
82
|
Hoskin CEG, Schild VR, Vinals J, Bayley H. Parallel transmission in a synthetic nerve. Nat Chem 2022; 14:650-657. [PMID: 35449216 DOI: 10.1038/s41557-022-00916-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/21/2022] [Indexed: 01/19/2023]
Abstract
Bioelectronic devices that are tetherless and soft are promising developments in medicine, robotics and chemical computing. Here, we describe bioinspired synthetic neurons, composed entirely of soft, flexible biomaterials, capable of rapid electrochemical signal transmission over centimetre distances. Like natural cells, our synthetic neurons release neurotransmitters from their terminals, which initiate downstream reactions. The components of the neurons are nanolitre aqueous droplets and hydrogel fibres, connected through lipid bilayers. Transmission is powered at these interfaces by light-driven proton pumps and mediated by ion-conducting protein pores. By bundling multiple neurons into a synthetic nerve, we have shown that distinct signals can propagate simultaneously along parallel axons, thereby transmitting spatiotemporal information. Synthetic nerves might play roles in next-generation implants, soft machines and computing devices.
Collapse
Affiliation(s)
- Charlotte E G Hoskin
- Chemistry Department, Oxford University, Oxford, UK.,Doctoral Training Centre, Oxford University, Oxford, UK
| | | | - Javier Vinals
- Biochemistry Department, Oxford University, Oxford, UK
| | - Hagan Bayley
- Chemistry Department, Oxford University, Oxford, UK.
| |
Collapse
|
83
|
Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: methodology and future applications. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOptogenetics is an emerging biological approach with the unique capability of specific targeting due to the precise light control with high spatial and temporal resolution. It uses selected light wavelengths to control and modulate the biological functions of cells, tissues, and organ levels. Optogenetics has been instrumental in different biomedical applications, including neuroscience, diabetes, and mitochondria, based on distinctive optical biomedical effects with light modulation. Nowadays, optogenetics in cardiology is rapidly evolving for the understanding and treatment of cardiovascular diseases. Several in vitro and in vivo research for cardiac optogenetics demonstrated visible progress. The optogenetics technique can be applied to address critical cardiovascular problems such as heart failure and arrhythmia. To this end, this paper reviews cardiac electrophysiology and the technical progress about experimental and clinical cardiac optogenetics and provides the background and evolution of cardiac optogenetics. We reviewed the literature to demonstrate the servo type, transfection efficiency, signal recording, and heart disease targets in optogenetic applications. Such literature review would hopefully expedite the progress of optogenetics in cardiology and further expect to translate into the clinical terminal in the future.
Collapse
|
84
|
Holmes-Martin K, Zhu M, Xiao S, Arab Hassani F. Advances in Assistive Electronic Device Solutions for Urology. MICROMACHINES 2022; 13:mi13040551. [PMID: 35457855 PMCID: PMC9028141 DOI: 10.3390/mi13040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.
Collapse
|
85
|
Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions. Neuron 2022; 110:857-873.e9. [PMID: 34921781 PMCID: PMC8897232 DOI: 10.1016/j.neuron.2021.11.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/08/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022]
Abstract
Breathing can be heavily influenced by pain or internal emotional states, but the neural circuitry underlying this tight coordination is unknown. Here we report that Oprm1 (μ-opioid receptor)-expressing neurons in the lateral parabrachial nucleus (PBL) are crucial for coordinating breathing with affective pain in mice. Individual PBLOprm1 neuronal activity synchronizes with breathing rhythm and responds to noxious stimuli. Manipulating PBLOprm1 activity directly changes breathing rate, affective pain perception, and anxiety. Furthermore, PBLOprm1 neurons constitute two distinct subpopulations in a "core-shell" configuration that divergently projects to the forebrain and hindbrain. Through non-overlapping projections to the central amygdala and pre-Bötzinger complex, these two subpopulations differentially regulate breathing, affective pain, and negative emotions. Moreover, these subsets form recurrent excitatory networks through reciprocal glutamatergic projections. Together, our data define the divergent parabrachial opioidergic circuits as a common neural substrate that coordinates breathing with various sensations and behaviors such as pain and emotional processing.
Collapse
|
86
|
Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States. Cold Spring Harb Perspect Med 2022; 12:a039792. [PMID: 32513671 PMCID: PMC7799172 DOI: 10.1101/cshperspect.a039792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Motivational states are regulated by complex networks across brain regions that are composed of genetically and functionally distinct neuronal populations. Disruption within these neural circuits leads to aberrant motivational states and are thought to be the root cause of psychiatric disorders related to reward processing and addiction. Critical technological advances in the field have revolutionized the study of neural systems by allowing the use of optical strategies to precisely control and visualize neural activity within genetically identified neural populations in the brain. This review will provide a brief introduction into the history of how technological advances in single-cell strategies have been applied to elucidate the neural circuits that underlie aberrant motivational states that often lead to dysfunction in reward processing and addiction.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Vijay M K Namboodiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| | - Marcus L Basiri
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Alice M Stamatakis
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| |
Collapse
|
87
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
88
|
Nakao S, Kojima K, Sudo Y. Phototriggered Apoptotic Cell Death (PTA) Using the Light-Driven Outward Proton Pump Rhodopsin Archaerhodopsin-3. J Am Chem Soc 2022; 144:3771-3775. [PMID: 35175032 DOI: 10.1021/jacs.1c12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis is a type of programmed cell death that commonly occurs in multicellular organisms including humans and that is essential to eliminate unnecessary cells to keep organisms healthy. Indeed, inappropriate apoptosis leads to various diseases such as cancer and autoimmune disease. Here, we developed an optical method to regulate apoptotic cell death by controlling the intracellular pH with outward or inward proton pump rhodopsins, Archaerhodopsin-3 (AR3) or Rubricoccus marinas xenorhodopsin (RmXeR), respectively. The alkalization-induced shrinking of human HeLa cells cultured at pH 9.0 was significantly accelerated or decelerated by light-activated AR3 or RmXeR, respectively, implying the contribution of intracellular alkalization to the cell death. The light-activated AR3 induced cell shrinking at a physiologically neutral pH 7.4 and biochemical analysis revealed that the intracellular alkalization caused by AR3 triggered the mitochondrial apoptotic signaling pathway, which resulted in cell death accompanied by morphological changes. Phototriggered apoptosis (PTA) was also observed for other human cell lines, SH-SY5Y and A549 cells, implying its general applicability. We then used the PTA method with the nematode Caenorhabditis elegans as a model for living animals. Irradiation of transgenic worms expressing AR3 in chemosensing amphid sensory neurons significantly decreased their chemotaxis responses, which suggests that AR3 induced the cell death of amphid sensory neurons and the depression of chemotaxis responses. Thus, the PTA method has a high applicability both in vivo and in vitro, which suggests its potential as an optogenetic tool to selectively eliminate target cells with a high spatiotemporal resolution.
Collapse
Affiliation(s)
- Shin Nakao
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Kojima
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
89
|
Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nat Commun 2022; 13:839. [PMID: 35149715 PMCID: PMC8837785 DOI: 10.1038/s41467-022-28539-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Optogenetic methods provide efficient cell-specific modulations, and the ability of simultaneous neural activation and inhibition in the same brain region of freely moving animals is highly desirable. Here we report bidirectional neuronal activity manipulation accomplished by a wireless, dual-color optogenetic probe in synergy with the co-expression of two spectrally distinct opsins (ChrimsonR and stGtACR2) in a rodent model. The flexible probe comprises vertically assembled, thin-film microscale light-emitting diodes with a lateral dimension of 125 × 180 µm2, showing colocalized red and blue emissions and enabling chronic in vivo operations with desirable biocompatibilities. Red or blue irradiations deterministically evoke or silence neurons co-expressing the two opsins. The probe interferes with dopaminergic neurons in the ventral tegmental area of mice, increasing or decreasing dopamine levels. Such bidirectional regulations further generate rewarding and aversive behaviors and interrogate social interactions among multiple mice. These technologies create numerous opportunities and implications for brain research.
Collapse
|
90
|
Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int J Mol Sci 2022; 23:ijms23031800. [PMID: 35163726 PMCID: PMC8836693 DOI: 10.3390/ijms23031800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Collapse
|
91
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
92
|
Tsuneishi T, Takahashi M, Tsujimura M, Kojima K, Ishikita H, Takeuchi Y, Sudo Y. Exploring the Retinal Binding Cavity of Archaerhodopsin-3 by Replacing the Retinal Chromophore With a Dimethyl Phenylated Derivative. Front Mol Biosci 2022; 8:794948. [PMID: 34988122 PMCID: PMC8721008 DOI: 10.3389/fmolb.2021.794948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Rhodopsins act as photoreceptors with their chromophore retinal (vitamin-A aldehyde) and they regulate light-dependent biological functions. Archaerhodopsin-3 (AR3) is an outward proton pump that has been widely utilized as a tool for optogenetics, a method for controlling cellular activity by light. To characterize the retinal binding cavity of AR3, we synthesized a dimethyl phenylated retinal derivative, (2E,4E,6E,8E)-9-(2,6-Dimethylphenyl)-3,7-dimethylnona-2,4,6,8-tetraenal (DMP-retinal). QM/MM calculations suggested that DMP-retinal can be incorporated into the opsin of AR3 (archaeopsin-3, AO3). Thus, we introduced DMP-retinal into AO3 to obtain the non-natural holoprotein (AO3-DMP) and compared some molecular properties with those of AO3 with the natural A1-retinal (AO3-A1) or AR3. Light-induced pH change measurements revealed that AO3-DMP maintained slow outward proton pumping. Noteworthy, AO3-DMP had several significant changes in its molecular properties compared with AO3-A1 as follows; 1) spectroscopic measurements revealed that the absorption maximum was shifted from 556 to 508 nm and QM/MM calculations showed that the blue-shift was due to the significant increase in the HOMO-LUMO energy gap of the chromophore with the contribution of some residues around the chromophore, 2) time-resolved spectroscopic measurements revealed the photocycling rate was significantly decreased, and 3) kinetical spectroscopic measurements revealed the sensitivity of the chromophore binding Schiff base to attack by hydroxylamine was significantly increased. The QM/MM calculations show that a cavity space is present at the aromatic ring moiety in the AO3-DMP structure whereas it is absent at the corresponding β-ionone ring moiety in the AO3-A1 structure. We discuss these alterations of the difference in interaction between the natural A1-retinal and the DMP-retinal with binding cavity residues.
Collapse
Affiliation(s)
- Taichi Tsuneishi
- Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masataka Takahashi
- Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Keiichi Kojima
- Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuo Takeuchi
- Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Sudo
- Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
93
|
Trojanowski NF, Fang-Yen C. Optogenetic Perturbation of Individual C. elegans Pharyngeal Neurons While Monitoring Feeding Behavior. Methods Mol Biol 2022; 2468:117-131. [PMID: 35320563 DOI: 10.1007/978-1-0716-2181-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optogenetic approaches have proven to be powerful for examining the roles of specific neurons in generating behaviors, especially in systems where electrophysiological manipulation is not possible. Here we describe a method for optogenetically manipulating single pharyngeal neurons in intact C. elegans while monitoring pharyngeal behavior. This approach provides bidirectional and dynamic control of pharyngeal neural activity while quantitatively assessing behavior and has allowed us to test hypotheses about the roles of individual pharyngeal neurons in feeding behavior.
Collapse
Affiliation(s)
- Nicholas F Trojanowski
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
94
|
Falgairolle M, O'Donovan MJ. Motoneuronal Regulation of Central Pattern Generator and Network Function. ADVANCES IN NEUROBIOLOGY 2022; 28:259-280. [PMID: 36066829 DOI: 10.1007/978-3-031-07167-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter reviews recent work showing that vertebrate motoneurons can trigger spontaneous rhythmic activity in the developing spinal cord and can modulate the function of several different central pattern generators later in development. In both the embryonic chick and the fetal mouse spinal cords, antidromic activation of motoneurons can trigger bouts of rhythmic activity. In the neonatal mouse, optogenetic manipulation of motoneuron firing can modulate the frequency of fictive locomotion activated by a drug cocktail. In adult animals, motoneurons have been shown to regulate swimming in the zebrafish, and vocalization in fish and frogs. We discuss the significance of these findings and the degree to which motoneurons may be considered a part of these central pattern generators.
Collapse
|
95
|
Abdelaal MS, Midorikawa M, Suzuki T, Kobayashi K, Takata N, Miyata M, Mimura M, Tanaka KF. OUP accepted manuscript. Brain Commun 2022; 4:fcac010. [PMID: 35243344 PMCID: PMC8887905 DOI: 10.1093/braincomms/fcac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spike-and-wave discharges and an accompanying loss of consciousness are hallmarks of absence seizure, which is a childhood generalized epilepsy disorder. In absence seizure, dysfunction of the cortico-thalamo-cortico circuitry is thought to engage in abnormal cortical rhythms. Previous studies demonstrated that the thalamic reticular nucleus has a critical role in the formation of normal cortical rhythms; however, whether thalamic reticular nucleus dysfunction leads directly to abnormal rhythms, such as epilepsy, is largely unknown. We found that expressing the inhibitory opsin, archaerhodopsin, including in the thalamic reticular nucleus, caused abnormal cortical rhythms in Pvalb-tetracycline transactivator::tetO-ArchT (PV-ArchT) double transgenic mice. We validated the PV-ArchT line as a new mouse model of absence seizure through physiological and pharmacological analyses, as well as through examining their behavioural features. We then discovered that archaerhodopsin expression exclusively in thalamic reticular nucleus parvalbumin-positive neurons was sufficient to induce cortical spike-and-wave discharges using adeno-associated virus-mediated thalamic reticular nucleus targeting. Furthermore, we found that archaerhodopsin expression impaired rebound burst firing and T-current in thalamic reticular nucleus parvalbumin-positive cells by slice physiology. Although T-current in the thalamic reticular nucleus was impaired, the T-current blocker ethosuximide still had a therapeutic effect in PV-ArchT mice, suggesting a gain of function of T-type calcium channels in this absence seizure model. However, we did not find any over- or misexpression of T-type calcium channel genes in the thalamus or the cortex. Thus, we demonstrated that thalamic reticular nucleus dysfunction led to an absence seizure-like phenotype in mice. In a final set of experiments, we showed that the archaerhodopsin-mediated absence seizure-like phenotype disappeared after the removal of archaerhodopsin by using a time-controllable transgenic system. These data may provide a hint as to why many absence seizures naturally regress.
Collapse
Affiliation(s)
- Manal S. Abdelaal
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuharu Midorikawa
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Toru Suzuki
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence to: Kenji F. Tanaka, MD, PhD Division of Brain Sciences, Institute for Advanced Medical Research Keio University School of Medicine 35 Shinanomachi Shinjuku-ku Tokyo 160-8582, Japan E-mail:
| |
Collapse
|
96
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
97
|
Axford D, Judge PJ, Bada Juarez JF, Kwan TOC, Birch J, Vinals J, Watts A, Moraes I. Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts. Acta Crystallogr D Struct Biol 2022; 78:52-58. [PMID: 34981761 PMCID: PMC8725165 DOI: 10.1107/s2059798321011220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Room-temperature diffraction methods are highly desirable for dynamic studies of biological macromolecules, since they allow high-resolution structural data to be collected as proteins undergo conformational changes. For crystals grown in lipidic cubic phase (LCP), an extruder is commonly used to pass a stream of microcrystals through the X-ray beam; however, the sample quantities required for this method may be difficult to produce for many membrane proteins. A more sample-efficient environment was created using two layers of low X-ray transmittance polymer films to mount crystals of the archaerhodopsin-3 (AR3) photoreceptor and room-temperature diffraction data were acquired. By using transparent and opaque polymer films, two structures, one corresponding to the desensitized, dark-adapted (DA) state and the other to the ground or light-adapted (LA) state, were solved to better than 1.9 Å resolution. All of the key structural features of AR3 were resolved, including the retinal chromophore, which is present as the 13-cis isomer in the DA state and as the all-trans isomer in the LA state. The film-sandwich sample environment enables diffraction data to be recorded at room temperature in both illuminated and dark conditions, which more closely approximate those in vivo. This simple approach is applicable to a wide range of membrane proteins crystallized in LCP and light-sensitive samples in general at synchrotron and laboratory X-ray sources.
Collapse
Affiliation(s)
- Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Peter J. Judge
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Juan F. Bada Juarez
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Tristan O. C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, London, United Kingdom
| | - James Birch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Javier Vinals
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington, London, United Kingdom
| |
Collapse
|
98
|
Bergs A, Henss T, Glock C, Nagpal J, Gottschalk A. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods Mol Biol 2022; 2468:89-115. [PMID: 35320562 DOI: 10.1007/978-1-0716-2181-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Thilo Henss
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
99
|
Dokshokova L, Pianca N, Zaglia T, Mongillo M. Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace. Methods Mol Biol 2022; 2483:205-229. [PMID: 35286678 DOI: 10.1007/978-1-0716-2245-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well appreciated that, differently from skeletal muscles, the heart contracts independently from neurogenic inputs. However, the speed and force of heartbeats are finely modulated during stresses, emotions, and daily activities, by the autonomic neurons (both parasympathetic and sympathetic) which highly innervate the myocardium. Despite this aspect of cardiac physiology has been known for long, research has only recently shed light on the biophysical mechanisms underlying the meticulous adaptation of heart activity to the needs of the organism. A conceptual advancement in this regard has come from the use of optogenetics, a revolutionary methodology which allows to control the activity of a given excitable cell type, with high specificity, temporal and spatial resolution, within intact tissues and organisms. The method, widely affirmed in the field of neuroscience, has more recently been exploited also in research on heart physiology and pathology, including the study of the mechanisms regulating heart rhythm. The last point is the object of this book chapter which, starting from the description of the physiology of heart rhythm automaticity and the neurogenic modulation of heart rate, makes an excursus on the theoretical basis of such biotechnology (with its advantages and limitations), and presents a series of examples in cardiac and neuro-cardiac optogenetics.
Collapse
Affiliation(s)
- Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Pianca
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
100
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|