51
|
Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. Int J Mol Sci 2022; 23:ijms23116087. [PMID: 35682766 PMCID: PMC9181336 DOI: 10.3390/ijms23116087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (~7% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH.
Collapse
|
52
|
Ren D, Sun Y, Li D, Wu H, Jin X. USP22-mediated deubiquitination of PTEN inhibits pancreatic cancer progression by inducing p21 expression. Mol Oncol 2022; 16:1200-1217. [PMID: 34743406 PMCID: PMC8895442 DOI: 10.1002/1878-0261.13137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a dual lipid and protein phosphatase. Multiple mechanisms contributing to the regulation of PTEN levels have been identified thus far, including post-translational modifications, epigenetic mechanisms, and transcriptional mechanisms. In the present study, we identified ubiquitin-specific peptidase 22 (USP22) as a novel deubiquitination-modifying enzyme of PTEN. Furthermore, by inducing deubiquitination and inhibiting the degradation of PTEN, USP22 could induce cyclin-dependent kinase inhibitor 1A (CDKN1A, also symboled as p21) expression in pancreatic cancer. Besides, MDM2 proto-oncogene (MDM2) inhibitor enhanced the antipancreatic cancer effects of USP22 overexpression. In addition to its regulation of MDM2-tumor protein p53 (p53) signaling, we found that PTEN could induce p21 expression by interacting with ankyrin repeat and KH domain containing 1 (ANKHD1) and inhibiting ANKHD1 binding to the p21 promoter. Taken together, our results indicate that ANKHD1 and MDM2 might be novel therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Sun
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Li
- Cardiovascular Medicine DepartmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heshui Wu
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
53
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|
54
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:genes13020362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
55
|
Niu Y, Ferreira Azevedo CA, Li X, Kamali E, Haagen Nielsen O, Storgaard Sørensen C, Frödin M. Multiparametric and accurate functional analysis of genetic sequence variants using CRISPR-Select. Nat Genet 2022; 54:1983-1993. [PMID: 36471068 PMCID: PMC9729100 DOI: 10.1038/s41588-022-01224-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
Determining the functional role of thousands of genetic sequence variants (mutations) associated with genetic diseases is a major challenge. Here we present clustered regularly interspaced short palindromic repeat (CRISPR)-SelectTIME, CRISPR-SelectSPACE and CRISPR-SelectSTATE, a set of flexible knock-in assays that introduce a genetic variant in a cell population and track its absolute frequencies relative to an internal, neutral control mutation as a function of time, space or a cell state measurable by flow cytometry. Phenotypically, CRISPR-Select can thereby determine, for example, pathogenicity, drug responsiveness/resistance or in vivo tumor promotion by a specific variant. Mechanistically, CRISPR-Select can dissect how the variant elicits the phenotype by causally linking the variant to motility/invasiveness or any cell state or biochemical process with a flow cytometry marker. The method is applicable to organoids, nontransformed or cancer cell lines. It is accurate, quantitative, fast and simple and works in single-well or 96-well higher throughput format. CRISPR-Select provides a versatile functional variant assay for research, diagnostics and drug development for genetic disorders.
Collapse
Affiliation(s)
- Yiyuan Niu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catarina A. Ferreira Azevedo
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Li
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elahe Kamali
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- grid.5254.60000 0001 0674 042XDepartment of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
56
|
Sterrenberg JN, Folkerts ML, Rangel V, Lee SE, Pannunzio NR. Diversity upon diversity: linking DNA double-strand break repair to blood cancer health disparities. Trends Cancer 2022; 8:328-343. [PMID: 35094960 PMCID: PMC9248772 DOI: 10.1016/j.trecan.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Chromosomal translocations arising from aberrant repair of multiple DNA double-strand breaks (DSBs) are a defining characteristic of many cancers. DSBs are an essential part of physiological processes in antibody-producing B cells. The B cell environment is poised to generate genome instability leading to translocations relevant to the pathology of blood cancers. These are a diverse set of cancers, but limited data from under-represented groups have pointed to health disparities associated with each. We focus on the DSBs that occur in developing B cells and propose the most likely mechanism behind the formation of translocations. We also highlight specific cancers in which these rearrangements occur and address the growing concern of health disparities associated with them.
Collapse
|
57
|
Park S, Supek F, Lehner B. Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers. Nat Commun 2021; 12:7051. [PMID: 34862370 PMCID: PMC8642467 DOI: 10.1038/s41467-021-27242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
The classic two-hit model posits that both alleles of a tumor suppressor gene (TSG) must be inactivated to cause cancer. In contrast, for some oncogenes and haploinsufficient TSGs, a single genetic alteration can suffice to increase tumor fitness. Here, by quantifying the interactions between mutations and copy number alterations (CNAs) across 10,000 tumors, we show that many cancer genes actually switch between acting as one-hit or two-hit drivers. Third order genetic interactions identify the causes of some of these switches in dominance and dosage sensitivity as mutations in other genes in the same biological pathway. The correct genetic model for a gene thus depends on the other mutations in a genome, with a second hit in the same gene or an alteration in a different gene in the same pathway sometimes representing alternative evolutionary paths to cancer.
Collapse
Affiliation(s)
- Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Ben Lehner
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
58
|
Abstract
Few ideas in cancer genetics have been as influential as the “two-hit” theory of tumor suppressors. This idea was introduced in 1971 by Al Knudson in a paper in the Proceedings of the National Academy of Science and forms the basis for our current understanding of the role of mutations in cancer. In this theoretical discussion proposing a genetic basis for retinoblastoma, a childhood cancer of the retina, Knudson posited that these tumors arise from two inactivating mutations, targeting both alleles of a putative tumor suppressor gene. While this work built on earlier proposals that cancers are the result of mutations in more than one gene, it was the first to propose a plausible mechanism by which single genes that are affected by germ-line mutations in heritable cancers could also cause spontaneous, nonheritable tumors when mutated in somatic tissues. Remarkably, Knudson described the existence and properties of a retinoblastoma tumor suppressor gene a full 15 years before the gene was cloned.
Collapse
|
59
|
Ntzifa A, Londra D, Rampias T, Kotsakis A, Georgoulias V, Lianidou E. DNA Methylation Analysis in Plasma Cell-Free DNA and Paired CTCs of NSCLC Patients before and after Osimertinib Treatment. Cancers (Basel) 2021; 13:cancers13235974. [PMID: 34885084 PMCID: PMC8656722 DOI: 10.3390/cancers13235974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Osimertinib has been an effective second-line treatment in EGFR mutant NSCLC patients; however, resistance inevitably occurs. DNA methylation has been previously implicated in NSCLC progression and often in therapy resistance, however its distinct role in osimertinib resistance is not elucidated as yet. In the present study, we directly compared DNA methylation of nine selected genes (RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11, RARβ, SHISA3, and FOXA1) in plasma-cfDNA and paired CTCs of NSCLC patients who were longitudinally monitored during osimertinib treatment. Peripheral blood (PB) from 42 NSCLC patients was obtained at two time points: (a) baseline: before treatment with osimertinib and (b) at progression of disease (PD). DNA methylation of the selected genes was detected in plasma-cfDNA (n = 80) and in paired CTCs (n = 74). Direct comparison of DNA methylation of six genes between plasma-cfDNA and paired CTC samples (n = 70) revealed a low concordance, indicating that CTCs and cfDNA give complementary information. DNA methylation analysis of plasma-cfDNA and CTCs indicated that when at least one of these genes was methylated there was a statistically significant increase at PD compared to baseline (p = 0.031). For the first time, DNA methylation analysis in plasma-cfDNA and paired CTCs of NSCLC patients during osimertinib therapy indicated that DNA methylation of these genes could be a possible resistance mechanism.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), 11471 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
- Correspondence: ; Tel.: +30-210-727-4311
| |
Collapse
|
60
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
61
|
Garcia-Rendueles AR, Chenlo M, Oroz-Gonjar F, Solomou A, Mistry A, Barry S, Gaston-Massuet C, Garcia-Lavandeira M, Perez-Romero S, Suarez-Fariña M, Pradilla-Dieste A, Dieguez C, Mehlen P, Korbonits M, Alvarez CV. RET signalling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas. Oncogene 2021; 40:6354-6368. [PMID: 34588620 PMCID: PMC8585666 DOI: 10.1038/s41388-021-02009-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
It is unclear how loss-of-function germline mutations in the widely-expressed co-chaperone AIP, result in young-onset growth hormone secreting pituitary tumours. The RET receptor, uniquely co-expressed in somatotrophs with PIT1, induces apoptosis when unliganded, while RET supports cell survival when it is bound to its ligand. We demonstrate that at the plasma membrane, AIP is required to form a complex with monomeric-intracellular-RET, caspase-3 and PKCδ resulting in PIT1/CDKN2A-ARF/p53-apoptosis pathway activation. AIP-deficiency blocks RET/caspase-3/PKCδ activation preventing PIT1 accumulation and apoptosis. The presence or lack of the inhibitory effect on RET-induced apoptosis separated pathogenic AIP variants from non-pathogenic ones. We used virogenomics in neonatal rats to demonstrate the effect of mutant AIP protein on the RET apoptotic pathway in vivo. In adult male rats altered AIP induces elevated IGF-1 and gigantism, with pituitary hyperplasia through blocking the RET-apoptotic pathway. In females, pituitary hyperplasia is induced but IGF-1 rise and gigantism are blunted by puberty. Somatotroph adenomas from pituitary-specific Aip-knockout mice overexpress the RET-ligand GDNF, therefore, upregulating the survival pathway. Somatotroph adenomas from patients with or without AIP mutation abundantly express GDNF, but AIP-mutated tissues have less CDKN2A-ARF expression. Our findings explain the tissue-specific mechanism of AIP-induced somatotrophinomas and provide a previously unknown tumorigenic mechanism, opening treatment avenues for AIP-related tumours.
Collapse
Affiliation(s)
- Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Fernando Oroz-Gonjar
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Antonia Solomou
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anisha Mistry
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alberto Pradilla-Dieste
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Carlos Dieguez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Patrick Mehlen
- Patrick Mehlen, Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
62
|
Cukierman E. A Reflection on How Carcinoma-Associated Fibroblasts Were Recognized as Active Participants of Epithelial Tumorigenesis. Cancer Res 2021; 81:4668-4670. [PMID: 34526348 DOI: 10.1158/0008-5472.can-21-2553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Today's view of cancer as a systemic disease was facilitated by studies accentuating the local as well as the systemic role that non-tumorigenic cells, such as carcinoma-associated fibroblasts, play in cancer onset, development, and progression. The study highlighted in this Cancer Research Landmark was instrumental for supporting the idea that cancer is a full-body disease that depends on reciprocal interactions between cancer cells and the tumor microenvironment. Fibroblasts are mesenchymal cells of the connective tissue and are responsible for maintaining tissue homeostasis. Importantly, contractile myofibroblastic activation and immunoregulatory fibroblastic nemosis (the process of mesenchymal cell activation, followed by death, associated with release of proinflammatory molecules) constitute two functional aspects of fibroblasts that are essential for organogenesis as well as for modulating wound healing. Yet, in epithelial cancers, fibroblastic cell functions are chronically misregulated. The study by Olumi and colleagues published in Cancer Research in 1999 exemplifies how normal fibroblasts play a tumor-suppressive role and how modulating fibroblastic activity provides carcinoma-associated fibroblasts with tumor-promoting functions, similar to the needed "second hit" in a tumor suppressor gene. The emphasis on tumor/fibroblast interactions has provided a new framework for thinking about tumorigenesis as well as new targets for therapeutic intervention.See related article by Olumi and colleagues, Cancer Res 1999;59:5002-11.
Collapse
Affiliation(s)
- Edna Cukierman
- Cancer Signaling and Epigenetics, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
63
|
Giunta S. Decoding human cancer with whole genome sequencing: a review of PCAWG Project studies published in February 2020. Cancer Metastasis Rev 2021; 40:909-924. [PMID: 34097189 PMCID: PMC8180541 DOI: 10.1007/s10555-021-09969-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Cancer is underlined by genetic changes. In an unprecedented international effort, the Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) sequenced the tumors of over two thousand five hundred patients across 38 different cancer types, as well as the corresponding healthy tissue, with the aim of identifying genome-wide mutations exclusively found in cancer and uncovering new genetic changes that drive tumor formation. What set this project apart from earlier efforts is the use of whole genome sequencing (WGS) that enabled to explore alterations beyond the coding DNA, into cancer's non-coding genome. WGS of the entire cohort allowed to tease apart driving mutations that initiate and support carcinogenesis from passenger mutations that do not play an overt role in the disease. At least one causative mutation was found in 95% of all cancers, with many tumors showing an average of 5 driver mutations. The PCAWG Project also assessed the transcriptional output altered in cancer and rebuilt the evolutionary history of each tumor showing that initial driver mutations can occur years if not decades prior to a diagnosis. Here, I provide a concise review of the Pan-Cancer Project papers published on February 2020, along with key computational tools and the digital framework generated as part of the project. This represents an historic effort by hundreds of international collaborators, which provides a comprehensive understanding of cancer genetics, with publicly available data and resources representing a treasure trove of information to advance cancer research for years to come.
Collapse
Affiliation(s)
- Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy.
- The Rockefeller University, 1230 York Avenue, New York, NY, USA.
| |
Collapse
|
64
|
Castiaux J, Vandernoot I, Dallemagne J, Bruneau M, Delaunoy M, Peyrassol X, Heimann P, De Wilde V, Wolfromm A. Case Report of an Unusual Tumor in an Adult With a TP53 Germline Mutation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:e645-e648. [PMID: 34049842 DOI: 10.1016/j.clml.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Julie Castiaux
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - Isabelle Vandernoot
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Dallemagne
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Bruneau
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Mélanie Delaunoy
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Peyrassol
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Heimann
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie De Wilde
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alice Wolfromm
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
65
|
Ibrahim S, Lan C, Chabot C, Mitsa G, Buchanan M, Aguilar-Mahecha A, Elchebly M, Poetz O, Spatz A, Basik M, Batist G, Zahedi RP, Borchers CH. Precise Quantitation of PTEN by Immuno-MRM: A Tool To Resolve the Breast Cancer Biomarker Controversy. Anal Chem 2021; 93:10816-10824. [PMID: 34324311 DOI: 10.1021/acs.analchem.1c00975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor suppressor PTEN is the main negative regulator of PI3K/AKT/mTOR signaling and is commonly found downregulated in breast cancer (BC). Conflicting data from conventional immunoassays such as immunohistochemistry (IHC) has sparked controversy about PTEN's role as a prognostic and predictive biomarker in BC, which can be largely attributed to the lack of specificity, sensitivity, and interlaboratory standardization. Here, we present a fully standardized, highly sensitive, robust microflow immuno-MRM (iMRM) assay that enables precise quantitation of PTEN concentrations in cells and fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissues, down to 0.1 fmol/10 μg of extracted protein, with high interday and intraday precision (CV 6.3%). PTEN protein levels in BC PDX samples that were determined by iMRM correlate well with semiquantitative IHC and WB data. iMRM, however, allowed the precise quantitation of PTEN-even in samples that were deemed to be PTEN negative by IHC or western blot (WB)-while requiring substantially less tumor tissue than WB. This is particularly relevant because the extent of PTEN downregulation in tumors has been shown to correlate with severity. Our standardized and robust workflow includes an 11 min microflow LC-MRM analysis on a triple-quadrupole MS and thus provides a much needed tool for the study of PTEN as a potential biomarker for BC.
Collapse
Affiliation(s)
- Sahar Ibrahim
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Clinical Pathology Department, Menoufia University, Shebeen, El Kom 32511, Egypt.,Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Cathy Lan
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Catherine Chabot
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Georgia Mitsa
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | | | | | - Mounib Elchebly
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Oliver Poetz
- University of Tuebingen, Reutlingen 72770, Germany.,SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Alan Spatz
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Department of Pathology, McGill University, Montréal, Quebec H3A 2B4, Canada.,OPTILAB-McGill University Health Centre, Montréal, Quebec H4A 3J1, Canada
| | - Mark Basik
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
66
|
Grencewicz DJ, Romigh T, Thacker S, Abbas A, Jaini R, Luse D, Eng C. Redefining the PTEN promoter: Identification of novel upstream transcription start regions. Hum Mol Genet 2021; 30:2135-2148. [PMID: 34218272 DOI: 10.1093/hmg/ddab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and - 1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer, and normal tissue. Further, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826, and - 1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Together, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.
Collapse
Affiliation(s)
- Dennis J Grencewicz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Donal Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
67
|
Castillo EG, Braslow JT. How Pharmaceuticals Mask Health and Social Inequity. AMA J Ethics 2021; 23:E542-549. [PMID: 34351264 PMCID: PMC9075109 DOI: 10.1001/amajethics.2021.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Medications, like all interventions, shape the ways in which physicians see disease, provide care, define successful outcomes, and organize health care systems. Pharmaceuticals make symptoms and biological drug targets more visible while rendering individuals and their social suffering invisible, thereby focusing our profession on the intracellular effects of an unequal society. This article uses psychopharmacology as a probe to trace a more general problem within contemporary medicine: the pervasive influence of biomedical narratives and therapeutic rationales extending from clinical practice, to medical education, to health care finance.
Collapse
Affiliation(s)
- Enrico G Castillo
- Assistant professor in the Jane and Terry Semel Institute for Neuroscience and Human Behavior in the David Geffen School of Medicine at the University of California, Los Angeles
| | - Joel Tupper Braslow
- Professor in the departments of history and psychiatry and biobehavioral sciences at the University of California, Los Angeles
| |
Collapse
|
68
|
Travis G, Haddadi N, Simpson AM, Marsh DJ, McGowan EM, Nassif NT. Studying the Oncosuppressive Functions of PTENP1 as a ceRNA. Methods Mol Biol 2021; 2324:165-185. [PMID: 34165715 DOI: 10.1007/978-1-0716-1503-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
PTENP1 is a processed pseudogene of the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). It functions posttranscriptionally to regulate PTEN by acting as a sponge for microRNAs that target PTEN. PTENP1 therefore functions as a competitive endogenous RNA (ceRNA), competing with PTEN for binding of microRNAs (miRNA) and thereby modulating PTEN cellular abundance. Studies of the overexpression of PTENP1 all confirm its oncosuppressive function to be mediated through the suppression of cell proliferation, induction of apoptosis, and inhibition of cell migration and invasion of cancer cells of differing types. These oncosuppressive functions are a direct consequence of miRNA binding by PTENP1 and the subsequent liberation of PTEN from miRNA induced suppression. In this chapter, we will focus initially on the description of a high efficiency transient transfection method to introduce and overexpress PTENP1 in the cell type of interest, followed by accurate methodologies to measure transfection efficiency by flow cytometry. We will then continue to describe two methods to analyze cell proliferation, namely the CCK-8 assay and Click-iT® EdU assay. Due to commonalities in the manifestation of the oncosuppressive effects of PTENP1, mediated through its role as a ceRNA, the methods presented in this chapter will have wide applicability to a variety of different cell types.
Collapse
Affiliation(s)
- Glena Travis
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nahal Haddadi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ann M Simpson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J Marsh
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eileen M McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Najah T Nassif
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
- Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
69
|
EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun 2021; 12:2198. [PMID: 33850160 PMCID: PMC8044243 DOI: 10.1038/s41467-021-22522-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is initiated by somatic mutations in oncogenes or tumor suppressor genes. However, additional alterations provide selective advantages to the tumor cells to resist treatment and develop metastases. Their identification is of paramount importance. Reduced expression of EFA6B (Exchange Factor for ARF6, B) is associated with breast cancer of poor prognosis. Here, we report that loss of EFA6B triggers a transcriptional reprogramming of the cell-to-ECM interaction machinery and unleashes CDC42-dependent collective invasion in collagen. In xenograft experiments, MCF10 DCIS.com cells, a DCIS-to-IDC transition model, invades faster when knocked-out for EFA6B. In addition, invasive and metastatic tumors isolated from patients have lower expression of EFA6B and display gene ontology signatures identical to those of EFA6B knock-out cells. Thus, we reveal an EFA6B-regulated molecular mechanism that controls the invasive potential of mammary cells; this finding opens up avenues for the treatment of invasive breast cancer.
Collapse
|
70
|
Abstract
Comprehensive genomic studies of meningioma have offered important insights about the molecular mechanisms underlying this common brain tumor. The use of next-generation sequencing techniques has identified driver mutations in approximately 80% of benign sporadic lesions, as well as epigenetic, regulatory, and copy number events that are associated with formation and disease progression. The events described to date fall into five mutually exclusive molecular subgroups that correlate with tumor location and embryological origin. Importantly, these subgroups also carry implications for clinical management, as they are predictive of histologic subtype and the likelihood of progression. Further work is necessary to understand the molecular mechanisms by which identified mutations drive tumorigenesis as well as the genomic pathways that transform benign lesions into malignancies. Progress made during the past decade has opened the door to potential molecular therapies as well as integration of meningioma genotyping data into clinical management decisions. Several pharmacologic trials are currently underway that leverage recent genomic findings to target established oncogenic pathways in refractory tumors. With the combined efforts of physicians and basic science investigators, the clinical management of meningioma will continue to make important strides in the coming years.
Collapse
|
71
|
Zhu H, Xu Y, Li M, Chen Z. Inhibition Sequence of miR-205 Hinders the Cell Proliferation and Migration of Lung Cancer Cells by Regulating PETN-Mediated PI3K/AKT Signal Pathway. Mol Biotechnol 2021; 63:587-594. [PMID: 33783672 DOI: 10.1007/s12033-021-00321-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/20/2021] [Indexed: 01/11/2023]
Abstract
The aim of this study was to identify the pro-tumor role of miR-205 in patients with lung cancer (LC) on the cell proliferation and migration through regulating PTEN-mediated PI3K/AKT signal pathway. Paired cancer tissues and adjacent tissues were collected from 107 LC patients who received treatment in Jinan Central hospital. In addition, the purchased LC cell lines were transfected into HCC827 cell line to observe and compare the biological behaviors. Compared with adjacent tissues, miR-205 was statistically higher in LC tissues, while PTEN was notably lower (P < 0.05). Inhibition of miR-205 not only suppressed cell proliferation, migration and invasion, increased apoptosis rate, but regulated epithelial mesenchymal transformation (EMT)-related proteins. Likewise, overexpression of PETN played the same role as that of miR-205 inhibition sequence. Inhibited miR-205 or PTEN overexpression brought dramatically decreased PI3K and p-Akt. The relationship between miR-205 and PTEN was verified through the biological prediction website and luciferase reporter. Co-transfection experiments revealed that after cotransfection of miR-205 inhibitor and si-PETN, the cell proliferation and invasion showed no marked difference between cotransfection group and NC group. MiR-205 is involved in LC cell proliferation and migration by regulating PETN-mediated PI3K/AKT signal pathway, which may be a feasible treatment target for LC in clinical practice.
Collapse
Affiliation(s)
- Huizhen Zhu
- Department of Urological Surgery, Jinan Central Hospital Affiliated To Shandong University, Shandong, 250013, P.R. China
| | - Yan Xu
- Outpatient Injection Room, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, P.R. China
| | - Meng Li
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China
| | - Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China.
| |
Collapse
|
72
|
Pijuan J, Ortigoza-Escobar JD, Ortiz J, Alcalá A, Calvo MJ, Cubells M, Hernando-Davalillo C, Palau F, Hoenicka J. PLXNA2 and LRRC40 as candidate genes in autism spectrum disorder. Autism Res 2021; 14:1088-1100. [PMID: 33749153 DOI: 10.1002/aur.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability with high heritability yet the genetic etiology remains elusive. Therefore, it is necessary to elucidate new genotype-phenotype relationships for ASD to improve both the etiological knowledge and diagnosis. In this work, a copy-number variant and whole-exome sequencing analysis were performed in an ASD patient with a complex neurobehavioral phenotype with epilepsy and attention deficit hyperactivity disorder. We identified rare recessive single nucleotide variants in the two genes, PLXNA2 encoding Plexin A2 that participates in neurodevelopment, and LRRC40, which encodes Leucine-rich repeat containing protein 40, a protein of unknown function. PLXNA2 showed the heterozygous missense variants c.614G>A (p.Arg205Gln) and c.4904G>A (p.Arg1635Gln) while LRRC40 presented the homozygous missense variant c.1461G>T (p.Leu487Phe). In silico analysis predicted that these variants could be pathogenic. We studied PLXNA2 and LRRC40 mRNA and proteins in fibroblasts from the patient and controls. We observed a significant PlxnA2 subcellular delocalization and very low levels of LRRC40 in the patient. Moreover, we found a novel interaction between PlxnA2 and LRRC40 suggesting that participate in a common neural pathway. This interaction was significant decreased in the patient's fibroblasts. In conclusion, our results identified PLXNA2 and LRRC40 genes as candidates in ASD providing novel clues for the pathogenesis. Further attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD. LAY SUMMARY: Genomics is improving the knowledge and diagnosis of patients with autism spectrum disorder (ASD) yet the genetic etiology remains elusive. Here, using genomic analysis together with experimental functional studies, we identified in an ASD complex patient the PLXNA2 and LRRC40 recessive genes as ASD candidates. Furthermore, we found that the proteins of these genes interact in a common neural network. Therefore, more attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Department of Pediatric Neurology, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Juan Ortiz
- Department of Child Psychiatry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Adrián Alcalá
- Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain
| | - María José Calvo
- Department of Pediatric Neurology, Hospital San Jorge de Huesca, Huesca, Spain
| | - Mariona Cubells
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
73
|
Hermanova I, Zúñiga-García P, Caro-Maldonado A, Fernandez-Ruiz S, Salvador F, Martín-Martín N, Zabala-Letona A, Nuñez-Olle M, Torrano V, Camacho L, Lizcano JM, Talamillo A, Carreira S, Gurel B, Cortazar AR, Guiu M, López JI, Martinez-Romero A, Astobiza I, Valcarcel-Jimenez L, Lorente M, Arruabarrena-Aristorena A, Velasco G, Gomez-Muñoz A, Suárez-Cabrera C, Lodewijk I, Flores JM, Sutherland JD, Barrio R, de Bono JS, Paramio JM, Trka J, Graupera M, Gomis RR, Carracedo A. Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. J Exp Med 2021; 217:151590. [PMID: 32219437 PMCID: PMC7971141 DOI: 10.1084/jem.20191787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.
Collapse
Affiliation(s)
- Ivana Hermanova
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Zúñiga-García
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Alfredo Caro-Maldonado
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sonia Fernandez-Ruiz
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Fernando Salvador
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Marc Nuñez-Olle
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Laura Camacho
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Jose M Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Ana R Cortazar
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose I López
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country, Barakaldo, Spain
| | - Anabel Martinez-Romero
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Vascular Signalling Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Lorea Valcarcel-Jimenez
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
| | | | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos, Madrid, Spain
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Cristian Suárez-Cabrera
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Iris Lodewijk
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Juana M Flores
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK.,The Royal Marsden National Health Service Foundation Trust, London, UK
| | - Jesús M Paramio
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Jan Trka
- Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology/Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Mariona Graupera
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Vascular Signalling Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Roger R Gomis
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
74
|
Zhang L, Zhang W, Sun J, Liu KN, Gan ZX, Liu YZ, Chang JF, Yang XM, Sun F. Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sci 2021; 271:119127. [PMID: 33515561 DOI: 10.1016/j.lfs.2021.119127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Xue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu-Zhou Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
75
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
76
|
Boyle EM, Deshpande S, Tytarenko R, Ashby C, Wang Y, Bauer MA, Johnson SK, Wardell CP, Thanendrarajan S, Zangari M, Facon T, Dumontet C, Barlogie B, Arbini A, Rustad EH, Maura F, Landgren O, Zhan F, van Rhee F, Schinke C, Davies FE, Morgan GJ, Walker BA. The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma. Nat Commun 2021; 12:293. [PMID: 33436579 PMCID: PMC7804406 DOI: 10.1038/s41467-020-20524-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
Smoldering myeloma (SMM) is associated with a high-risk of progression to myeloma (MM). We report the results of a study of 82 patients with both targeted sequencing that included a capture of the immunoglobulin and MYC regions. By comparing these results to newly diagnosed myeloma (MM) we show fewer NRAS and FAM46C mutations together with fewer adverse translocations, del(1p), del(14q), del(16q), and del(17p) in SMM consistent with their role as drivers of the transition to MM. KRAS mutations are associated with a shorter time to progression (HR 3.5 (1.5–8.1), p = 0.001). In an analysis of change in clonal structure over time we studied 53 samples from nine patients at multiple time points. Branching evolutionary patterns, novel mutations, biallelic hits in crucial tumour suppressor genes, and segmental copy number changes are key mechanisms underlying the transition to MM, which can precede progression and be used to guide early intervention strategies. Progression from asymptomatic smoldering multiple myeloma (SMM) to symptomatic Multiple Myeloma occurs at different rates in different patients. Here, the authors report fewer NRAS and FAM46C mutations and adverse translocations in SMM compared to MM, while KRAS mutations are associated with a shorter time to progression.
Collapse
Affiliation(s)
- Eileen M Boyle
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,INSERM 1052/CNRS 5286 Cancer Research Center of Lyon, Lyon, France.,Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Shayu Deshpande
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruslana Tytarenko
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yan Wang
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael A Bauer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah K Johnson
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher P Wardell
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thierry Facon
- Service des maladies du sang. Hôpital Claude Huriez, Lille University Hospital, Lille, France
| | - Charles Dumontet
- INSERM 1052/CNRS 5286 Cancer Research Center of Lyon, Lyon, France
| | - Bart Barlogie
- Division of Hematology, The Mount Sinai Hospital, New York, NY, USA
| | - Arnaldo Arbini
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Even H Rustad
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Faith E Davies
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
77
|
Novel candidates of pathogenic variants of the BRCA1 and BRCA2 genes from a dataset of 3,552 Japanese whole genomes (3.5KJPNv2). PLoS One 2021; 16:e0236907. [PMID: 33428613 PMCID: PMC7799847 DOI: 10.1371/journal.pone.0236907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Identification of the population frequencies of definitely pathogenic germline variants in two major hereditary breast and ovarian cancer syndrome (HBOC) genes, BRCA1/2, is essential to estimate the number of HBOC patients. In addition, the identification of moderately penetrant HBOC gene variants that contribute to increasing the risk of breast and ovarian cancers in a population is critical to establish personalized health care. A prospective cohort subjected to genome analysis can provide both sets of information. Computational scoring and prospective cohort studies may help to identify such likely pathogenic variants in the general population. We annotated the variants in the BRCA1 and BRCA2 genes from a dataset of 3,552 whole-genome sequences obtained from members of a prospective cohorts with genome data in the Tohoku Medical Megabank Project (TMM) with InterVar software. Computational impact scores (CADD_phred and Eigen_raw) and minor allele frequencies (MAFs) of pathogenic (P) and likely pathogenic (LP) variants in ClinVar were used for filtration criteria. Familial predispositions to cancers among the 35,000 TMM genome cohort participants were analyzed to verify the identified pathogenicity. Seven potentially pathogenic variants were newly identified. The sisters of carriers of these moderately deleterious variants and definite P and LP variants among members of the TMM prospective cohort showed a statistically significant preponderance for cancer onset, from the self-reported cancer history. Filtering by computational scoring and MAF is useful to identify potentially pathogenic variants in BRCA genes in the Japanese population. These results should help to follow up the carriers of variants of uncertain significance in the HBOC genes in the longitudinal prospective cohort study.
Collapse
|
78
|
Innella G, Miccoli S, Colussi D, Pradella LM, Amato LB, Zuntini R, Salfi NCM, Collina G, Ferrara F, Ricciardiello L, Turchetti D. Colorectal polyposis as a clue to the diagnosis of Cowden syndrome: Report of two cases and literature review. Pathol Res Pract 2021; 218:153339. [PMID: 33482532 DOI: 10.1016/j.prp.2020.153339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/26/2022]
Abstract
Cowden Syndrome (CS) is an autosomal dominant disorder characterized by hamartomatous growth in several organs and by an increased risk of malignancies, which makes its recognition essential to undertake risk reduction measures. Although the involvement of gastrointestinal tract is extremely common, awareness of this entity among gastroenterologists appears limited. We report on two unrelated patients: a 46-year-old male and a 38-year-old woman, who were referred to the Genetic Clinic because of the endoscopic finding of multiple colorectal polyps. Despite both displayed striking clinical (and, in the first case, familial) manifestations of Cowden Syndrome (PTEN Hamartoma Tumor Syndrome-PHTS), they had not been recognized before. Diagnosis of PHTS was confirmed by the detection of causative PTEN variants. Pathological examination of the polyps showed multiple histology types: hyperplastic, juvenile, serrated and lymphoid. Hyperplastic polyps analyzed from both patients failed to show BRAF V600E and KRAS codon 12/13 mutations, which provides evidence against their potential to evolve to colorectal cancer through the serrated pathway. We then reviewed the literature on gastrointestinal polyps detected in patients with Cowden Syndrome, in order to provide a comprehensive scenario of presentations: among a total of 568 patients reported in the literature, 91.7 % presented with colon polyps, with 63.0 % having two or more different histological types of polyps; besides, 58.5 % had extra-colonic polyps (located either in stomach and/or in small intestine). Finding multiple polyps with mixed and/or unusual histology should alert gastroenterologists and pathologists about the possible diagnosis of Cowden Syndrome and prompt the search for other manifestations of this condition in the patient.
Collapse
Affiliation(s)
- Giovanni Innella
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Sara Miccoli
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Dora Colussi
- UO Gastroenterologia, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Laura Maria Pradella
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Laura Benedetta Amato
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Roberta Zuntini
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Nunzio Cosimo Mario Salfi
- UO Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Guido Collina
- UOC Anatomia Patologica, Ospedale "C e G. Mazzoni", Ascoli Piceno, Italy.
| | - Francesco Ferrara
- UO Gastroenterologia ed Endoscopia Digestiva, AUSL di Bologna, Ospedale Bellaria, Bologna, Italy.
| | - Luigi Ricciardiello
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Gastroenterologia, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| | - Daniela Turchetti
- Dipartimento di Scienze Mediche e Chirurgiche: Centro di Ricerca sui Tumori Ereditari, Università di Bologna, Italy; UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy.
| |
Collapse
|
79
|
McHugh DR, Cotton CU, Hodges CA. Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations. Int J Mol Sci 2020; 22:ijms22010344. [PMID: 33396210 PMCID: PMC7794695 DOI: 10.3390/ijms22010344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Many heritable genetic disorders arise from nonsense mutations, which generate premature termination codons (PTCs) in transcribed mRNA. PTCs ablate protein synthesis by prematurely terminating the translation of mutant mRNA, as well as reducing mutant mRNA quantity through targeted degradation by nonsense-mediated decay (NMD) mechanisms. Therapeutic strategies for nonsense mutations include facilitating ribosomal readthrough of the PTC and/or inhibiting NMD to restore protein function. However, the efficacy of combining readthrough agents and NMD inhibitors has not been thoroughly explored. In this study, we examined combinations of known NMD inhibitors and readthrough agents using functional analysis of the CFTR protein in primary cells from a mouse model carrying a G542X nonsense mutation in Cftr. We observed synergy between an inhibitor of the NMD component SMG-1 (SMG1i) and the readthrough agents G418, gentamicin, and paromomycin, but did not observe synergy with readthrough caused by amikacin, tobramycin, PTC124, escin, or amlexanox. These results indicate that treatment with NMD inhibitors can increase the quantity of functional protein following readthrough, and that combining NMD inhibitors and readthrough agents represents a potential therapeutic option for treating nonsense mutations.
Collapse
Affiliation(s)
- Daniel R. McHugh
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
| | - Calvin U. Cotton
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Correspondence:
| |
Collapse
|
80
|
Park JW, Kang J, Lim KY, Kim H, Kim SI, Won JK, Park CK, Park SH. The prognostic significance of p16 expression pattern in diffuse gliomas. J Pathol Transl Med 2020; 55:102-111. [PMID: 33348944 PMCID: PMC7987518 DOI: 10.4132/jptm.2020.10.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background CDKN2A is a tumor suppressor gene that encodes the cell cycle inhibitor protein p16. Homozygous deletion of the CDK-N2A gene has been associated with shortened survival in isocitrate dehydrogenase (IDH)–mutant gliomas. This study aimed to analyze the prognostic value of p16 and to evaluate whether p16 immunohistochemical staining could be used as a prognostic marker to replace CDKN2A genotyping in diffuse gliomas. Methods p16 immunohistochemistry was performed on tissue microarrays of 326 diffuse gliomas with diagnoses that reflected IDH-mutations and 1p/19q codeletion status. The results were divided into three groups (negative, focal expression, overexpression) according to the presence and degree of p16 expression. Survival analysis was performed to assess the prognostic value of p16 expression. Results A loss of p16 expression predicted a significantly worse outcome in all glioma patients (n = 326, p < .001), in the IDH-mutant glioma patients (n = 103, p = .010), and in the IDH-mutant astrocytoma patients (n = 73, p = .032). However, loss of p16 expression did not predict the outcome in the IDH-wildtype glioma patients (n = 223, p = .121) or in the oligodendroglial tumor patients with the IDH-mutation and 1p/19q codeletion (n = 30, p = .457). Multivariate analysis showed the association was still significant in the IDH-mutant glioma patients (p = .008; hazard ratio [HR], 2.637; 95% confidence interval [CI], 1.295 to 5.372) and in the IDH-mutant astrocytoma patients (p = .001; HR, 3.586; 95% CI, 1.649 to 7.801). Interestingly, patients who presented with tumors with p16 overexpression also had shorter survival times than did patients with tumors with p16 focal expression in the whole glioma (p < .001) and in IDH-mutant glioma groups. (p = .046). Conclusions This study suggests that detection of p16 expression by immunohistochemistry can be used as a useful surrogate test to predict prognosis, especially in IDH-mutant astrocytoma patients.
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jeongwan Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ka Young Lim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Hyunhee Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
81
|
Vanni I, Casula M, Pastorino L, Manca A, Dalmasso B, Andreotti V, Pisano M, Colombino M, Pfeffer U, Tanda ET, Rozzo C, Paliogiannis P, Cossu A, Ghiorzo P, Palmieri G. Quality assessment of a clinical next-generation sequencing melanoma panel within the Italian Melanoma Intergroup (IMI). Diagn Pathol 2020; 15:143. [PMID: 33317587 PMCID: PMC7737361 DOI: 10.1186/s13000-020-01052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of somatic mutations in key oncogenes in melanoma is important to lead the effective and efficient use of personalized anticancer treatment. Conventional methods focus on few genes per run and, therefore, are unable to screen for multiple genes simultaneously. The use of Next-Generation Sequencing (NGS) technologies enables sequencing of multiple cancer-driving genes in a single assay, with reduced costs and DNA quantity needed and increased mutation detection sensitivity. METHODS We designed a customized IMI somatic gene panel for targeted sequencing of actionable melanoma mutations; this panel was tested on three different NGS platforms using 11 metastatic melanoma tissue samples in blinded manner between two EMQN quality certificated laboratory. RESULTS The detection limit of our assay was set-up to a Variant Allele Frequency (VAF) of 10% with a coverage of at least 200x. All somatic variants detected by all NGS platforms with a VAF ≥ 10%, were also validated by an independent method. The IMI panel achieved a very good concordance among the three NGS platforms. CONCLUSION This study demonstrated that, using the main sequencing platforms currently available in the diagnostic setting, the IMI panel can be adopted among different centers providing comparable results.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Milena Casula
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Ulrich Pfeffer
- Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Carla Rozzo
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy.
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| |
Collapse
|
82
|
Alarcón MA, Olivares W, Córdova-Delgado M, Muñoz-Medel M, de Mayo T, Carrasco-Aviño G, Wichmann I, Landeros N, Amigo J, Norero E, Villarroel-Espíndola F, Riquelme A, Garrido M, Owen GI, Corvalán AH. The Reprimo-Like Gene Is an Epigenetic-Mediated Tumor Suppressor and a Candidate Biomarker for the Non-Invasive Detection of Gastric Cancer. Int J Mol Sci 2020; 21:ijms21249472. [PMID: 33322837 PMCID: PMC7763358 DOI: 10.3390/ijms21249472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Reprimo-like (RPRML) is an uncharacterized member of the Reprimo gene family. Here, we evaluated the role of RPRML and whether its regulation by DNA methylation is a potential non-invasive biomarker of gastric cancer. RPRML expression was evaluated by immunohistochemistry in 90 patients with gastric cancer and associated with clinicopathologic characteristics and outcomes. The role of RPRML in cancer biology was investigated in vitro, through RPRML ectopic overexpression. Functional experiments included colony formation, soft agar, MTS, and Ki67 immunofluorescence assays. DNA methylation-mediated silencing was evaluated by the 5-azacytidine assay and direct bisulfite sequencing. Non-invasive detection of circulating methylated RPRML DNA was assessed in 25 gastric cancer cases and 25 age- and sex-balanced cancer-free controls by the MethyLight assay. Downregulation of RPRML protein expression was associated with poor overall survival in advanced gastric cancer. RPRML overexpression significantly inhibited clonogenic capacity, anchorage-independent growth, and proliferation in vitro. Circulating methylated RPRML DNA distinguished patients with gastric cancer from controls with an area under the curve of 0.726. The in vitro overexpression results and the poor patient survival associated with lower RPRML levels suggest that RPRML plays a tumor-suppressive role in the stomach. Circulating methylated RPRML DNA may serve as a biomarker for the non-invasive detection of gastric cancer.
Collapse
Affiliation(s)
- María Alejandra Alarcón
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Wilda Olivares
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Miguel Córdova-Delgado
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Matías Muñoz-Medel
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Tomas de Mayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Faculty of Sciences, School of Medicine Universidad Mayor, Santiago 8580745, Chile
| | - Gonzalo Carrasco-Aviño
- Department of Pathology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile;
- Department of Pathology, Clínica Las Condes, Santiago 7591210, Chile
| | - Ignacio Wichmann
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Obstetrics, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Natalia Landeros
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Julio Amigo
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr Sótero del Río, Santiago 8207257, Chile;
- Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Franz Villarroel-Espíndola
- Translational Medicine Laboratory, Instituto Oncológico Fundación Arturo López Pérez (FALP), Santiago 8320000, Chile;
| | - Arnoldo Riquelme
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Marcelo Garrido
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Alejandro H. Corvalán
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Correspondence:
| |
Collapse
|
83
|
Chatrath A, Ratan A, Dutta A. Germline Variants That Affect Tumor Progression. Trends Genet 2020; 37:433-443. [PMID: 33203571 DOI: 10.1016/j.tig.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
Germline variants have a rich history of being studied in the context of cancer risk. Emerging studies now suggest that germline variants contribute not only to cancer risk but to tumor progression as well. In this opinion article, we discuss the initial discoveries associating germline variants with patient outcome and the mechanisms by which germline variants affect molecular pathways. Germline variants affect molecular pathways through amino acid changes, alteration of splicing patterns or expression of genes, influencing the selection for somatic mutations, and causing genome-wide mutational enrichment. These molecular alterations can lead to tumor phenotypes that become clinically apparent such as metastasis, alterations to the immune microenvironment, and modulation of therapeutic response. Overall, the growing body of evidence suggests that germline variants play a larger role in tumor progression than has been previously appreciated and that germline variation holds substantial potential for improving personalized medicine and patient outcomes.
Collapse
Affiliation(s)
- Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
84
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
85
|
Park Y, Baik S, Ho C, Lin CY, Chung SH. Progesterone Receptor Is a Haploinsufficient Tumor-Suppressor Gene in Cervical Cancer. Mol Cancer Res 2020; 19:42-47. [PMID: 33139507 DOI: 10.1158/1541-7786.mcr-20-0704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Tumor-suppressor genes (TSG) are often deleted or transcriptionally suppressed in cancer. PGR codes for progesterone receptor (PR), a transcription factor whose function depends on its ligand. Although PR expression is often undetectable in cervical cancer, its relevance to the endocrine-related etiology of this prevalent gynecological disease remains unclear. In this study, we show that the deletion of one Pgr allele in cervical epithelium promoted spontaneous cervical cancer in human papilloma viral oncogene-expressing transgenic mice as efficiently as the ablation of both Pgr alleles. We also show that tumors arising in the transgenic mice with one or both Pgr alleles did not express PR or expressed at the reduced levels compared with the normal epithelium. PR status correlated with estrogen receptor α (ERα) status in the mouse model and the Cancer Genome Atlas (TCGA) dataset. TCGA data analyses revealed that PGR expression significantly decreased in cervical cancer and that the biallelic deletion of PGR was rare. Furthermore, low PGR expression was associated with poor prognosis in young patients with cervical cancer. These discoveries point to PGR as a haploinsufficient TSG in the uterine cervix. They also raise the possibility that the restoration of PGR expression may improve the survival rate. IMPLICATIONS: The decreased expression of PR may increase the risk of cervical cancer in human papillomavirus-infected women. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/1/42/F1.large.jpg.
Collapse
Affiliation(s)
- Yuri Park
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Seunghan Baik
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Charles Ho
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Chin-Yo Lin
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Sang-Hyuk Chung
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas.
| |
Collapse
|
86
|
MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, Warren A, Park SM, Giger O, Challis BG, Maher ER, Casey RT. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2020; 93:528-538. [PMID: 32686200 DOI: 10.1111/cen.14289] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The citric acid cycle, also known as the Krebs cycle, plays an integral role in cellular metabolism and aerobic respiration. Mutations in genes encoding the citric acid cycle enzymes succinate dehydrogenase, fumarate hydratase and malate dehydrogenase all predispose to hereditary tumour syndromes. The succinate dehydrogenase enzyme complex (SDH) couples the oxidation of succinate to fumarate in the citric acid cycle and the reduction of ubiquinone to ubiquinol in the electron transport chain. A loss of function in the succinate dehydrogenase (SDH) enzyme complex is most commonly caused by an inherited mutation in one of the four SDHx genes (SDHA, SDHB, SDHC and SDHD). This mechanism was first implicated in familial phaeochromocytoma and paraganglioma. However, over the past two decades the spectrum of tumours associated with SDH deficiency has been extended to include gastrointestinal stromal tumours (GIST), renal cell carcinoma (RCC) and pituitary adenomas. The aim of this review is to describe the extended tumour spectrum associated with SDHx gene mutations and to consider how functional tests may help to establish the role of SDHx mutations in new or unexpected tumour phenotypes.
Collapse
Affiliation(s)
- James MacFarlane
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Keat Cheah Seong
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Chad Bisambar
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Alison Marker
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anne Warren
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Pathology, Cambridge University, Cambridge, UK
| | - Benjamin G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
87
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
88
|
de Assis LVM, Mendes D, Silva MM, Kinker GS, Pereira-Lima I, Moraes MN, Menck CFM, Castrucci AMDL. Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118789. [PMID: 32645331 DOI: 10.1016/j.bbamcr.2020.118789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunoendocrinology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Isabella Pereira-Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
89
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|
90
|
Tumor suppressor properties of the small C-terminal domain phosphatases in non-small cell lung cancer. Biosci Rep 2020; 39:221348. [PMID: 31774910 PMCID: PMC6911153 DOI: 10.1042/bsr20193094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions. However their role in NSCLC remains insufficiently understood. For the first time we revealed the suppressor function of CTDSPs leading to a significant growth slowdown and senescence of A549 lung adenocarcinoma (ADC) cells in vitro. Their tumor-suppressive activity can be realized through increasing the proportion of the active form of Rb protein dephosphorylated at Ser807/811, Ser780, and Ser795 (P<0.05) thereby negatively regulating cancer cell proliferation. Moreover, we observed that a frequent (84%, 39/46) and highly concordant (Spearman's rank correlation coefficient (rs) = 0.53-0.62, P≤0.01) down-regulation of CTDSPs and RB1 is characteristic of primary NSCLC samples (n=46). A clear difference in their mRNA levels was found between lung ADCs with and without lymph node metastases, but not in squamous cell carcinomas (SCCs) (P≤0.05). Based on The Cancer Genome Atlas (TCGA) data and the results obtained using the CrossHub tool, we suggest that the well-known oncogenic cluster miR-96/182/183 could be a common expression regulator of CTDSPs. Indeed, according to our qPCR, the expression of CTDSPs negatively correlates with these miRs, but positively correlates with their intronic miR-26a/b. Our results reflect functional association of CTDSP1, CTDSP2, and CTDSPL, expand knowledge about their suppressor properties through Rb dephosphorylation and provide new insights into the regulation of NSCLC growth.
Collapse
|
91
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
92
|
Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Aloyz R, Poetz O, Basik M, Batist G, Zahedi RP, Borchers CH. Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Anal Chem 2020; 92:12407-12414. [DOI: 10.1021/acs.analchem.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany
- SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
93
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
94
|
Dhamija S, Yang CM, Seiler J, Myacheva K, Caudron-Herger M, Wieland A, Abdelkarim M, Sharma Y, Riester M, Groß M, Maurer J, Diederichs S. A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nat Cell Biol 2020; 22:999-1010. [DOI: 10.1038/s41556-020-0551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
|
95
|
Aquila S, Santoro M, Caputo A, Panno ML, Pezzi V, De Amicis F. The Tumor Suppressor PTEN as Molecular Switch Node Regulating Cell Metabolism and Autophagy: Implications in Immune System and Tumor Microenvironment. Cells 2020; 9:cells9071725. [PMID: 32708484 PMCID: PMC7408239 DOI: 10.3390/cells9071725] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies conducted over the past 10 years evidence the intriguing role of the tumor suppressor gene Phosphatase and Tensin Homolog deleted on Chromosome 10 PTEN in the regulation of cellular energy expenditure, together with its capability to modulate proliferation and survival, thus expanding our knowledge of its physiological functions. Transgenic PTEN mice models are resistant to oncogenic transformation, present decreased adiposity and reduced cellular glucose and glutamine uptake, together with increased mitochondrial oxidative phosphorylation. These acquisitions led to a novel understanding regarding the role of PTEN to counteract cancer cell metabolic reprogramming. Particularly, PTEN drives an “anti-Warburg state” in which less glucose is taken up, but it is more efficiently directed to the mitochondrial Krebs cycle. The maintenance of cellular homeostasis together with reduction of metabolic stress are controlled by specific pathways among which autophagy, a catabolic process strictly governed by mTOR and PTEN. Besides, a role of PTEN in metabolic reprogramming and tumor/stroma interactions in cancer models, has recently been established. The genetic inactivation of PTEN in stromal fibroblasts of mouse mammary glands, accelerates breast cancer initiation and progression. This review will discuss our novel understanding in the molecular connection between cell metabolism and autophagy by PTEN, highlighting novel implications regarding tumor/stroma/immune system interplay. The newly discovered action of PTEN opens innovative avenues for investigations relevant to counteract cancer development and progression.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Annalisa Caputo
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
96
|
Alkatan HM, Al-Dahmash SA, Almesfer SA, AlQahtani FS, Maktabi AMY. High-risk features in primary versus secondary enucleated globes with advanced retinoblastoma: a retrospective histopathological study. Int Ophthalmol 2020; 40:2875-2887. [PMID: 32632618 DOI: 10.1007/s10792-020-01472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE The management of bilateral advanced retinoblastoma (RB) cases is challenging with attempts to use neoadjuvant therapy salvaging of one of the globes. Our aim in this study was to demonstrate the effect of this primary therapy on the histopathological features and risk factors in secondary enucleated compared to primarily enucleated globes with groups D and E RB. METHODS We retrospectively reviewed all enucleated globes with advanced RB received in the pathology laboratories over a period of 5 years. Patients were divided into two groups: one with primary enucleations and another with at least one secondary enucleated globe, and their demographic and clinical data were analyzed. The enucleated globes in the two groups were analyzed to compare the general histopathological features including tumor seeding, size, differentiation, growth pattern, mitotic figures, and focality. More importantly, high-risk features: choroidal invasion, optic nerve (ON) invasion, iris/anterior chamber invasion, ciliary body invasion, and scleral and extra-scleral extension, as well as the pathological classification of the tumor (pT) according to the American Joint Committee on Cancer 7th edition were also compared between the two groups. RESULTS We had a total of 106 enucleated globes (78 primary and 28 secondary enucleations) from 99 patients with advanced RB (73 patients with primarily and 26 with secondarily enucleated globes). Demographic and clinical profiles of patients were similar in both, but the mean interval from presentation to enucleation was significantly longer in the secondary enucleations (P = 0.015). Rare/occasional mitotic figures were observed in secondary enucleations using multivariate analysis (P = 0.003). Primarily enucleated globes had higher risk of tumor seeding (P = 0.020), post-laminar/surgical margin ON invasion (P = 0.001), and massive choroidal invasion (P = 0.028). Half of the secondary enucleated globes had tumors confined to the globes without invasion (pT1) and statistically significant lower tumor classifications (pT1 or pT2a) compared to primary enucleations (P =0.001). However, 18% of the secondarily enucleated globes in 3 patients had unfavorable outcome with RB-related mortality after a period of 1-4 years. CONCLUSIONS Secondary enucleated globes with advanced RB show favorable histopathological findings mainly less mitosis. These eyes have significantly lower chance for harboring choroidal and ON invasion, thus mostly classified as pT1 or pT2a when compared to primarily enucleated globes. The decision for secondary enucleation was observed to be significantly delayed (8.0 months ± 9.8). Prompt decision for needed enucleation based on the response to primary treatment and careful histopathological examination of enucleated globes are essential to prevent disease-related mortality.
Collapse
Affiliation(s)
- Hind M Alkatan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia. .,Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Saad A Al-Dahmash
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Almesfer
- Pediatric Ophthalmology Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Faisal S AlQahtani
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azza M Y Maktabi
- Pathology and Laboratory Medicine Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
97
|
Jhanwar SC, Xu XL, Elahi AH, Abramson DH. Cancer genomics of lung cancer including malignant mesothelioma: A brief overview of current status and future prospects. Adv Biol Regul 2020; 78:100723. [PMID: 32992231 DOI: 10.1016/j.jbior.2020.100723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
Cancer as a genetic disease is by now well recognized. Genomic analysis of cancer cells, therefore, has greatly enhanced our ability to identify genetic alterations associated with various cancer types, including both lympho-hematopoietic as well as solid tumors. Chronic myeloid leukemia (CML), based on the specific diagnostic genetic abnormality has served as a prototype disease to clearly demonstrate the significance of the genomic analysis of cancer in identifying targeted therapy. Such a success has provided extra ordinary opportunities to investigate the role of genetic abnormalities and the pathways amenable to targeted therapy, not only in blood cancers but solid tumors such as Lung, Brain, Colon, Renal, Breast cancers as well as other epithelial and mesenchymal tumors. The main focus of this presentation is to illustrate the role of genomic analysis in targeting lung cancer, based on abnormalities or the pathways deregulated in tumor cells from individual patients. Lung cancer is one of the most common epithelial cancers associated with chronic inflammation due to cigarette smoking and other environmental carcinogens, and includes four distinct histologic type; non-small cell lung cancer (NSCLC); small cell lung cancer (SCLC) and squamous cell lung cancer. According to current estimates, 1.3 million cases of lung cancer are expected to be diagnosed worldwide annually, resulting in one million deaths. Since the discovery that patient's tumors with specific mutations in the EGFR may be sensitive to targeted therapeutic approach and the subsequent realization that the such mutations in the gene are not as prevalent, several cancer centers including ours initiated intense efforts to find other mutations or genomic alterations, which may serve as targets of specific therapy. Such efforts have successfully resulted in a battery of genes such as KRAS, ALK, C-MET, HER-2/neu, ROS1, etc., which have helped oncologists to triage the patients for personalized therapies. A significant proportion of patients with lung cancer, however, do not show any of the above genetic abnormalities. Approximately 90% of lung cancers exhibit RB1 mutation/deletion and or KRAS mutations, therefore, the signaling pathways, which regulate multistep tumorigenesis in lung cancer, are important for the treatment of histologic subtypes of lung cancer, which includes NSCLC & SCLC. Equally important was the findings that similar signaling pathways are also shared by other solid tumor types. We have investigated the role of these pathways to target these cancers and develop new strategies to treat lung, brain and related cancers. In addition, our translational studies in other tumor types such as NF2 related malignancies, specifically, Malignant Mesothelioma (MM), in which NF2 related pathway amenable to targeted therapies was identified. Selected examples representing experimental approaches will be discussed to illustrate the critical role of translational research in developing novel therapeutics for the successful and durable responses in some of these cancer types.
Collapse
Affiliation(s)
- Suresh C Jhanwar
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, 1275, York Avenue, New York, NY, USA.
| | - Xiaoliang Leon Xu
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, 1275, York Avenue, New York, NY, USA
| | - Abul H Elahi
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - David H Abramson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275, York Avenue, New York, NY, USA
| |
Collapse
|
98
|
Li S, Chen M, Wu H, Li Y, Tollefsbol TO. Maternal Epigenetic Regulation Contributes to Prevention of Estrogen Receptor-negative Mammary Cancer with Broccoli Sprout Consumption. Cancer Prev Res (Phila) 2020; 13:449-462. [PMID: 32184225 PMCID: PMC7203003 DOI: 10.1158/1940-6207.capr-19-0491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/11/2020] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Abstract
Cruciferous vegetables have been of special interest due to the rich presence of bioactive compounds such as sulforaphane which show promising potential on cancer prevention and therapy as an epigenetic dietary strategy. Abnormal epigenetic alteration as one of the primary contributors to tumor development is closely related to breast cancer initiation and progression. In the present study, we investigated the effect of dietary broccoli sprouts (BSp), a common cruciferous vegetable, on prevention of estrogen receptor (ER)-negative mammary tumors at three different temporal exposure windows using a spontaneous breast cancer mouse model. Our findings indicate that maternal BSp treatment exhibited profound inhibitory and preventive effects on mammary cancer formation in the nontreated mouse offspring. The BSp diet administered to adult mice also showed suppressive effects on mammary cancer but was not as profound as the maternal BSp preventive effects. Moreover, such protective effects were linked with differentially expressed tumor- and epigenetic-related genes, as well as altered global histone acetylation, DNA methylation, and DNA hydroxymethylation levels. We also found that the expression changes of tumor-related genes were associated with the levels of histone methylation of H3K4 and H3K9 in the gene promoter regions. In addition, BSp-enriched sulforaphane was shown to increase protein expression of tumor suppressor genes such as p16 and p53 and inhibit the protein levels of Bmi1, DNA methyltransferases, and histone deacetylases in ERα-negative breast cancer cell lines. Collectively, these results suggest that maternal exposure to key phytochemicals may contribute to ER-negative mammary tumor prevention in their offspring through epigenetic regulations.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
99
|
Michels BE, Mosa MH, Streibl BI, Zhan T, Menche C, Abou-El-Ardat K, Darvishi T, Członka E, Wagner S, Winter J, Medyouf H, Boutros M, Farin HF. Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell 2020; 26:782-792.e7. [PMID: 32348727 DOI: 10.1016/j.stem.2020.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is characterized by prominent genetic and phenotypic heterogeneity between patients. To facilitate high-throughput genetic testing and functional identification of tumor drivers, we developed a platform for pooled CRISPR-Cas9 screening in human colon organoids. Using transforming growth factor β (TGF-β) resistance as a paradigm to establish sensitivity and scalability in vitro, we identified optimal conditions and strict guide RNA (gRNA) requirements for screening in 3D organoids. We then screened a pan-cancer tumor suppressor gene (TSG) library in pre-malignant organoids with APC-/-;KRASG12D mutations, which were xenografted to study clonal advantages in context of a complex tumor microenvironment. We identified TGFBR2 as the most prevalent TSG, followed by known and previously uncharacterized mediators of CRC growth. gRNAs were validated in a secondary screen using unique molecular identifiers (UMIs) to adjust for clonal drift and to distinguish clone size and abundance. Together, these findings highlight a powerful organoid-based platform for pooled CRISPR-Cas9 screening for patient-specific functional genomics.
Collapse
Affiliation(s)
- Birgitta E Michels
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Faculty of Biological Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Mohammed H Mosa
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Barbara I Streibl
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tianzuo Zhan
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany; Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ewelina Członka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Wagner
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jan Winter
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
100
|
Tao Y, Liang B. PTEN mutation: A potential prognostic factor associated with immune infiltration in endometrial carcinoma. Pathol Res Pract 2020; 216:152943. [PMID: 32279917 DOI: 10.1016/j.prp.2020.152943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endometrial carcinoma (EC) is a genetic disease, normally accompanied by gene mutations or abnormal expression patterns. However, PTEN mutation and its prognostic value in EC remained debated. Meanwhile, the distribution of PTEN mutation, as well as its correlation with clinical characteristics and tumor immune infiltrating cells, is still poorly understood. METHODS We conducted a comprehensive analysis of PTEN mutation based on The Cancer Genome Atlas (TCGA) database, including 525 uterine corpus endometrial carcinoma (UCEC) samples. We analyzed the frequency of PTEN mutation, distribution of PTEN mutation in different clinical characteristics, the prognostic value of PTEN mutation, and the correlation with tumor immune infiltrating cells in tumor microenvironment. RESULTS PTEN mutation was detected in 65.5﹪of total EC samples. PTEN mutation was significantly associated with age, histological type, clinical stage, and grade. In addition, the patients with PTEN mutation showed a significantly prolonged overall survival (OS) time and disease free survival (DFS) time compared with EC patients without PTEN mutation in entire group, training group, and validation group. Multivariate Cox regression analyses suggested that PTEN mutation was an independent prognostic factor in DFS. Moreover, the percentages of Tregs (P = 0.014) and M1 macrophages (P = 0.013) were significantly different in PTEN mutation group and non-mutation group. CONCLUSION PTEN mutation was correlated with favorable prognosis in EC patients. In addition, PTEN mutation was found to be associated with immune infiltrating cells in tumor microenvironment. Taken together, these findings suggested that PTEN could be regarded a potential predictive and therapeutic target for EC.
Collapse
Affiliation(s)
- Ye Tao
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China
| | - Bin Liang
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China.
| |
Collapse
|