51
|
Ruggiero MJ, Malhotra S, Fenton AW, Swint-Kruse L, Karanicolas J, Hagenbuch B. Structural Plasticity Is a Feature of Rheostat Positions in the Human Na +/Taurocholate Cotransporting Polypeptide (NTCP). Int J Mol Sci 2022; 23:ijms23063211. [PMID: 35328632 PMCID: PMC8954283 DOI: 10.3390/ijms23063211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
In the Na+/taurocholate cotransporting polypeptide (NTCP), the clinically relevant S267F polymorphism occurs at a "rheostat position". That is, amino acid substitutions at this position ("S267X") lead to a wide range of functional outcomes. This result was particularly striking because molecular models predicted the S267X side chains are buried, and thus, usually expected to be less tolerant of substitutions. To assess whether structural tolerance to buried substitutions is widespread in NTCP, here we used Rosetta to model all 19 potential substitutions at another 13 buried positions. Again, only subtle changes in the calculated stabilities and structures were predicted. Calculations were experimentally validated for 19 variants at codon 271 ("N271X"). Results showed near wildtype expression and rheostatic modulation of substrate transport, implicating N271 as a rheostat position. Notably, each N271X substitution showed a similar effect on the transport of three different substrates and thus did not alter substrate specificity. This differs from S267X, which altered both transport kinetics and specificity. As both transport and specificity may change during protein evolution, the recognition of such rheostat positions may be important for evolutionary studies. We further propose that the presence of rheostat positions is facilitated by local plasticity within the protein structure. Finally, we note that identifying rheostat positions may advance efforts to predict new biomedically relevant missense variants in NTCP and other membrane transport proteins.
Collapse
Affiliation(s)
- Melissa J. Ruggiero
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (S.M.); (J.K.)
| | - Aron W. Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (A.W.F.); (L.S.-K.)
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (A.W.F.); (L.S.-K.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (S.M.); (J.K.)
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|
52
|
Beckstein O, Naughton F. General principles of secondary active transporter function. BIOPHYSICS REVIEWS 2022; 3:011307. [PMID: 35434715 PMCID: PMC8984959 DOI: 10.1063/5.0047967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2022] [Indexed: 04/13/2023]
Abstract
Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a "driving" ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood, and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations, it has become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light onto how protein structures can encode a bi-stable two-state system. Based on structural data, three broad classes of alternating access transitions have been described as rocker-switch, rocking-bundle, and elevator mechanisms. More detailed analysis indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable. By connecting the possible conformational states and ion/substrate bound states in a kinetic model, a unified picture emerges in which the symporter, antiporter, and uniporter functions are extremes in a continuum of functionality. As usual with biological systems, few principles and rules are absolute and exceptions are discussed as well as how biological complexity may be integrated in quantitative kinetic models that may provide a bridge from the structure to function.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
53
|
Li J, Zhang Y, Yu M, Wang A, Qiu Y, Fan W, Hovgaard L, Yang M, Li Y, Wang R, Li X, Gan Y. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B 2022; 12:1460-1472. [PMID: 35530154 PMCID: PMC9072239 DOI: 10.1016/j.apsb.2021.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Transporters are traditionally considered to transport small molecules rather than large-sized nanoparticles due to their small pores. In this study, we demonstrate that the upregulated intestinal transporter (PCFT), which reaches a maximum of 12.3-fold expression in the intestinal epithelial cells of diabetic rats, mediates the uptake of the folic acid-grafted nanoparticles (FNP). Specifically, the upregulated PCFT could exert its function to mediate the endocytosis of FNP and efficiently stimulate the traverse of FNP across enterocytes by the lysosome-evading pathway, Golgi-targeting pathway and basolateral exocytosis, featuring a high oral insulin bioavailability of 14.4% in the diabetic rats. Conversely, in cells with relatively low PCFT expression, the positive surface charge contributes to the cellular uptake of FNP, and FNP are mainly degraded in the lysosomes. Overall, we emphasize that the upregulated intestinal transporters could direct the uptake of ligand-modified nanoparticles by mediating the endocytosis and intracellular trafficking of ligand-modified nanoparticles via the transporter-mediated pathway. This study may also theoretically provide insightful guidelines for the rational design of transporter-targeted nanoparticles to achieve efficient drug delivery in diverse diseases.
Collapse
Affiliation(s)
- Jingyi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aohua Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lars Hovgaard
- Oral Formulation Development, Novo Nordisk A/S, Maalov 2760, Denmark
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Xiuying Li
- University of Texas at Dallas, Richardson, TX 75080, USA
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| |
Collapse
|
54
|
Cao H, Zhou Z, Hu Z, Wei C, Li J, Wang L, Liu G, Zhang J, Wang Y, Wang T, Liang Y. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3214-3224. [PMID: 35138827 DOI: 10.1021/acs.est.1c07176] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pharmacokinetic characteristics of per- and polyfluoroalkyl substances (PFAS) affect their distribution and bioaccumulation in biological systems. The enterohepatic circulation leads to reabsorption of certain chemicals from bile back into blood and the liver and thus influences their elimination, yet its influence on PFAS bioaccumulation remains unclear. We explored the role of enterohepatic circulation in PFAS bioaccumulation by examining tissue distribution of various PFAS in wild fish and a rat model. Computational models were used to determine the reabsorbed fractions of PFAS by calculating binding affinities of PFAS for key transporter proteins of enterohepatic circulation. The results indicated that higher concentrations were observed in blood, the liver, and bile compared to other tissues for some PFAS in fish. Furthermore, exposure to a PFAS mixture on the rat model showed that the reabsorption phenomenon appeared during 8-12 h for most long-chain PFAS. Molecular docking calculations suggest that PFAS can bind to key transporter proteins via electrostatic and hydrophobic interactions. Further regression analysis adds support to the hypothesis that binding affinity of the apical sodium-dependent bile acid transporter is the most important variable to predict the human half-lives of PFAS. This study demonstrated the critical role of enterohepatic circulation in reabsorption, distribution, and accumulation of PFAS.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhe Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
55
|
Deng F, Han Bae Y. Lipid raft-mediated and upregulated coordination pathways assist transport of glycocholic acid-modified nanoparticle in a human breast cancer cell line of SK-BR-3. Int J Pharm 2022; 617:121589. [PMID: 35176336 PMCID: PMC8996487 DOI: 10.1016/j.ijpharm.2022.121589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Bile acid transporter-targeting has been proven to be an effective strategy to improve drug delivery to hepatocytes and enterocytes. With increasing discoveries of bile acid transporter expression on tumor cells, bile acid-modified anticancer drugs are gradually attaining interests. In our previous study, we confirmed the efficacy of glycocholic acid-conjugated polystyrene nanoparticles (GCPN) on apical sodium bile acid transporter (ASBT)-expressed SK-BR-3 cells. However, the transport mechanisms remain unknown, due to the nanosized carriers are unlikely to be pumped through the narrow cavities of ASBT. To clarify their transport pathways, in this article, pharmacological inhibition and gene knocking-down studies were performed, which revealed that GCPN were primarily internalized via non-caveolar lipid raft-mediated endocytosis. Proteomics was analyzed to explore the in-depth mechanisms. In total 561 proteins were identified and statistical overrepresentation test was used to analyze the gene ontology (GO) upregulated pathways based on the highly expressed proteins. It was found that multiple pathways were upregulated and might coordinate to assist the location of the GCPN-ASBT complex and the recycling of ASBT. Among the highly expressed proteins, myelin and lymphocyte protein 2 (MAL2) was selected and confirmed to colocalize with GCPN, which further supported the lipid raft-mediated process. These findings will help set up a platform for design the bile acid-modified nanomedicines and regulate their transport to improve their anticancer efficacy.
Collapse
Affiliation(s)
- Feiyang Deng
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
56
|
Wang L, Hou WT, Wang J, Xu D, Guo C, Sun L, Ruan K, Zhou CZ, Chen Y. Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets. Cell Res 2022; 32:501-504. [PMID: 35043010 PMCID: PMC9061823 DOI: 10.1038/s41422-021-00611-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
|
57
|
Multitasking Na+/Taurocholate Cotransporting Polypeptide (NTCP) as a Drug Target for HBV Infection: From Protein Engineering to Drug Discovery. Biomedicines 2022; 10:biomedicines10010196. [PMID: 35052874 PMCID: PMC8773476 DOI: 10.3390/biomedicines10010196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infections are among the major public health concerns worldwide with more than 250 million of chronically ill individuals. Many of them are additionally infected with the Hepatitis D virus, a satellite virus to HBV. Chronic infection frequently leads to serious liver diseases including cirrhosis and hepatocellular carcinoma, the most common type of liver cancer. Although current antiviral therapies can control HBV replication and slow down disease progress, there is an unmet medical need to identify therapies to cure this chronic infectious disease. Lately, a noteworthy progress in fighting against HBV has been made by identification of the high-affinity hepatic host receptor for HBV and HDV, namely Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1). Next to its primary function as hepatic uptake transporter for bile acids, NTCP is essential for the cellular entry of HBV and HDV into hepatocytes. Due to this high-ranking discovery, NTCP has become a valuable target for drug development strategies for HBV/HDV-infected patients. In this review, we will focus on a newly predicted three-dimensional NTCP model that was generated using computational approaches and discuss its value in understanding the NTCP’s membrane topology, substrate and virus binding taking place in plasma membranes. We will review existing data on structural, functional, and biological consequences of amino acid residue changes and mutations that lead to loss of NTCP’s transport and virus receptor functions. Finally, we will discuss new directions for future investigations aiming at development of new NTCP-based HBV entry blockers that inhibit HBV tropism in human hepatocytes.
Collapse
|
58
|
SLC10A7, an orphan member of the SLC10 family involved in congenital disorders of glycosylation. Hum Genet 2022; 141:1287-1298. [PMID: 34999954 DOI: 10.1007/s00439-021-02420-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca2+ regulation and is involved in proper glycosaminoglycan biosynthesis, especially heparan-sulfate, and N-glycosylation. This paper will review our current knowledge on the known and predicted structural and functional properties of this fascinating protein, and its link with the glycosylation process.
Collapse
|
59
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
60
|
Bosshart PD, Kalbermatter D, Bonetti S, Fotiadis D. The making of a potent L-lactate transport inhibitor. Commun Chem 2021; 4:128. [PMID: 36697570 PMCID: PMC9814091 DOI: 10.1038/s42004-021-00564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 01/28/2023] Open
Abstract
L-lactate is an important metabolite, energy source, and signaling molecule in health and disease. In mammals, its transport across biological membranes is mediated by monocarboxylate transporters (MCTs) of the solute carrier 16 (SLC16) family. Malfunction, overexpression or absence of transporters of this family are associated with diseases such as cancer and type 2 diabetes. Moreover, lactate acts as a signaling molecule and virulence factor in certain bacterial infections. Here, we report the rational, structure-guided identification of potent, nanomolar affinity inhibitors acting on an L-lactate-specific SLC16 homologue from the bacterium Syntrophobacter fumaroxidans (SfMCT). High-resolution crystal structures of SfMCT with bound inhibitors uncovered their interaction mechanism on an atomic level and the role of water molecules in inhibitor binding. The presented systematic approach is a valuable procedure for the identification of L-lactate transport inhibitors. Furthermore, identified inhibitors represent potential tool compounds to interfere with monocarboxylate transport across biological membranes mediated by MCTs.
Collapse
Affiliation(s)
- Patrick D. Bosshart
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland ,Present Address: leadXpro AG, Park Innovare, Villigen, Switzerland
| | - David Kalbermatter
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Sara Bonetti
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- grid.5734.50000 0001 0726 5157Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
61
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
62
|
Structures of cyanobacterial bicarbonate transporter SbtA and its complex with PII-like SbtB. Cell Discov 2021; 7:63. [PMID: 34373447 PMCID: PMC8352866 DOI: 10.1038/s41421-021-00287-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/20/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023] Open
|
63
|
Sudha G, Bassot C, Lamb J, Shu N, Huang Y, Elofsson A. The evolutionary history of topological variations in the CPA/AT transporters. PLoS Comput Biol 2021; 17:e1009278. [PMID: 34403419 PMCID: PMC8396727 DOI: 10.1371/journal.pcbi.1009278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
CPA/AT transporters are made up of scaffold and a core domain. The core domain contains two non-canonical helices (broken or reentrant) that mediate the transport of ions, amino acids or other charged compounds. During evolution, these transporters have undergone substantial changes in structure, topology and function. To shed light on these structural transitions, we create models for all families using an integrated topology annotation method. We find that the CPA/AT transporters can be classified into four fold-types based on their structure; (1) the CPA-broken fold-type, (2) the CPA-reentrant fold-type, (3) the BART fold-type, and (4) a previously not described fold-type, the Reentrant-Helix-Reentrant fold-type. Several topological transitions are identified, including the transition between a broken and reentrant helix, one transition between a loop and a reentrant helix, complete changes of orientation, and changes in the number of scaffold helices. These transitions are mainly caused by gene duplication and shuffling events. Structural models, topology information and other details are presented in a searchable database, CPAfold (cpafold.bioinfo.se).
Collapse
Affiliation(s)
- Govindarajan Sudha
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Claudio Bassot
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - John Lamb
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Nanjiang Shu
- Bioinformatics Short-term Support and Infrastructure (BILS), Science for Life Laboratory, Sweden
| | - Yan Huang
- Science for Life Laboratory, Karolinska Institutet, Stockholm University, Solna, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
64
|
Appelman MD, Wettengel JM, Protzer U, Oude Elferink RPJ, van de Graaf SFJ. Molecular regulation of the hepatic bile acid uptake transporter and HBV entry receptor NTCP. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158960. [PMID: 33932583 DOI: 10.1016/j.bbalip.2021.158960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Transporters expressed by hepatocytes and enterocytes play a critical role in maintaining the enterohepatic circulation of bile acids. The sodium taurocholate cotransporting polypeptide (NTCP), exclusively expressed at the basolateral side of hepatocytes, mediates the uptake of conjugated bile acids. In conditions where bile flow is impaired (cholestasis), pharmacological inhibition of NTCP-mediated bile acid influx is suggested to reduce hepatocellular damage due to bile acid overload. Furthermore, NTCP has been shown to play an important role in hepatitis B virus (HBV) and hepatitis Delta virus (HDV) infection by functioning as receptor for viral entry into hepatocytes. This review provides a summary of current molecular insight into the regulation of NTCP expression at the plasma membrane, hepatic bile acid transport, and NTCP-mediated viral infection.
Collapse
Affiliation(s)
- Monique D Appelman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
65
|
Mondal R, Rimon A, Masrati G, Ben-Tal N, Friedler A, Padan E. Towards Molecular Understanding of the pH Dependence Characterizing NhaA of Which Structural Fold is Shared by Other Transporters. J Mol Biol 2021; 433:167156. [PMID: 34273399 DOI: 10.1016/j.jmb.2021.167156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a 'CPA motif', we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - A Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - G Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - N Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - A Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - E Padan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
66
|
Qie D, Zhang Y, Gong X, He Y, Qiao L, Lu G, Li Y. SLC10A2 deficiency-induced congenital chronic bile acid diarrhea and stunting. Mol Genet Genomic Med 2021; 9:e1740. [PMID: 34192422 PMCID: PMC8404231 DOI: 10.1002/mgg3.1740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Diarrhea is a common occurrence in children below the age of 5 years. In chronic cases, it induces malnutrition that severely stunts growth. Bile acid diarrhea (BAD), caused by malabsorption of bile acid (BA), is a rare form of chronic diarrhea seldom observed in pediatric patients. Here, we present a clinical report on a novel case of chronic BAD, with severe stunting in an infant, induced by a homozygous mutation of SLC10A2. Methods We performed DNA extraction, whole‐exome sequencing analysis, and mutation analysis of SLC10A2 to obtain genetic data on the patient. We subsequently analyzed the patient's clinical and genetic data. Results The patient's clinical manifestations were chronic diarrhea with increased BAs in the feces and extreme stunting, which was diagnosed as BAD. A homozygous mutation of SLC10A2 at the c.313T>C (rs201206937) site was detected. Conclusion Our report reveals the youngest case illustrating the characteristics of BAD induced by genetic variant at 313T>C, and the second case entailing a clear association between a SLC10A2 genetic mutation and the onset of BAD. Our findings expand the mutant spectrum of the SLC10A2 gene and contribute to the refinement of the genotype–phenotype mapping of severe stunting induced by pediatric BAD. Moreover, they highlight the value of molecular genetic screening for diagnosing BAD in young patients.
Collapse
Affiliation(s)
- Di Qie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yunru He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
67
|
Cheng D, Han B, Zhang W, Wu W. Clinical effects of NTCP-inhibitor myrcludex B. J Viral Hepat 2021; 28:852-858. [PMID: 33599010 DOI: 10.1111/jvh.13490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
With extensive research on the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, the current treatment of interferon and nucleoside or nucleotide analogues provides reasonable control of viral replication in chronic hepatitis B (CHB). However, drug resistance may occur as a result of long-term treatment, and continuous covalently closed circular DNA (cccDNA) can cause disease relapse after drug withdrawal. Therefore, there is an urgent need for safe and effective antiviral drugs or methods to treat HBV and HDV infections. Myrcludex B is the first entry inhibitor that can inactivate HBV and HDV receptors, compete with HBV for the sodium-taurocholate co-transporting polypeptide, which has been identified as the bona fide receptor for HBV and HDV, block HBV infection in hepatocytes, and participate in HBV transcriptional suppression. Myrcludex B plays an important role in the inhibition of HBV replication and is a potential drug for phase III clinical trials. In this article, we review the progress on the efficacy and clinical application of myrcludex B in recent years.
Collapse
Affiliation(s)
- Dongliang Cheng
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Bing Han
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
68
|
Myo T, Wei F, Zhang H, Hao J, Zhang B, Liu Z, Cao G, Tian B, Shi G. Genome-wide identification of the BASS gene family in four Gossypium species and functional characterization of GhBASSs against salt stress. Sci Rep 2021; 11:11342. [PMID: 34059742 PMCID: PMC8166867 DOI: 10.1038/s41598-021-90740-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acid sodium symporter (BASS) family proteins encode a class of sodium/solute symporters. Even though the sodium transporting property of BASSs in mammals was well studied, their sodium transportability and functional roles in plant salt tolerance remained largely unknown. Here, BASS family members from 4 cotton species, as well as 30 other species were identified. Then, they were designated as members of BASS1 to BASS5 subfamilies according to their sequence similarity and phylogenetic relationships. There were 8, 11, 16 and 18 putative BASS genes in four cotton species. While whole-genome duplications (WGD) and segmental duplications rendered the expansion of the BASS gene family in cotton, BASS gene losses occurred in the tetraploid cotton during the evolution from diploids to allotetraploids. Concerning functional characterizations, the transcript profiling of GhBASSs revealed that they not only preferred tissue-specific expression but also were differently induced by various stressors and phytohormones. Gene silencing and overexpression experiments showed that GhBASS1 and GhBASS3 positively regulated, whereas GhBASS2, GhBASS4 and GhBASS5 negatively regulated plant salt tolerance. Taken together, BASS family genes have evolved before the divergence from the common ancestor of prokaryotes and eukaryotes, and GhBASSs are plastidial sodium-dependent metabolite co-transporters that can influence plant salt tolerance.
Collapse
Affiliation(s)
- Thwin Myo
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Fang Wei
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Honghao Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Jianfeng Hao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Bin Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Zhixian Liu
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gangqiang Cao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Baoming Tian
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gongyao Shi
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| |
Collapse
|
69
|
Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A 2021; 118:2101632118. [PMID: 34031249 DOI: 10.1073/pnas.2101632118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SbtA is a high-affinity, sodium-dependent bicarbonate transporter found in the cyanobacterial CO2-concentrating mechanism (CCM). SbtA forms a complex with SbtB, while SbtB allosterically regulates the transport activity of SbtA by binding with adenyl nucleotides. The underlying mechanism of transport and regulation of SbtA is largely unknown. In this study, we report the three-dimensional structures of the cyanobacterial Synechocystis sp. PCC 6803 SbtA-SbtB complex in both the presence and absence of HCO3 - and/or AMP at 2.7 Å and 3.2 Å resolution. An analysis of the inward-facing state of the SbtA structure reveals the HCO3 -/Na+ binding site, providing evidence for the functional unit as a trimer. A structural comparison found that SbtA adopts an elevator mechanism for bicarbonate transport. A structure-based analysis revealed that the allosteric inhibition of SbtA by SbtB occurs mainly through the T-loop of SbtB, which binds to both the core domain and the scaffold domain of SbtA and locks it in an inward-facing state. T-loop conformation is stabilized by the AMP molecules binding at the SbtB trimer interfaces and may be adjusted by other adenyl nucleotides. The unique regulatory mechanism of SbtA by SbtB makes it important to study inorganic carbon uptake systems in CCM, which can be used to modify photosynthesis in crops.
Collapse
|
70
|
Grosser G, Müller SF, Kirstgen M, Döring B, Geyer J. Substrate Specificities and Inhibition Pattern of the Solute Carrier Family 10 Members NTCP, ASBT and SOAT. Front Mol Biosci 2021; 8:689757. [PMID: 34079822 PMCID: PMC8165160 DOI: 10.3389/fmolb.2021.689757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Three carriers of the solute carrier family SLC10 have been functionally characterized so far. Na+/taurocholate cotransporting polypeptide NTCP is a hepatic bile acid transporter and the cellular entry receptor for the hepatitis B and D viruses. Its intestinal counterpart, apical sodium-dependent bile acid transporter ASBT, is responsible for the reabsorption of bile acids from the intestinal lumen. In addition, sodium-dependent organic anion transporter SOAT specifically transports sulfated steroid hormones, but not bile acids. All three carriers show high sequence homology, but significant differences in substrate recognition that makes a systematic structure-activity comparison attractive in order to define the protein domains involved in substrate binding and transport. By using stably transfected NTCP-, ASBT-, and SOAT-HEK293 cells, systematic comparative transport and inhibition experiments were performed with more than 20 bile acid and steroid substrates as well as different inhibitors. Taurolithocholic acid (TLC) was identified as the first common substrate of NTCP, ASBT and SOAT with K m values of 18.4, 5.9, and 19.3 µM, respectively. In contrast, lithocholic acid was the only bile acid that was not transported by any of these carriers. Troglitazone, BSP and erythrosine B were identified as pan-SLC10 inhibitors, whereas cyclosporine A, irbesartan, ginkgolic acid 17:1, and betulinic acid only inhibited NTCP and SOAT, but not ASBT. The HBV/HDV-derived myr-preS1 peptide showed equipotent inhibition of the NTCP-mediated substrate transport of taurocholic acid (TC), dehydroepiandrosterone sulfate (DHEAS), and TLC with IC50 values of 182 nM, 167 nM, and 316 nM, respectively. In contrast, TLC was more potent to inhibit myr-preS1 peptide binding to NTCP with IC50 of 4.3 µM compared to TC (IC50 = 70.4 µM) and DHEAS (IC50 = 52.0 µM). Based on the data of the present study, we propose several overlapping, but differently active binding sites for substrates and inhibitors in the carriers NTCP, ASBT, SOAT.
Collapse
Affiliation(s)
- Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Michael Kirstgen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Barbara Döring
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| |
Collapse
|
71
|
Quick M, Dwivedi M, Padan E. Insight into the direct interaction of Na + with NhaA and mechanistic implications. Sci Rep 2021; 11:7045. [PMID: 33782459 PMCID: PMC8007835 DOI: 10.1038/s41598-021-86318-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Na+/H+ antiporters comprise a family of membrane proteins evolutionarily conserved in all kingdoms of life that are essential in cellular ion homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystals provided insight in the structure of this molecular machine. However, structural data revealing the composition of the binding site for Na+ (or its surrogate Li+) is missing, representing a bottleneck in our understanding of the correlation between the structure and function of NhaA. Here, by adapting the scintillation proximity assay (SPA) for direct determination of Na+ binding to NhaA, we revealed that (i) NhaA is well adapted as the main antiporter for Na+ homeostasis in Escherichia coli and possibly in other bacteria as the cytoplasmic Na+ concentration is similar to the Na+ binding affinity of NhaA, (ii) experimental conditions affect NhaA-mediated cation binding, (iii) in addition to Na+ and Li+, the halide Tl+ interacts with NhaA, (iv) whereas acidic pH inhibits maximum binding of Na+ to NhaA, partial Na+ binding by NhaA is independent of the pH, an important novel insight into the effect of pH on NhaA cation binding.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Psychiatry and Center for Molecular Recognition, Columbia University Vagelos College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Manish Dwivedi
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
72
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
73
|
Dissecting the Conformational Dynamics of the Bile Acid Transporter Homologue ASBT NM. J Mol Biol 2021; 433:166764. [PMID: 33359100 DOI: 10.1016/j.jmb.2020.166764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.
Collapse
|
74
|
Wang X, Lyu Y, Ji Y, Sun Z, Zhou X. Substrate binding in the bile acid transporter ASBTYf from Yersinia frederiksenii. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:117-125. [DOI: 10.1107/s2059798320015004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) retrieves bile acids from the small intestine and plays a pivotal role in enterohepatic circulation. Currently, high-resolution structures are available for two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii), from which an elevator-style alternating-access mechanism has been proposed for substrate transport. A key concept in this model is that the substrate binds to the central cavity of the transporter so that the elevator-like motion can expose the bound substrate alternatingly to either side of the membrane during a transport cycle. However, no structure of an ASBT has been solved with a substrate bound in its central cavity, so how a substrate binds to ASBT remains to be defined. In this study, molecular docking, structure determination and functional analysis were combined to define and validate the details of substrate binding in ASBTYf. The findings provide coherent evidence to provide a clearer picture of how the substrate binds in the central cavity of ASBTYf that fits the alternating-access model.
Collapse
|
75
|
Wang X, Lyu Y, Ji Y, Sun Z, Zhou X. An engineered disulfide bridge traps and validates an outward-facing conformation in a bile acid transporter. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:108-116. [PMID: 33404530 DOI: 10.1107/s205979832001517x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) mediates the uptake of bile acids from the ileum lumen into enterocytes and presents a potential target for the treatment of several metabolic diseases, including type 2 diabetes. It has been proposed that the underlying mechanism for transport by ASBT is an elevator-style alternating-access model, which was deduced mainly by comparing high-resolution structures of two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii) in different conformations. However, one important issue is that the only outward-facing structure (PDB entry 4n7x) was obtained with an Na+-binding site mutant of ASBTYf, which severely cripples its transport function, and therefore the physiological relevance of the conformation in PDB entry 4n7x requires further careful evaluation. Here, another crystal structure is reported of ASBTYf that was captured in a state closely resembling the conformation in PDB entry 4n7x using an engineered disulfide bridge. The introduced cysteine mutations avoided any proposed Na+- or substrate-binding residues, and the resulting mutant retained both structural and functional integrity and behaved similarly to wild-type ASBTYf. These data support the hypothesis that the PDB entry 4n7x-like structure represents a functional outward-facing conformation of ASBTYf in its transport cycle.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ying Lyu
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yujia Ji
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
76
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
77
|
Dai F, Yoo WG, Lu Y, Song JH, Lee JY, Byun Y, Pak JH, Sohn WM, Hong SJ. Sodium-bile acid co-transporter is crucial for survival of a carcinogenic liver fluke Clonorchis sinensis in the bile. PLoS Negl Trop Dis 2020; 14:e0008952. [PMID: 33284789 PMCID: PMC7746286 DOI: 10.1371/journal.pntd.0008952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The liver fluke Clonorchis sinensis inhabits the bile ducts, where bile concentration disparities across the fluke cell membrane can cause bile intoxication. Sodium-bile acid co-transporter (SBAT) plays a crucial role in bile acid recycling. The process by which SBAT imports bile acids is electrically coupled to sodium ion co-transportation. Here, we report that the SBAT of C. sinensis (CsSBAT) is involved in bile acid transportation. CsSBAT cDNA encoded a putative polypeptide of 546 amino acid residues. Furthermore, CsSBAT consisted of ten putative transmembrane domains, and its 3D structure was predicted to form panel and core domains. The CsSBAT had one bile acid- and three Na+-binding sites, enabling coordination of a symport process. CsSBAT was mainly localized in the mesenchymal tissue throughout the fluke body and sparsely localized in the basement of the tegument, intestinal epithelium, and excretory bladder wall. Bile acid permeated into the adult flukes in a short time and remained at a low concentration level. Bile acid accumulated inside the mesenchymal tissue when CsSBAT was inhibited using polyacrylic acid–tetradeoxycholic acid conjugate. The accumulated bile acid deteriorated the C. sinensis adults leading to death. CsSBAT silencing shortened the lifespan of the fluke when it was placed into bile. Taken together, we propose that CsSBAT transports bile acids in the mesenchymal tissue and coordinate with outward transporters to maintain bile acid homeostasis of C. sinensis adults, contributing to C. sinensis survival in the bile environment. Clonorchiasis is a neglected tropical disease caused by infection with the liver fluke Clonorchis sinensis. C. sinensis is a biological carcinogen causing cholangiocarcinoma in humans. Juvenile worms inhabit and grow to adults in the bile ducts. Bile acids in the bile are double-edged molecules; they promote metabolism, but differences in their concentration across the cell membrane could lead to bile intoxication. The sodium-bile acid co-transporter of C. sinensis (CsSBAT) is indispensable for maintaining its normal physiology and bile detoxification in the bile duct. However, information related to the molecular and biological characteristics of the SBAT of liver flukes is not available. Here, we cloned CsSBAT for the first time in trematodes and characterized its tertiary structure and physiological functions. The sequential and structural properties of CsSBAT were similar to the apical sodium-bile acid co-transporter found in mammalian intestines. CsSBAT shared a mesenchymal tissue distribution with Na+-taurocholate co-transporting polypeptide in the hepatocytes adjacent to the bile ducts. Bile acids accumulated in C. sinensis adults when CsSBAT was inhibited, causing their death. This information might promote further studies on the physiological functions of SBAT and other trematode bile transporters and open new avenues toward developing novel anthelminthic drugs.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Liubei Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
78
|
Ruggiero MJ, Malhotra S, Fenton AW, Swint-Kruse L, Karanicolas J, Hagenbuch B. A clinically relevant polymorphism in the Na +/taurocholate cotransporting polypeptide (NTCP) occurs at a rheostat position. J Biol Chem 2020; 296:100047. [PMID: 33168628 PMCID: PMC7948949 DOI: 10.1074/jbc.ra120.014889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Conventionally, most amino acid substitutions at “important” protein positions are expected to abolish function. However, in several soluble-globular proteins, we identified a class of nonconserved positions for which various substitutions produced progressive functional changes; we consider these evolutionary “rheostats”. Here, we report a strong rheostat position in the integral membrane protein, Na+/taurocholate (TCA) cotransporting polypeptide, at the site of a pharmacologically relevant polymorphism (S267F). Functional studies were performed for all 20 substitutions (S267X) with three substrates (TCA, estrone-3-sulfate, and rosuvastatin). The S267X set showed strong rheostatic effects on overall transport, and individual substitutions showed varied effects on transport kinetics (Km and Vmax) and substrate specificity. To assess protein stability, we measured surface expression and used the Rosetta software (https://www.rosettacommons.org) suite to model structure and stability changes of S267X. Although buried near the substrate-binding site, S267X substitutions were easily accommodated in the Na+/TCA cotransporting polypeptide structure model. Across the modest range of changes, calculated stabilities correlated with surface-expression differences, but neither parameter correlated with altered transport. Thus, substitutions at rheostat position 267 had wide-ranging effects on the phenotype of this integral membrane protein. We further propose that polymorphic positions in other proteins might be locations of rheostat positions.
Collapse
Affiliation(s)
- Melissa J Ruggiero
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
79
|
Structure and regulation of the BsYetJ calcium channel in lipid nanodiscs. Proc Natl Acad Sci U S A 2020; 117:30126-30134. [PMID: 33208533 DOI: 10.1073/pnas.2014094117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BsYetJ is a bacterial homolog of transmembrane BAX inhibitor-1 motif-containing 6 (TMBIM6) membrane protein that plays a key role in the control of calcium homeostasis. However, the BsYetJ (or TMBIM6) structure embedded in a lipid bilayer is uncharacterized, let alone the molecular mechanism of the calcium transport activity. Herein, we report structures of BsYetJ in lipid nanodiscs identified by double electron-electron resonance spectroscopy. Our results reveal that BsYetJ in lipid nanodiscs is structurally different from those crystallized in detergents. We show that BsYetJ conformation is pH-sensitive in apo state (lacking calcium), whereas in a calcium-containing solution it is stuck in an intermediate, inert to pH changes. Only when the transmembrane calcium gradient is established can the calcium-release activity of holo-BsYetJ occur and be mediated by pH-dependent conformational changes, suggesting a dual gating mechanism. Conformational substates involved in the process and a key residue D171 relevant to the gating of calcium are identified. Our study suggests that BsYetJ/TMBIM6 is a pH-dependent, voltage-gated calcium channel.
Collapse
|
80
|
Joseph Naguib M, Moustafa Kamel A, Thabet Negmeldin A, Elshafeey AH, Elsayed I. Molecular docking and statistical optimization of taurocholate-stabilized galactose anchored bilosomes for the enhancement of sofosbuvir absorption and hepatic relative targeting efficiency. Drug Deliv 2020; 27:996-1009. [PMID: 32611266 PMCID: PMC8216436 DOI: 10.1080/10717544.2020.1787557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
The work aimed to improve both absorption and hepatic availability of sofosbuvir. Bilosomes and galactose-anchored bilosomes were investigated as potential nanocarriers for this purpose. Sofosbuvir is a class III drug with high solubility and low permeability. Thus, the drug entrapment into lipid-based galactose-anchored carriers would enhance drug permeability and improve its liver availability. The galactosylated taurocholate was designed and synthesized based on molecular docking studies, where both galactose and taurocholate molecules were connected in a way to avoid affecting crucial interactions and avoid steric clashes with their cellular uptake receptors. The suggested nano-carriers were prepared using a thin-film hydration technique with sodium taurocholate and span 60 as stabilizers. The prepared formulae were statistically optimized using a central composite design. The optimized plain and galactosylated formulae, composed of SAA to drug ratio of 1:1 w/w and sodium taurocholate to span ratio of 10:1 w/w, have a vesicular size, zeta potential and entrapment efficiency in the range of 140-150 nm, -50 mV and 85%, respectively. The optimized formulae were lyophilized to increase their physical stability and facilitate accurate drug dosing. In vivo results showed that Sofosbuvir availability in the liver was significantly increased after oral administration of the plain and the galactosylated bilosomal formulae when compared to the oral drug solution with relative targeting efficiencies (RTIs) of 1.51 and 3.66, respectively. These findings confirmed the hypothesis of considering the galactosylated bilosomes a promising nanocarrier to efficiently target sofosbuvir to the liver.
Collapse
Affiliation(s)
- Marianne Joseph Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed Thabet Negmeldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| |
Collapse
|
81
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
82
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
83
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
84
|
Dwivedi M. Site-directed mutations reflecting functional and structural properties of Ec-NhaA. Biochimie 2020; 180:79-89. [PMID: 33129932 DOI: 10.1016/j.biochi.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
NhaA antiporters are secondary integral membrane protein critical for maintaining the Na+/H+ cell homeostasis, as a result, they regulate fundamental processes like cell volume and intracellular pH. Exploration of the structural and functional properties can assist to make them effective human drug targets and mechanisms of salt-resistance in plants. NhaA proteins are integrated into cytoplasmic and intracellular membranes, transport 2H+/Na + across the membrane by the canonical alternating access mechanism. There are mutagenesis studies have done on Ec-NhaA predicting residues crucial for function and structure. The unique NhaA structural fold is formed in the middle of the membrane by two transmembrane segments (TMs), TM IV and XI which cross each other creating a delicate electrostatically balanced environment for the binding of Na+/H+. Previously, Asp164, Asp163 and Asp133 residues have been proposed as crucial for Na+/Li + binding on the based on crystal structure and mutation-based studies. However, the pathway and the binding sites for the two protons are still elusive and debatable. This review will provide comprehensive details on various mutations constructed in Ec-NhaA by different research groups using site-directed or random mutagenesis techniques. The selected residues for mutations are located on the sites which are more suspected to have a crucial role in function and structure on NhaA. This information on the single platform would accelerate further studies on the structure-function relationship on NhaA as well as will facilitate to predict the role of Na+/H+ antiporters in human diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Gomtinagar Ext., Lucknow, 226028, India.
| |
Collapse
|
85
|
Myo T, Tian B, Zhang Q, Niu S, Liu Z, Shi Y, Cao G, Ling H, Wei F, Shi G. Ectopic overexpression of a cotton plastidial Na + transporter GhBASS5 impairs salt tolerance in Arabidopsis via increasing Na + loading and accumulation. PLANTA 2020; 252:41. [PMID: 32856159 DOI: 10.1007/s00425-020-03445-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/18/2020] [Indexed: 05/11/2023]
Abstract
GhBASS5 is a member of the bile acid sodium symporter (BASS) gene family from cotton and a plastid-localized Na+ transporter that negatively regulates salt tolerance of plants. Soil salinization is a major constraint on global cotton production, and Na+ is the most dominant toxic ion in salinity stress. Hence, insights into the identities and properties of transporters that catalyze Na+ movement between different tissues and within the cell compartments are vital to understand the salt-tolerant mechanisms of plants. Here, we identified the GhBASS5 gene, a member of the bile acid sodium symporter (BASS) gene family from cotton, served as a plastidic Na+ transporter. GhBASS5 encodes a membrane protein localized in the plastid envelope. It was highly expressed in cotton roots and predominantly existed in the vascular cylinder. Heterogenous expression of GhBASS5 in Arabidopsis chloroplasts promoted Na+ uptake into chloroplasts, which contributed to an increased cytoplasmic Na+ concentration. And GhBASS5-overexpressed transgenic plants showed an increase in Na+ translocation from roots to shoots and an elevated Na+ content in both roots and shoots, but a dramatic decrease in the Na+ efflux from root tissues and the K+/Na+ ratio, especially under salt stress conditions. Furthermore, overexpressing GhBASS5 greatly damaged plastid functions and enhanced salt sensitivity in transgenic Arabidopsis when compared with wild-type plants under salt stress. Additionally, the salt-responsive transporter genes that regulate K+/Na+ homeostasis were dramatically expressed in GhBASS5-overexpressed lines, especially under salt stress conditions. Taken together, our results suggest that GhBASS5 is a plastid-localized Na+ transporter, and high expression of GhBASS5 impairs salt tolerance of plants via increasing Na+ transportation and accumulation at both cell and tissue levels.
Collapse
Affiliation(s)
- Thwin Myo
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Baoming Tian
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qi Zhang
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shasha Niu
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhixian Liu
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Department of Biochemistry, National University of Singapore, Singapore, 117597, Singapore
| | - Yinghui Shi
- Department of Biochemistry, National University of Singapore, Singapore, 117597, Singapore
| | - Gangqiang Cao
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hua Ling
- Department of Biochemistry, National University of Singapore, Singapore, 117597, Singapore
| | - Fang Wei
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Gongyao Shi
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
86
|
Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacol Ther 2020; 212:107539. [PMID: 32201314 DOI: 10.1016/j.pharmthera.2020.107539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
87
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
88
|
Functional (un)cooperativity in elevator transport proteins. Biochem Soc Trans 2020; 48:1047-1055. [PMID: 32573703 DOI: 10.1042/bst20190970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
The activity of enzymes is subject to regulation at multiple levels. Cooperativity, the interconnected behavior of active sites within a protein complex, directly affects protein activity. Cooperativity is a mode of regulation that requires neither extrinsic factors nor protein modifications. Instead, it allows enzymes themselves to modulate reaction rates. Cooperativity is an important regulatory mechanism in soluble proteins, but also examples of cooperative membrane proteins have been described. In this review, we summarize the current knowledge on interprotomer cooperativity in elevator-type proteins, a class of membrane transporters characterized by large rigid-body movements perpendicular to the membrane, and highlight well-studied examples and experimental approaches.
Collapse
|
89
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
90
|
Xu X, Shi H, Gong X, Chen P, Gao Y, Zhang X, Xiang S. Structural insights into sodium transport by the oxaloacetate decarboxylase sodium pump. eLife 2020; 9:53853. [PMID: 32459174 PMCID: PMC7274780 DOI: 10.7554/elife.53853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
The oxaloacetate decarboxylase sodium pump (OAD) is a unique primary-active transporter that utilizes the free energy derived from oxaloacetate decarboxylation for sodium transport across the cell membrane. It is composed of 3 subunits: the α subunit catalyzes carboxyl-transfer from oxaloacetate to biotin, the membrane integrated β subunit catalyzes the subsequent carboxyl-biotin decarboxylation and the coupled sodium transport, the γ subunit interacts with the α and β subunits and stabilizes the OAD complex. We present here structure of the Salmonella typhimurium OAD βγ sub-complex. The structure revealed that the β and γ subunits form a β3γ3 hetero-hexamer with extensive interactions between the subunits and shed light on the OAD holo-enzyme assembly. Structure-guided functional studies provided insights into the sodium binding sites in the β subunit and the coupling between carboxyl-biotin decarboxylation and sodium transport by the OAD β subunit.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowen Gong
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
91
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
92
|
Russell LE, Zhou Y, Lauschke VM, Kim RB. In Vitro Functional Characterization and in Silico Prediction of Rare Genetic Variation in the Bile Acid and Drug Transporter, Na+-Taurocholate Cotransporting Polypeptide (NTCP, SLC10A1). Mol Pharm 2020; 17:1170-1181. [DOI: 10.1021/acs.molpharmaceut.9b01200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laura E. Russell
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, N6A 5C1 London, Ontario, Canada
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Richard B. Kim
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, N6A 5C1 London, Ontario, Canada
- Division of Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, N6A 5A5 London, Ontario, Canada
| |
Collapse
|
93
|
An Interfacial Sodium Ion is an Essential Structural Feature of Fluc Family Fluoride Channels. J Mol Biol 2020; 432:1098-1108. [PMID: 31945374 DOI: 10.1016/j.jmb.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Fluc family fluoride channels are assembled as primitive antiparallel homodimers. Crystallographic studies revealed a cation bound at the center of the protein, where it is coordinated at the dimer interface by main chain carbonyl oxygen atoms from the midmembrane breaks in two corresponding transmembrane helices. Here, we show that this cation is a stably bound sodium ion, and although it is not a transported substrate, its presence is required for the channel to adopt an open, fluoride-conducting conformation. The interfacial site is selective for sodium over other cations, except for Li+, which competes with Na+ for binding, but does not support channel activity. The strictly structural role fulfilled by this sodium provides new context to understand the structures, mechanisms, and evolutionary origins of widespread Na+-coupled transporters.
Collapse
|
94
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
95
|
Naschberger A, Juyoux P, von Velsen J, Rupp B, Bowler MW. Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin. Acta Crystallogr D Struct Biol 2019; 75:1071-1083. [PMID: 31793901 PMCID: PMC6889915 DOI: 10.1107/s2059798319013500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023] Open
Abstract
Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.
Collapse
Affiliation(s)
- Andreas Naschberger
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| | - Pauline Juyoux
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jill von Velsen
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Bernhard Rupp
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
- C.V.M.O., k. k. Hofkristallamt, 991 Audrey Place, Vista, California, USA
| | - Matthew W. Bowler
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
96
|
Rimon A, Mondal R, Friedler A, Padan E. Cardiolipin is an Optimal Phospholipid for the Assembly, Stability, and Proper Functionality of the Dimeric Form of NhaA Na +/H + Antiporter. Sci Rep 2019; 9:17662. [PMID: 31776461 PMCID: PMC6881326 DOI: 10.1038/s41598-019-54198-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Cardiolipin (CL) was shown to bound to the dimer interface of NhaA Na+/H+ antiporter. Here, we explore the cardiolipin-NhaA interaction both in vitro and in vivo. Using a novel and straightforward in-vitro assay in which n-dodecyl β-D maltoside (DDM) detergent is used to delipidate the dimer interface and to split the dimers into monomers; the monomers are subsequently exposed to cardiolipin or the other E. coli phospholipids. Most efficient reconstitution of dimers is observed by cardiolipin. This assay is likely to be applicable to future studies of protein–lipid interactions. In-vivo experiments further reveal that cardiolipin is necessary for NhaA survival. Although less efficient phosphatidyl-glycerol (PG) can also reconstitute NhaA monomers to dimers. We also identify a putative cardiolipin binding site. Our observations may contribute to drug design, as human NhaA homologues, which are involved in severe pathologies, might also require specific phospholipids.
Collapse
Affiliation(s)
- Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ramakanta Mondal
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
97
|
Lin YH, Lin SY, Li GS, Weng SE, Tzeng SL, Hsiao YH, Hu NJ. Site-Directed Alkylation Detected by In-Gel Fluorescence (SDAF) to Determine the Topology Map and Probe the Solvent Accessibility of Membrane Proteins. Sci Rep 2019; 9:13171. [PMID: 31511541 PMCID: PMC6739316 DOI: 10.1038/s41598-019-49292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
The topology of helix-bundle membrane proteins provides low-resolution structural information with regard to the number and orientation of membrane-spanning helices, as well as the sidedness of intra/extra-cellular domains. In the past decades, several strategies have been developed to experimentally determine the topology of membrane proteins. However, generally, these methods are labour-intensive, time-consuming and difficult to implement for quantitative analysis. Here, we report a novel approach, site-directed alkylation detected by in-gel fluorescence (SDAF), which monitors the fluorescent band shift caused by alkylation of the EGFP-fused target membrane protein bearing one single introduced cysteine. In-gel fluorescence provides a unique readout of target membrane proteins with EGFP fusion from non-purified samples, revealing a distinct 5 kDa shift on SDS-PAGE gel due to conjugation with mPEG-MAL-5K. Using the structurally characterised bile acid transporter ASBTNM as an example, we demonstrate that SDAF generates a topology map consistent with the crystal structure. The efficiency of mPEG-MAL-5K modification at each introduced cysteine can easily be quantified and analysed, providing a useful tool for probing the solvent accessibility at a specific position of the target membrane protein.
Collapse
Affiliation(s)
- Yu-Hung Lin
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C
| | - Sung-Yao Lin
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C
| | - Guan-Syun Li
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C
| | - Shao-En Weng
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan, R.O.C
| | - Yu-Hsuan Hsiao
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C.. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C.. .,Ph.D. Program in Transnational Medicine, National Chung Hsing University, 145 Xinda Rd., South Dist., Taichung City, 402, Taiwan, R.O.C..
| |
Collapse
|
98
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
99
|
Transporter oligomerisation: roles in structure and function. Biochem Soc Trans 2018; 47:433-440. [PMID: 30578344 PMCID: PMC6393857 DOI: 10.1042/bst20180316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
Abstract
Oligomerisation is a key feature of integral membrane transporters with roles in structure, function and stability. In this review, we cover some very recent advances in our understanding of how oligomerisation affects these key transporter features, with emphasis on a few groups of transporters, including the nucleobase ascorbate transporters, neurotransmitter sodium symporters and major facilitator superfamily members.
Collapse
|
100
|
Eller C, Heydmann L, Colpitts CC, Verrier ER, Schuster C, Baumert TF. The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cell Mol Life Sci 2018; 75:3895-3905. [PMID: 30097692 PMCID: PMC7613421 DOI: 10.1007/s00018-018-2892-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.
Collapse
Affiliation(s)
- Carla Eller
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Che C Colpitts
- Division of Infection and Immunity, University College London, London, UK
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France.
| |
Collapse
|