51
|
Real ÁD, Santurtún A, Teresa Zarrabeitia M. Epigenetic related changes on air quality. ENVIRONMENTAL RESEARCH 2021; 197:111155. [PMID: 33891958 DOI: 10.1016/j.envres.2021.111155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The exposure to airborne particulate matter (PM) increases the risk of developing human diseases. Epigenetic mechanisms have been related to environmental exposures and human diseases. The present review is focused on current available studies, which show the relationship between epigenetic marks, exposure to air pollution and human's health. Air contaminants involved in epigenetic changes have been related to different specific mechanisms (DNA methylation, post-translational histone modifications and non-coding RNA transcripts), which are described in separate sections. Several studies describe how these epigenetic mechanisms are influenced by environmental factors including air pollution. This interaction between PM and epigenetic factors results in an altered profile of these marks, in both, globally and locus specific. Following this connection, specific epigenetic marks can be used as biomarkers, as well as, to find new therapeutic targets. For this purpose, some significant characteristics have been highlighted, such as, the spatiotemporal specificity of these marks, the relevance of the collected tissue and the specific changes stability. Air pollution has been related to a higher mortality rate due to non-accidental deaths. This exposure to particulate matter induces changes to the epigenome, which are increasing the susceptibility of human diseases. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PM exposure must be performed to find new targets and disease biomarkers.
Collapse
Affiliation(s)
- Álvaro Del Real
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain.
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - M Teresa Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
52
|
Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril 2021; 114:908-913. [PMID: 33160512 DOI: 10.1016/j.fertnstert.2020.09.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, new treatments have been developed for the population at large. Recently, large-scale genomic sequencing analyses have revealed tremendous genetic diversity between individuals. In diseases driven by genetic events such as cancer, genomic sequencing can unravel all the mutations that drive individual tumors. The ability to capture the genetic makeup of individual patients has led to the concept of precision medicine, a modern, technology-driven form of personalized medicine. Precision medicine matches each individual to the best treatment in a way that is tailored to his or her genetic uniqueness. To further personalize medicine, precision medicine increasingly incorporates and integrates data beyond genomics, such as epigenomics and metabolomics, as well as imaging. Increasingly, the robust use and integration of these modalities in precision medicine require the use of artificial intelligence and machine learning. This modern view of precision medicine, adopted early in certain areas of medicine such as cancer, has started to impact the field of reproductive medicine. Here we review the concepts and history of precision medicine and artificial intelligence, highlight their growing impact on reproductive medicine, and outline some of the challenges and limitations that these new fields have encountered in medicine.
Collapse
|
53
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
54
|
Chalasani N, Toden S, Sninsky JJ, Rava RP, Braun JV, Gawrieh S, Zhuang J, Nerenberg M, Quake SR, Maddala T. Noninvasive stratification of nonalcoholic fatty liver disease by whole transcriptome cell-free mRNA characterization. Am J Physiol Gastrointest Liver Physiol 2021; 320:G439-G449. [PMID: 33501884 PMCID: PMC8238173 DOI: 10.1152/ajpgi.00397.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic fibrosis stage is the most important determinant of outcomes in patients with nonalcoholic fatty liver disease (NAFLD). There is an urgent need for noninvasive tests that can accurately stage fibrosis and determine efficacy of interventions. Here, we describe a novel cell-free (cf)-mRNA sequencing approach that can accurately and reproducibly profile low levels of circulating mRNAs and evaluate the feasibility of developing a cf-mRNA-based NAFLD fibrosis classifier. Using separate discovery and validation cohorts with biopsy-confirmed NAFLD (n = 176 and 59, respectively) and healthy subjects (n = 23), we performed serum cf-mRNA RNA-Seq profiling. Differential expression analysis identified 2,498 dysregulated genes between patients with NAFLD and healthy subjects and 134 fibrosis-associated genes in patients with NAFLD. Comparison between cf-mRNA and liver tissue transcripts revealed significant overlap of fibrosis-associated genes and pathways indicating that the circulating cf-mRNA transcriptome reflects molecular changes in the livers of patients with NAFLD. In particular, metabolic and immune pathways reflective of known underlying steatosis and inflammation were highly dysregulated in the cf-mRNA profile of patients with advanced fibrosis. Finally, we used an elastic net ordinal logistic model to develop a classifier that predicts clinically significant fibrosis (F2-F4). In an independent cohort, the cf-mRNA classifier was able to identify 50% of patients with at least 90% probability of clinically significant fibrosis. We demonstrate a novel and robust cf-mRNA-based RNA-Seq platform for noninvasive identification of diverse hepatic molecular disruptions and for fibrosis staging with promising potential for clinical trials and clinical practice.NEW & NOTEWORTHY This work is the first study, to our knowledge, to utilize circulating cell-free mRNA sequencing to develop an NAFLD diagnostic classifier.
Collapse
Affiliation(s)
- Naga Chalasani
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | - Samer Gawrieh
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Stephen R. Quake
- 3Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, California
| | | |
Collapse
|
55
|
Ye Z, Hu W, Wu B, Zhang Y, Lei C, Williams I, Shouval DS, Kanegane H, Kim KM, de Ridder L, Shah N, Ling G, Yerushalmi B, Kotlarz D, Snapper S, Horn R, Klein C, Muise AM, Huang Y, Uhlig HH. Predictive Prenatal Diagnosis for Infantile-onset Inflammatory Bowel Disease Because of Interleukin-10 Signalling Defects. J Pediatr Gastroenterol Nutr 2021; 72:276-281. [PMID: 32925557 PMCID: PMC8191811 DOI: 10.1097/mpg.0000000000002937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Advances in genetic technologies provide opportunities for patient care and ethical challenges. Clinical care of patients with rare Mendelian disorders is often at the forefront of those developments. Whereas in classical polygenic inflammatory bowel disease (IBD), the predictive value of genetic variants is very low, predictive prenatal genetic diagnosis can inform families at high risk of severe genetic disorders. Patients with IL-10 signalling defects because of pathogenic variants in IL10RA, Il10RB, and IL10 develop severe infantile onset inflammatory bowel disease that is completely penetrant and has a high morbidity and substantial mortality despite treatment. METHODS We performed a survey among tertiary specialist paediatric centers of 10 countries on the utilization of predictive prenatal genetic diagnosis in IL-10 signalling defects. We retrospectively report prenatal genetics in a series of 8 families. RESULTS International variation in legislation, guidelines, expert opinion, as well as cultural and religious background of families and clinicians results in variable utilization of preimplantation and prenatal genetic testing for IL-10 signalling defects. Eleven referrals for prenatal diagnosis for IL-10 signalling defects were identified across 4 countries. We report on 8 families who underwent prenatal preimplantation monogenic testing after in vitro fertilization (n = 2) and/or by amniocentesis/chorion villus sampling (n = 6). A genetic diagnosis was established in 1 foetus and excluded in 7 foetuses (all IL10RA variants). CONCLUSIONS Prenatal genetic testing for IL10R-defects is feasible, yet the legal and ethical considerations are complex and controversial. In some countries, predictive genetics for IL-10-related signalling defects is entering clinical practice.
Collapse
Affiliation(s)
- Ziqing Ye
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Wenhui Hu
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Key Lab of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Isabelle Williams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramag Gan, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children’s Hospital 88, Olympic-Ro 43 Gil, Songpa-Gu, Seoul, Korea
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Neil Shah
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Galina Ling
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Scott Snapper
- Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Ruth Horn
- Wellcome Centre for Ethics and Humanities and the Ethox Centre, University of Oxford, UK
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aleixo M. Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit
| |
Collapse
|
56
|
Rabinowitz T, Deri-Rozov S, Shomron N. Improved noninvasive fetal variant calling using standardized benchmarking approaches. Comput Struct Biotechnol J 2020; 19:509-517. [PMID: 33510858 PMCID: PMC7809098 DOI: 10.1016/j.csbj.2020.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 11/28/2022] Open
Abstract
The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively decipher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves performance, particularly in indels and biparental loci. These results emphasize the importance of using widely accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promoting informed choices among families and physicians.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Deri-Rozov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
57
|
Wang Z, Cheng L, Sun Y, Wei X, Cai B, Liao L, Zhang Y, Zhao XZ. Enhanced Isolation of Fetal Nucleated Red Blood Cells by Enythrocyte-Leukocyte Hybrid Membrane-Coated Magnetic Nanoparticles for Noninvasive Pregnant Diagnostics. Anal Chem 2020; 93:1033-1042. [PMID: 33296189 DOI: 10.1021/acs.analchem.0c03933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fetal nucleated red blood cells (fNRBCs) in maternal peripheral blood containing the whole genetic information of the fetus may serve for noninvasive pregnant diagnostics (NIPD). However, the fetal cell-based NIPD is seriously limited by the poor purity of the isolated fNRBCs. Recently, the biomimetic cell membrane-camouflaged nanoparticles containing outstanding features have been widely used to detect and isolate rare cells from the peripheral blood samples. In this work, enythrocyte (RBC) and leukocyte (WBC) membranes are fused and coated onto magnet nanoparticles and then modified with anti-CD147 to isolate fNRBCs from the maternal peripheral blood with significant efficiency (∼90%) and purity (∼87%) in simulated spiked blood samples. Further, fNRBCs were isolated and identified from a series of maternal peripheral blood samples coming from pregnant women of 11-13 gestational weeks, and different chromosomal aneuploidies were diagnosed using fNRBCs isolated from maternal blood in early pregnancy. Our strategy may offer additional opportunity to overcome the limitations of current cell-based NIPD platforms.
Collapse
Affiliation(s)
- Zixiang Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Wei
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Liao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuanzhen Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
58
|
Toden S, Zhuang J, Acosta AD, Karns AP, Salathia NS, Brewer JB, Wilcock DM, Aballi J, Nerenberg M, Quake SR, Ibarra A. Noninvasive characterization of Alzheimer's disease by circulating, cell-free messenger RNA next-generation sequencing. SCIENCE ADVANCES 2020; 6:eabb1654. [PMID: 33298436 PMCID: PMC7821903 DOI: 10.1126/sciadv.abb1654] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/21/2020] [Indexed: 05/09/2023]
Abstract
The lack of accessible noninvasive tools to examine the molecular alterations occurring in the brain limits our understanding of the causes and progression of Alzheimer's disease (AD), as well as the identification of effective therapeutic strategies. Here, we conducted a comprehensive profiling of circulating, cell-free messenger RNA (cf-mRNA) in plasma of 126 patients with AD and 116 healthy controls of similar age. We identified 2591 dysregulated genes in the cf-mRNA of patients with AD, which are enriched in biological processes well known to be associated with AD. Dysregulated genes included brain-specific genes and resembled those identified to be dysregulated in postmortem AD brain tissue. Furthermore, we identified disease-relevant circulating gene transcripts that correlated with the severity of cognitive impairment. These data highlight the potential of high-throughput cf-mRNA sequencing to evaluate AD-related pathophysiological alterations in the brain, leading to precision healthcare solutions that could improve AD patient management.
Collapse
Affiliation(s)
- Shusuke Toden
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | - Jiali Zhuang
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Alexander D Acosta
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Amy P Karns
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Neeraj S Salathia
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, 800 S. Limestone Street, Lexington, KY 40536, USA
| | - Jonathan Aballi
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mike Nerenberg
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Arkaitz Ibarra
- Molecular Stethoscope Inc., 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
59
|
Dudley JC, Diehn M. Detection and Diagnostic Utilization of Cellular and Cell-Free Tumor DNA. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:199-222. [PMID: 33228464 DOI: 10.1146/annurev-pathmechdis-012419-032604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because cancer is caused by an accumulation of genetic mutations, mutant DNA released by tumors can be used as a highly specific biomarker for cancer. Although this principle was described decades ago, the advent and falling costs of next-generation sequencing have made the use of tumor DNA as a biomarker increasingly practical. This review surveys the use of cellular and cell-free DNA for the detection of cancer, with a focus on recent technological developments and applications to solid tumors. It covers (a) key principles and technology enabling the highly sensitive detection of tumor DNA; (b) assessment of tumor DNA in plasma, including for genotyping, minimal residual disease detection, and early detection of localized cancer; (c) detection of tumor DNA in body cavity fluids, such as urine or cerebrospinal fluid; and (d) challenges posed to the use of tumor DNA as a biomarker by the phenomenon of benign clonal expansions.
Collapse
Affiliation(s)
- Jonathan C Dudley
- Ludwig Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
60
|
Pös Z, Pös O, Styk J, Mocova A, Strieskova L, Budis J, Kadasi L, Radvanszky J, Szemes T. Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes. Int J Mol Sci 2020; 21:ijms21228634. [PMID: 33207777 PMCID: PMC7697251 DOI: 10.3390/ijms21228634] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes.
Collapse
Affiliation(s)
- Zuzana Pös
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jakub Styk
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, 811 08 Bratislava, Slovakia
| | - Angelika Mocova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | | | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Slovak Center of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Ludevit Kadasi
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jan Radvanszky
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| |
Collapse
|
61
|
De Backer J, Callewaert B, Muiño Mosquera L. Genética en la cardiopatía congénita: ¿estamos preparados? Rev Esp Cardiol 2020. [DOI: 10.1016/j.recesp.2020.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Wang Z, Cheng L, Wei X, Cai B, Sun Y, Zhang Y, Liao L, Zhao XZ. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed Microdevices 2020; 22:75. [PMID: 33079273 DOI: 10.1007/s10544-020-00531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Being easy, safe and reliable, non-invasive prenatal diagnosis (NIPD) has been greatly pursued in recent years. Holding the complete genetic information of the fetus, fetal nucleated red blood cells (fNRBCs) are viewed as a suitable target for NIPD application. However, effective separating fNRBCs from maternal peripheral blood for clinic use still faces great challenges, given that fNRBCs are extremely rare in maternal blood circulation. Here, by combining the high-throughput inertial microfluidic chip with multifunctional microspheres as size amplification, we develop a novel method to isolate fNRBCs with high performance. To enlarge the size difference between fNRBCs and normal blood cells, we use the gelatin coated microspheres to capture fNRBCs with anti-CD147 as specific recognizer at first. The size difference between fNRBCs captured by the microspheres and normal blood cells makes it easy to purify the captured fNRBCs through the spiral microfluidic chip. Finally, the purified fNRBCs are mildly released from the microspheres by enzymatically degrading the gelatin coating. Cell capture efficiency about 81%, high purity of 83%, as well as cell release viability over 80% were achieved using spiked samples by this approach. Additionally, fNRBCs were successfully detected from peripheral blood of pregnant women with an average of 24 fNRBCs per mL, suggesting the great potential of this method for clinical non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Zixiang Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| | - Lei Liao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
63
|
Ramkissoon LA, Pegram W, Haberberger J, Danziger N, Lesser G, Strowd R, Dahiya S, Cummings TJ, Bi WL, Abedalthagafi M, Sathyan P, McGregor K, Reddy P, Severson E, Williams E, Lin D, Edgerly C, Huang RSP, Hemmerich A, Creeden J, Brown C, Venstrom J, Hegde P, Ross JS, Alexander BM, Elvin J, Ramkissoon SH. Genomic Profiling of Circulating Tumor DNA From Cerebrospinal Fluid to Guide Clinical Decision Making for Patients With Primary and Metastatic Brain Tumors. Front Neurol 2020; 11:544680. [PMID: 33192972 PMCID: PMC7604477 DOI: 10.3389/fneur.2020.544680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite advances in systemic therapies for solid tumors, the development of brain metastases remains a significant contributor to overall cancer mortality and requires improved methods for diagnosing and treating these lesions. Similarly, the prognosis for malignant primary brain tumors remains poor with little improvement in overall survival over the last several decades. In both primary and metastatic central nervous system (CNS) tumors, the challenge from a clinical perspective centers on detecting CNS dissemination early and understanding how CNS lesions differ from the primary tumor, in order to determine potential treatment strategies. Acquiring tissue from CNS tumors has historically been accomplished through invasive neurosurgical procedures, which restricts the number of patients to those who can safely undergo a surgical procedure, and for which such interventions will add meaningful value to the care of the patient. In this review we discuss the potential of analyzing cell free DNA shed from tumor cells that is contained within the cerebrospinal fluid (CSF) as a sensitive and minimally invasive method to detect and characterize primary and metastatic tumors in the CNS.
Collapse
Affiliation(s)
- Lori A Ramkissoon
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Worthy Pegram
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - Glenn Lesser
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Roy Strowd
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI, United States
| | - Thomas J Cummings
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | | | - Eric Severson
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Erik Williams
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Douglas Lin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Claire Edgerly
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - James Creeden
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Priti Hegde
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Julia Elvin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC, United States.,Department of Pathology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
64
|
Rabinowitz T, Shomron N. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput Struct Biotechnol J 2020; 18:2463-2470. [PMID: 33005308 PMCID: PMC7509788 DOI: 10.1016/j.csbj.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) is a risk-free alternative to invasive methods for prenatal diagnosis, e.g. amniocentesis. NIPD is based on the presence of fetal DNA within the mother’s plasma cell-free DNA (cfDNA). Though currently available for various monogenic diseases through detection of point mutations, NIPD is limited to detecting one mutation or up to several genes simultaneously. Noninvasive prenatal whole exome/genome sequencing (WES/WGS) has demonstrated genome-wide detection of fetal point mutations in a few studies. However, Genome-wide NIPD of monogenic disorders currently has several challenges and limitations, mainly due to the small amounts of cfDNA and fetal-derived fragments, and the deep coverage required. Several approaches have been suggested for addressing these hurdles, based on various technologies and algorithms. The first relevant software tool, Hoobari, recently became available. Here we review the approaches proposed and the paths required to make genome-wide monogenic NIPD widely available in the clinic.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
65
|
Veziroglu EM, Mias GI. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front Genet 2020; 11:700. [PMID: 32765582 PMCID: PMC7379748 DOI: 10.3389/fgene.2020.00700] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cells release nanometer-scale, lipid bilayer-enclosed biomolecular packages (extracellular vesicles; EVs) into their surrounding environment. EVs are hypothesized to be intercellular communication agents that regulate physiological states by transporting biomolecules between near and distant cells. The research community has consistently advocated for the importance of RNA contents in EVs by demonstrating that: (1) EV-related RNA contents can be detected in a liquid biopsy, (2) disease states significantly alter EV-related RNA contents, and (3) sensitive and specific liquid biopsies can be implemented in precision medicine settings by measuring EV-derived RNA contents. Furthermore, EVs have medical potential beyond diagnostics. Both natural and engineered EVs are being investigated for therapeutic applications such as regenerative medicine and as drug delivery agents. This review focuses specifically on EV characterization, analysis of their RNA content, and their functional implications. The NIH extracellular RNA communication (ERC) program has catapulted human EV research from an RNA profiling standpoint by standardizing the pipeline for working with EV transcriptomics data, and creating a centralized database for the scientific community. There are currently thousands of RNA-sequencing profiles hosted on the Extracellular RNA Atlas alone (Murillo et al., 2019), encompassing a variety of human biofluid types and health conditions. While a number of significant discoveries have been made through these studies individually, integrative analyses of these data have thus far been limited. A primary focus of the ERC program over the next five years is to bring higher resolution tools to the EV research community so that investigators can isolate and analyze EV sub-populations, and ultimately single EVs sourced from discrete cell types, tissues, and complex biofluids. Higher resolution techniques will be essential for evaluating the roles of circulating EVs at a level which impacts clinical decision making. We expect that advances in microfluidic technologies will drive near-term innovation and discoveries about the diverse RNA contents of EVs. Long-term translation of EV-based RNA profiling into a mainstay medical diagnostic tool will depend upon identifying robust patterns of circulating genetic material that correlate with a change in health status.
Collapse
Affiliation(s)
- Eren M. Veziroglu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
66
|
De Backer J, Callewaert B, Muiño Mosquera L. Genetics in congenital heart disease. Are we ready for it? ACTA ACUST UNITED AC 2020; 73:937-947. [PMID: 32646792 DOI: 10.1016/j.rec.2020.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
Genetics has rightly acquired an important place in almost all medical disciplines in recent years and this is certainly the case in the field of congenital cardiology. Not only has this led to greater insight into the pathophysiology of congenital heart defects but it also has a beneficial impact on patient management. Integration of clinical genetics in multidisciplinary centers of expertise for CHD is therefore a clear recommendation. Adult and pediatric cardiologists play a crucial role in the process of genetic evaluation of patients and families and should have be familiar with red flags for referral for further clinical genetic elaboration, counseling, and eventual testing. Some basic knowledge is also important for the correct interpretation of genetic testing results. In this review article, we provide a practical overview of what genetic evaluation entails, which type of genetic tests are possible today, and how this can be used in practice for the individual patient.
Collapse
Affiliation(s)
- Julie De Backer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium.
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Pediatric Cardiology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
67
|
Papaleontiou M, Haymart MR. Thyroid nodules and cancer during pregnancy, post-partum and preconception planning: Addressing the uncertainties and challenges. Best Pract Res Clin Endocrinol Metab 2020; 34:101363. [PMID: 31786102 PMCID: PMC7242146 DOI: 10.1016/j.beem.2019.101363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroid nodules and thyroid cancer have become increasingly common worldwide. When discovered during pregnancy, they pose unique diagnostic and therapeutic challenges for both the treating physician and the patient. The benefits of treatment should be carefully weighed against risks that may adversely impact maternal and fetal health. In this review, we present current knowledge and controversies surrounding the management of thyroid nodules and thyroid cancer in pregnancy, in the post-partum period and during preconception planning.
Collapse
Affiliation(s)
- Maria Papaleontiou
- Medicine, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Health System, North Campus Research Complex, 2800 Plymouth Road, Bldg 16, Rm 453S, Ann Arbor, MI 48109, USA.
| | - Megan R Haymart
- Medicine, Divisions of Metabolism, Endocrinology, and Diabetes and Hematology/Oncology, Department of Internal Medicine, University of Michigan Health System, North Campus Research Complex, 2800 Plymouth Rd., Bldg. 16, Rm 408E, Ann Arbor, MI 48109, USA.
| |
Collapse
|
68
|
Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM, Dumont RA, Rigo F, Lentz JJ, Hastings ML, Brigande JV. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res 2020; 48:5065-5080. [PMID: 32249312 PMCID: PMC7229850 DOI: 10.1093/nar/gkaa194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Disabling hearing loss impacts ∼466 million individuals worldwide with 34 million children affected. Gene and pharmacotherapeutic strategies to rescue auditory function in mouse models of human deafness are most effective when administered before hearing onset, after which therapeutic efficacy is significantly diminished or lost. We hypothesize that preemptive correction of a mutation in the fetal inner ear prior to maturation of the sensory epithelium will optimally restore sensory function. We previously demonstrated that transuterine microinjection of a splice-switching antisense oligonucleotide (ASO) into the amniotic cavity immediately surrounding the embryo on embryonic day 13-13.5 (E13-13.5) corrected pre-mRNA splicing in the juvenile Usher syndrome type 1c (Ush1c) mouse mutant. Here, we show that this strategy only marginally rescues hearing and partially rescues vestibular function. To improve therapeutic outcomes, we microinjected ASO directly into the E12.5 inner ear. A single intra-otic dose of ASO corrects harmonin RNA splicing, restores harmonin protein expression in sensory hair cell bundles, prevents hair cell loss, improves hearing sensitivity, and ameliorates vestibular dysfunction. Improvements in auditory and vestibular function were sustained well into adulthood. Our results demonstrate that an ASO pharmacotherapeutic administered to a developing organ system in utero preemptively corrects pre-mRNA splicing to abrogate the disease phenotype.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - J Beth Kempton
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Han Jiang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alev M Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel A Dumont
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010 USA
| | - Jennifer J Lentz
- Department of Otorhinolaryngology, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John V Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
69
|
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit Rev Clin Lab Sci 2020; 57:484-507. [DOI: 10.1080/10408363.2020.1750558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Abel J. Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
70
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumour Biol 2020; 42:1010428320916314. [PMID: 32338581 DOI: 10.1177/1010428320916314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In vitro characterization of cell-free DNA using two-dimensional cell culture models is emerging as an important step toward an improved understanding of the physical and biological characteristics of cell-free DNA in human biology. However, precise measurement of the cell-free DNA in cell culture medium is highly dependent on the efficacy of the method used for DNA purification, and is often a juncture of experimental confusion. Therefore, in this study, we compared six commercially available cell-free DNA isolation kits for the recovery of cell-free DNA from the cell culture supernatant of a human bone cancer cell line (143B), including two magnetic bead-based manual kits, one automated magnetic bead-based extraction method, and three manual spin-column kits. Based on cell-free DNA quantitation and sizing, using the Qubit dsDNA HS assay and Bioanalyzer HS DNA assay, respectively, the different methods showed significant variability concerning recovery, reproducibility, and size discrimination. These findings highlight the importance of selecting a cell-free DNA extraction method that is appropriate for the aims of a study. For example, mutational analysis of cell-free DNA may be enhanced by a method that favors a high yield or is biased toward the isolation of short cell-free DNA fragments. In contrast, quantitative analysis of cell-free DNA in a comparative setting (e.g. measuring the fluctuation of cell-free DNA levels over time) may require the selection of a cell-free DNA isolation method that forgoes a high recovery for high reproducibility and minimal size bias.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
71
|
Du M, He Y, Chen J, Sun H, Fu Y, Wang J. Unique dual indexing PCR reduces chimeric contamination and improves mutation detection in cell-free DNA of pregnant women. Talanta 2020; 217:121035. [PMID: 32498851 DOI: 10.1016/j.talanta.2020.121035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 01/11/2023]
Abstract
Allele fraction measurement is an essential component in nucleic acid analysis. The formation of chimeric amplicons during multiplex PCR amplification, however, greatly affects the allele fraction even before downstream analysis. Previous error correction strategy with unique molecular indexing (UMI) targets mainly points mutations rather than chimeras. Since the mutant allele detection in pregnant women cell-free DNA (cfDNA) is limited by chimeric amplicon contamination, a more direct error correction solution is demanded. Here we demonstrate effective reduction of chimeric amplicon contamination by unique dual indexing. With error corrected deep sequencing analysis, we achieved 100% accuracy in 16 tests of the parental mutation inheritance and de novo mutations in cfDNA of pregnant women, whose fetuses were at risk of tuberous sclerosis complex or Marfan syndrome. Our error correction strategy could offer a versatile solution for accurate multiplex PCR amplification.
Collapse
Affiliation(s)
- Meijie Du
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yihua He
- Department of Echocardiography, And Key Laboratory of Fetal Heart Disease, Maternal and Child Medicine, Beijing AnZhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jian Chen
- Department of Echocardiography, And Key Laboratory of Fetal Heart Disease, Maternal and Child Medicine, Beijing AnZhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Hairui Sun
- Department of Echocardiography, And Key Laboratory of Fetal Heart Disease, Maternal and Child Medicine, Beijing AnZhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuwei Fu
- Department of Echocardiography, And Key Laboratory of Fetal Heart Disease, Maternal and Child Medicine, Beijing AnZhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
72
|
Genomic Medicine-Progress, Pitfalls, and Promise. Cell 2020; 177:45-57. [PMID: 30901547 DOI: 10.1016/j.cell.2019.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the Human Genome Project (HGP), strong expectations were set for the timeline and impact of genomics on medicine-an anticipated transformation in the diagnosis, treatment, and prevention of disease. In this Perspective, we take stock of the nascent field of genomic medicine. In what areas, if any, is genomics delivering on this promise, or is the path to success clear? Where are we falling short, and why? What have been the unanticipated developments? Overall, we argue that the optimism surrounding the transformational potential of genomics on medicine remains justified, albeit with a considerably different form and timescale than originally projected. We also argue that the field needs to pivot back to basics, as understanding the entirety of the genotype-to-phenotype equation is a likely prerequisite for delivering on the full potential of the human genome to advance the human condition.
Collapse
|
73
|
Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet Med 2020; 22:962-973. [PMID: 32024963 DOI: 10.1038/s41436-019-0748-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/27/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Whereas noninvasive prenatal screening for aneuploidies is widely implemented, there is an increasing need for universal approaches for noninvasive prenatal screening for monogenic diseases. Here, we present a cost-effective, generic cell-free fetal DNA (cffDNA) haplotyping approach to scan the fetal genome for the presence of inherited monogenic diseases. METHODS Families participating in the preimplantation genetic testing for monogenic disorders (PGT-M) program were recruited for this study. Two hundred fifty thousand single-nucleotide polymorphisms (SNPs) captured from maternal plasma DNA along with genomic DNA from family members were massively parallel sequenced. Parental genotypes were phased via an available genotype from a close relative, and the fetal genome-wide haplotype and copy number were determined using cffDNA haplotyping analysis based on estimation and segmentation of fetal allele presence in the maternal plasma. RESULTS In all families tested, mutational profiles from cffDNA haplotyping are consistent with embryo biopsy profiles. Genome-wide fetal haplotypes are on average 97% concordant with the newborn haplotypes and embryo haplotypes. CONCLUSION We demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs from maternal plasma cell-free DNA (cfDNA) allows haplotyping and copy-number profiling of the fetal genome during pregnancy. The method enables the accurate reconstruction of the fetal haplotypes and can be easily implemented in clinical practice.
Collapse
|
74
|
Ibarra A, Zhuang J, Zhao Y, Salathia NS, Huang V, Acosta AD, Aballi J, Toden S, Karns AP, Purnajo I, Parks JR, Guo L, Mason J, Sigal D, Nova TS, Quake SR, Nerenberg M. Non-invasive characterization of human bone marrow stimulation and reconstitution by cell-free messenger RNA sequencing. Nat Commun 2020; 11:400. [PMID: 31964864 PMCID: PMC6972916 DOI: 10.1038/s41467-019-14253-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023] Open
Abstract
Circulating cell-free mRNA (cf-mRNA) holds great promise as a non-invasive diagnostic biomarker. However, cf-mRNA composition and its potential clinical applications remain largely unexplored. Here we show, using Next Generation Sequencing-based profiling, that cf-mRNA is enriched in transcripts derived from the bone marrow compared to circulating cells. Further, longitudinal studies involving bone marrow ablation followed by hematopoietic stem cell transplantation in multiple myeloma and acute myeloid leukemia patients indicate that cf-mRNA levels reflect the transcriptional activity of bone marrow-resident hematopoietic lineages during bone marrow reconstitution. Mechanistically, stimulation of specific bone marrow cell populations in vivo using growth factor pharmacotherapy show that cf-mRNA reflects dynamic functional changes over time associated with cellular activity. Our results shed light on the biology of the circulating transcriptome and highlight the potential utility of cf-mRNA to non-invasively monitor bone marrow involved pathologies. Circulating cell-free mRNA holds great promise as a non-invasive diagnostic biomarker. Here the authors show that cell-free mRNA captures transcripts from the bone marrow and can be used to non-invasively monitor dynamic changes in bone marrow physiology.
Collapse
Affiliation(s)
- Arkaitz Ibarra
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Jiali Zhuang
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yue Zhao
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Neeraj S Salathia
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Vera Huang
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Alexander D Acosta
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jonathan Aballi
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shusuke Toden
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Amy P Karns
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Intan Purnajo
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Julianna R Parks
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Lucy Guo
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - James Mason
- Scripps Clinic Medical Group, Scripps Green Hospital, 10666 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Darren Sigal
- Scripps Clinic Medical Group, Scripps Green Hospital, 10666 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tina S Nova
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University and Chan Zuckerberg Biohub, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Michael Nerenberg
- Molecular Stethoscope, Inc., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
75
|
Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Several externally blinded validation and implementation studies in the last 9 years have shown that it is now possible, through analysis of cell-free (cf) DNA in maternal blood, to effectively detect a high proportion of fetuses affected by trisomies 21, 18, and 13 at a much lower false-positive rate (FPR) than all other existing screening methods. This article is aimed at reviewing technical and clinical considerations for implementing cfDNA testing in routine practice, including methods of analysis, performance of the test, models for clinical implementation, and interpretation of results.
Collapse
|
76
|
Sabbagh R, Van den Veyver IB. The current and future impact of genome-wide sequencing on fetal precision medicine. Hum Genet 2019; 139:1121-1130. [PMID: 31754893 DOI: 10.1007/s00439-019-02088-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Next-generation sequencing and other genomic technologies are transforming prenatal and reproductive screening and testing for fetal genetic disorders at an unprecedented pace. Original approaches of screening and testing for fetal genetic and genomic disorders were focused on a few more prevalent conditions that were easily diagnosable with pre-genomic era diagnostic tools. First, chromosomal microarray analysis and then next-generation sequencing brought technology capable of more detailed genomic evaluation to prenatal genetic screening and diagnosis. This has facilitated parallel introduction of a variety of new tests on maternal blood samples, including expanded carrier screening and cell-free DNA-based non-invasive screening for fetal aneuploidy, selected copy number variants, and single-gene disorders. Genomic tests on fetal DNA samples, obtained primarily through amniocentesis or chorionic villus sampling, include chromosomal microarray analysis and gene panel and exome sequencing. All these form the diagnostic pillar of the emerging field of fetal precision medicine, but their implementation is associated with ethical, counseling and healthcare resource utilization challenges. We discuss where in the reproductive and prenatal care continuum these exciting new technologies are integrated, along with associated challenges. We propose areas of priority for research to gain the data in support of their responsible implementation into clinical reproductive and prenatal care.
Collapse
Affiliation(s)
- Riwa Sabbagh
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA.,Pavilion for Women, Texas Children's Hospital, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Pavilion for Women, Texas Children's Hospital, Houston, TX, USA. .,Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
77
|
Haidar H, Vanstone M, Laberge AM, Bibeau G, Ghulmiyyah L, Ravitsky V. Cross-cultural perspectives on decision making regarding noninvasive prenatal testing: A comparative study of Lebanon and Quebec. AJOB Empir Bioeth 2019; 9:99-111. [PMID: 29847254 DOI: 10.1080/23294515.2018.1469551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noninvasive prenatal testing (NIPT), based on the detection of cell-free fetal DNA in maternal blood, has transformed the landscape of prenatal care by offering clinical benefits (noninvasive, high specificity and sensitivity, early detection of abnormalities) compared to existing prenatal screening tests. NIPT has expanded rapidly and is currently commercially available in most of the world. As NIPT spreads globally, culturally sensitive and ethically sound implementation will require policies that take into consideration the social and cultural context of prenatal testing decisions. In a Western context, the main ethical argument for providing access and public funding of prenatal tests is the promotion of reproductive autonomy (also referred to as "procreative liberty" and "reproductive freedom"), by enabling pregnant women and couples to access information about the fetus in order to choose a certain course of action for pregnancy management (continuation of pregnancy and preparation for birth or termination). So how is the framework of reproductive autonomy operationalized in non-Western cultural contexts? We used Quebec, Canada, and Beirut, Lebanon, for case studies to explore what ethical considerations related to reproductive autonomy should guide the implementation of the test in various cultural contexts. To answer this question, we conducted a qualitative study to (1) explore the perceptions, values, and preferences of pregnant women and their partners about NIPT and (2) examine how these values and perceptions influence reproductive autonomy and decision making in relation to NIPT in these two different cultural settings, Lebanon and Quebec. Our findings may guide health care professionals in providing counseling and in helping women and their partners make better informed prenatal testing decisions. Further, at a policy level, such understanding might inform the development of local guidelines and policies that are appropriate to each context.
Collapse
Affiliation(s)
- Hazar Haidar
- a Bioethics Program, Department of Social and Preventive Medicine , School of Public Health, University of Montreal
| | | | - Anne-Marie Laberge
- c Medical Genetics, Department of Pediatrics, and Research Center , Centre Hospitalier Universitaire Sainte-Justine.,d Department of Pediatrics and Department of Preventive and Social Medicine , Université de Montréal
| | - Gilles Bibeau
- e Department of Anthropology, Faculty of Arts and Sciences , Université de Montréal
| | - Labib Ghulmiyyah
- f Department of Obstetrics and Gynecology , American University of Beirut
| | - Vardit Ravitsky
- g Bioethics Program, Department of Social and Preventive Medicine , School of Public Health, Université de Montréal
| |
Collapse
|
78
|
Prenatal maternal biomarkers for the early diagnosis of congenital malformations: A review. Pediatr Res 2019; 86:560-566. [PMID: 31091529 DOI: 10.1038/s41390-019-0429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Congenital anomalies cause ~7% of all neonatal deaths, many of which have no identified pathophysiological cause. Because accurate and robust laboratory tests are unavailable for most birth defects, physicians rely on imaging such as ultrasound and MRI. Biomarkers from human body fluids are considered a powerful diagnostic tool to assess human disease and health as it mirrors an individual's condition. Minimally invasive 'liquid biopsies' from blood samples are highly valuable for diagnosis, prognosis, risk assessment, and treatment of many conditions. Recent large-scale analysis ('omics') have enabled researchers to identify novel biomarkers in different areas. To accurately facilitate the early detection of congenital anomalies, the identification of biomarkers from maternal plasma should be promoted. This approach will uncover new opportunities in prenatal diagnosing and likely lead to a better understanding of the pathogenesis of congenital anomalies.
Collapse
|
79
|
Li J, Wang L, Yang G, Wang Y, Guo C, Liu S, Gao Q, Zhang H. Changes in circulating cell-free nuclear DNA and mitochondrial DNA of patients with adolescent idiopathic scoliosis. BMC Musculoskelet Disord 2019; 20:479. [PMID: 31653238 PMCID: PMC6815015 DOI: 10.1186/s12891-019-2869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) which characterized by complex three-dimensional deformity of spine has been difficult to cure because of the unknown etiopathology and uncertainty of progression. Nowadays, circulating cell-free (ccf) DNA was found to be a potential biomarker for several benign and malignant diseases. However, whether ccf DNA can be a biomarker for AIS has not been reported yet. In this study, we investigate the circulating cell-free nuclear DNA (ccf n-DNA) and mitochondrial DNA (ccf mt-DNA) concentrations in the plasma of patients with AIS and controls (CT), and the changed plasma ccf n-DNA and ccf mt-DNA levels and their association with clinical parameters were assessed. METHODS The plasma of peripheral blood from 69 AIS patients and 21 age-matched CT was collected for ccf DNA analysis. Quantitative PCR was used to detect ccf n-DNA and ccf mt-DNA levels, and correlation analyses between the ccf n-DNA and ccf mt-DNA levels and clinical characteristics were conducted. Receiver operator curves (ROC) were used to analyze the sensitivity and specificity of ccf n-DNA and ccf mt-DNA levels to different characteristics. RESULTS The plasma ccf n-DNA levels of both GAPDH and ACTB were significantly decreased in AIS patients compared with those in controls, while the plasma ccf mt-DNA levels did not changed. According to sex-related analyses, the ccf n-DNA levels in male CT-M was higher than that in female CT and male AIS, but the ccf n-DNA levels in female AIS was not significantly changed when compared with male AIS or female CT. However, the concentration of ccf mt-DNA in female AIS increased significantly when compared with male AIS. Surprisingly, Lenke type-related analyses suggested that Lenke type 1 patients had lower ccf n-DNA levels, whereas Lenke type 5 patients had higher ccf mt-DNA levels compared with those of controls. However, a lower sensitivity and specificity of AIS predicted by ccf n-DNA or ccf mt-DNA levels was observed, whether in total, by sex, or by Lenke type. CONCLUSION Although with no/little predictive accuracy of AIS/progressed AIS by ccf DNA levels, significantly changed plasma ccf DNA levels were observed in AIS patients compared with those in controls.
Collapse
Affiliation(s)
- Jiong Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Longjie Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Guanteng Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Yunjia Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Chaofeng Guo
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Shaohua Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Qile Gao
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| | - Hongqi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008 China
| |
Collapse
|
80
|
Llamas B, Narzisi G, Schneider V, Audano PA, Biederstedt E, Blauvelt L, Bradbury P, Chang X, Chin CS, Fungtammasan A, Clarke WE, Cleary A, Ebler J, Eizenga J, Sibbesen JA, Markello CJ, Garrison E, Garg S, Hickey G, Lazo GR, Lin MF, Mahmoud M, Marschall T, Minkin I, Monlong J, Musunuri RL, Sagayaradj S, Novak AM, Rautiainen M, Regier A, Sedlazeck FJ, Siren J, Souilmi Y, Wagner J, Wrightsman T, Yokoyama TT, Zeng Q, Zook JM, Paten B, Busby B. A strategy for building and using a human reference pangenome. F1000Res 2019; 8:1751. [PMID: 34386196 PMCID: PMC8350888 DOI: 10.12688/f1000research.19630.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 01/27/2024] Open
Abstract
In March 2019, 45 scientists and software engineers from around the world converged at the University of California, Santa Cruz for the first pangenomics codeathon. The purpose of the meeting was to propose technical specifications and standards for a usable human pangenome as well as to build relevant tools for genome graph infrastructures. During the meeting, the group held several intense and productive discussions covering a diverse set of topics, including advantages of graph genomes over a linear reference representation, design of new methods that can leverage graph-based data structures, and novel visualization and annotation approaches for pangenomes. Additionally, the participants self-organized themselves into teams that worked intensely over a three-day period to build a set of pipelines and tools for specific pangenomic applications. A summary of the questions raised and the tools developed are reported in this manuscript.
Collapse
Affiliation(s)
- Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | - Valerie Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Peter A. Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan Biederstedt
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02215, USA
| | - Lon Blauvelt
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Bradbury
- Robert W. Holley Center, USDA-ARS, Ithaca, NY, 14853, USA
| | - Xian Chang
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | | | | | - Alan Cleary
- National Center for Genome Resources 87505, Santa Fe, NM, 87505, USA
| | - Jana Ebler
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Jordan Eizenga
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jonas A. Sibbesen
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Charles J. Markello
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Shilpa Garg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Glenn Hickey
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Gerard R. Lazo
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710-1105, USA
| | | | - Medhat Mahmoud
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, TX, 77030, USA
| | | | - Ilia Minkin
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jean Monlong
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | - Sagayamary Sagayaradj
- Genome Center, University of California, Davis, Davis, CA, USA
- BASF, West Sacramento, CA, USA
| | - Adam M. Novak
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | - Allison Regier
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, 63108, USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, TX, 77030, USA
| | - Jouni Siren
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Toshiyuki T. Yokoyama
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Qiandong Zeng
- Laboratory Corporation of America Holdings, Westborough, MA, 01581, USA
| | - Justin M. Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Ben Busby
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
81
|
Llamas B, Narzisi G, Schneider V, Audano PA, Biederstedt E, Blauvelt L, Bradbury P, Chang X, Chin CS, Fungtammasan A, Clarke WE, Cleary A, Ebler J, Eizenga J, Sibbesen JA, Markello CJ, Garrison E, Garg S, Hickey G, Lazo GR, Lin MF, Mahmoud M, Marschall T, Minkin I, Monlong J, Musunuri RL, Sagayaradj S, Novak AM, Rautiainen M, Regier A, Sedlazeck FJ, Siren J, Souilmi Y, Wagner J, Wrightsman T, Yokoyama TT, Zeng Q, Zook JM, Paten B, Busby B. A strategy for building and using a human reference pangenome. F1000Res 2019; 8:1751. [PMID: 34386196 PMCID: PMC8350888 DOI: 10.12688/f1000research.19630.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
In March 2019, 45 scientists and software engineers from around the world converged at the University of California, Santa Cruz for the first pangenomics codeathon. The purpose of the meeting was to propose technical specifications and standards for a usable human pangenome as well as to build relevant tools for genome graph infrastructures. During the meeting, the group held several intense and productive discussions covering a diverse set of topics, including advantages of graph genomes over a linear reference representation, design of new methods that can leverage graph-based data structures, and novel visualization and annotation approaches for pangenomes. Additionally, the participants self-organized themselves into teams that worked intensely over a three-day period to build a set of pipelines and tools for specific pangenomic applications. A summary of the questions raised and the tools developed are reported in this manuscript.
Collapse
Affiliation(s)
- Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | - Valerie Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan Biederstedt
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02215, USA
| | - Lon Blauvelt
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Bradbury
- Robert W. Holley Center, USDA-ARS, Ithaca, NY, 14853, USA
| | - Xian Chang
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | | | | | - Alan Cleary
- National Center for Genome Resources 87505, Santa Fe, NM, 87505, USA
| | - Jana Ebler
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Jordan Eizenga
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jonas A Sibbesen
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Charles J Markello
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Shilpa Garg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Glenn Hickey
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Gerard R Lazo
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710-1105, USA
| | | | - Medhat Mahmoud
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, TX, 77030, USA
| | | | - Ilia Minkin
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jean Monlong
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | - Sagayamary Sagayaradj
- Genome Center, University of California, Davis, Davis, CA, USA.,BASF, West Sacramento, CA, USA
| | - Adam M Novak
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | - Allison Regier
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, 63108, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, TX, 77030, USA
| | - Jouni Siren
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Toshiyuki T Yokoyama
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Qiandong Zeng
- Laboratory Corporation of America Holdings, Westborough, MA, 01581, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Ben Busby
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
82
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol 2019; 41:1010428319866369. [DOI: 10.1177/1010428319866369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaining a better understanding of the biological properties of cell-free DNA constitutes an important step in the development of clinically meaningful cell-free DNA–based tests. Since the in vivo characterization of cell-free DNA is complicated by the immense heterogeneity of blood samples, an increasing number of in vitro cell culture experiments, which offer a greater level of control, are being conducted. However, cell culture studies are currently faced with three notable caveats. First, the concentration of cell-free DNA in vitro is relatively low. Second, the median amount and size of cell-free DNA in culture medium varies greatly between cell types. Third, the amount and size of cell-free DNA in the culture medium of a single cell line fluctuates over time. Although these are interesting findings, it can also be a great source of experimental confusion and emphasizes the importance of method optimization and standardization. Therefore, in this study, we compared five commonly used cell-free DNA quantification methods, including quantitative polymerase chain reaction, Qubit Double-Stranded DNA High Sensitivity assay, Quant-iT PicoGreen Assay, Bioanalyzer High Sensitivity DNA assay, and NanoDrop Onec. Analysis of the resulting data, along with an interpretation of theoretical values (i.e. the theoretical detection and quantification limits of the respective methods), enables the calculation of optimal conditions for several important preanalytical steps pertaining to each quantification method and different cell types, including the (1) time-point at which culture medium should be collected for cell-free DNA extraction, (2) amount of cell culture supernatant from which to isolate cell-free DNA, (3) volume of elution buffer, and (4) volume of cell-free DNA sample to use for quantification.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
83
|
Noda Y, Kato T, Kato A, Nishizawa H, Miyazaki J, Ito M, Terasawa S, Sekiya T, Fujii T, Kurahashi H. Potentially effective method for fetal gender determination by noninvasive prenatal testing for X-linked disease. Congenit Anom (Kyoto) 2019; 59:88-92. [PMID: 29926512 DOI: 10.1111/cga.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Examination of maternal plasma cell-free DNA (cfDNA) for noninvasive prenatal testing for fetal trisomy is a highly effective method for pregnant women at high risk. This can be also applied to fetal gender determination in female carriers of severe X-linked disease. Polymerase chain reaction (PCR) analysis is a relatively simpler and less expensive method of detecting Y chromosome-specific repeats (Y-specific PCR; YSP), but is limited by the risk of false-negative results. To address this, we have developed a combined strategy incorporating YSP and an estimation of the fetal DNA fraction. Multiplex PCR for 30 single nucleotide polymorphism (SNP) loci selected by high heterozygosity enables the robust detection of the fetal DNA fraction in cfDNA. The cfDNA sample is first subjected to YSP. When the YSP result is positive, the fetus is male and invasive testing for an X-linked mutation is then required. When the YSP result is negative, the cfDNA sample is analyzed using multiplex PCR. If fetal DNA is then found in the cfDNA, invasive testing is not then required. If the multiplex PCR analysis of cfDNA is negative for fetal DNA, the fetal gender cannot be determined and invasive testing is still required. Our technique provides a potentially effective procedure that can help to avoid unnecessary invasive prenatal testing in some female carriers of severe X-linked disease.
Collapse
Affiliation(s)
- Yoshiteru Noda
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Asuka Kato
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Jun Miyazaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mayuko Ito
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Sumire Terasawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
84
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|
85
|
Hu P, Liang D, Chen Y, Lin Y, Qiao F, Li H, Wang T, Peng C, Luo D, Liu H, Xu Z. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med 2019; 17:124. [PMID: 30975179 PMCID: PMC6460836 DOI: 10.1186/s12967-019-1871-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background Noninvasive prenatal screening (NIPS) based on cell-free fetal DNA (cffDNA) has rapidly been applied into clinic. However, the reliability of this method largely depends on the concentration of cffDNA in the maternal plasma. The chance of test failure results or false negative results would increase when cffDNA fraction is low. In this study, we set out to develop a method to enrich the cffDNA for NIPS based on the size difference between cell-free DNA (cfDNA) of fetal origin and maternal origin, and to evaluate whether the new NIPS method can improve the test quality. Methods We utilized 10,000 previous NIPS data to optimize a size-selection strategy for enrichment. Then, we retrospectively performed our new NIPS method with cffDNA enrichment on the 1415 NIPS samples, including 1404 routine cases and 11 false negative cases, and compared the results to the original NIPS results. Results The 10,000 NIPS data revealed the fetal fraction in short cfDNA fragments (< 160 bp) is significantly higher. By using our new NIPS strategy on the 1404 routine cases, the fetal fraction increased from 11.3 ± 4.2 to 22.6 ± 6.6%, and the new method performed a significant decrease of test-failure rate (0.1% vs 0.7%, P < 0.01). Moreover, in 45.5% (5/11) of the false negative cases, fetal trisomies were successfully detected by our new NIPS method. Conclusions We developed an effective method to enrich cffDNA for NIPS, which shows an increased success rate and a reduced chance of false negative comparing to the ordinary NIPS method. Electronic supplementary material The online version of this article (10.1186/s12967-019-1871-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Dong Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yangyi Chen
- CapitalBio Technology Inc., Beijing, 101111, China.,CapitalBio Genomics Co., Ltd., Dongguan, 523808, China.,CapitalBio MedLab, Beijing, 102206, China
| | - Ying Lin
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Fengchang Qiao
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hang Li
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Ting Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu, China
| | - Chunfang Peng
- CapitalBio Technology Inc., Beijing, 101111, China.,CapitalBio Genomics Co., Ltd., Dongguan, 523808, China.,CapitalBio MedLab, Beijing, 102206, China
| | - Donghong Luo
- CapitalBio Technology Inc., Beijing, 101111, China.,CapitalBio Genomics Co., Ltd., Dongguan, 523808, China.,CapitalBio MedLab, Beijing, 102206, China
| | - Hailiang Liu
- CapitalBio Technology Inc., Beijing, 101111, China. .,CapitalBio Genomics Co., Ltd., Dongguan, 523808, China. .,CapitalBio MedLab, Beijing, 102206, China.
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
86
|
Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G, Raff C, Basel-Salmon L, Matar RT, Shomron N. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res 2019; 29:428-438. [PMID: 30787035 PMCID: PMC6396420 DOI: 10.1101/gr.235796.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/04/2022]
Abstract
In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin. However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time. Here, we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and parental origin. Furthermore, we show that accounting for differences in the length distribution of fetal- and maternal-derived cfDNA fragments results in increased accuracy. Our model is the first to predict inherited insertions–deletions (indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration of further improvements. One such improvement that is presented in the current study is a machine learning model that corrects errors based on patterns found in previously processed data. Overall, we show that next-generation sequencing (NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will lead to the achievement of a comprehensive NIPD for monogenic diseases.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Avital Polsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - David Golan
- Faculty of Industrial Engineering and Management, Technion, Haifa, 3200003, Israel
| | - Artem Danilevsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Chen Raff
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lina Basel-Salmon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, 4941494, Israel
| | - Reut Tomashov Matar
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, 4941494, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
87
|
Abstract
Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.
Collapse
|
88
|
Rego SM, Snyder MP. High Throughput Sequencing and Assessing Disease Risk. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a026849. [PMID: 29959131 DOI: 10.1101/cshperspect.a026849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-throughput sequencing has dramatically improved our ability to determine and diagnose the underlying causes of human disease. The use of whole-genome and whole-exome sequencing has facilitated faster and more cost-effective identification of new genes implicated in Mendelian disease. It has also improved our ability to identify disease-causing mutations for Mendelian diseases whose associated genes are already known. These benefits apply not only in cases in which the objective is to assess genetic disease risk in adults and children, but also for prenatal genetic testing and embryonic testing. High-throughput sequencing has also impacted our ability to assess risk for complex diseases and will likely continue to influence this area of disease research as more and more individuals undergo sequencing and we better understand the significance of variation, both rare and common, across the genome. Through these activities, high-throughput sequencing has the potential to revolutionize medicine.
Collapse
Affiliation(s)
- Shannon M Rego
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
89
|
Abstract
The field of prenatal screening and diagnosis has undergone enormous progress over the past four decades. Most of this period has been characterized by gradual improvements in the technical and public health aspects of prenatal screening for Down syndrome. Compared to the direct analysis of fetal cells from amniocentesis or chorionic villus sampling, noninvasive approaches using maternal blood or ultrasound have the great advantage of posing no risk of miscarriage to the pregnancy. Recent advances in molecular genetics and DNA sequencing have revolutionized both the accuracy and the range of noninvasive testing for genetic abnormalities using cell-free DNA in maternal plasma. Many of these advances have already been incorporated into clinical care, including diagnosis of fetal blood group and aneuploidy screening. The accelerated pace of these recent developments is creating not just technical and logistical challenges, but is also magnifying the ethical and public policy issues traditionally associated with this field.
Collapse
Affiliation(s)
- Lisa Hui
- Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, VIC, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
90
|
Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, Samet Y, Maoz M, Druid H, Arner P, Fu KY, Kiss E, Spalding KL, Landesberg G, Zick A, Grinshpun A, Shapiro AMJ, Grompe M, Wittenberg AD, Glaser B, Shemer R, Kaplan T, Dor Y. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018; 9:5068. [PMID: 30498206 PMCID: PMC6265251 DOI: 10.1038/s41467-018-07466-6] [Citation(s) in RCA: 583] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Methylation patterns of circulating cell-free DNA (cfDNA) contain rich information about recent cell death events in the body. Here, we present an approach for unbiased determination of the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types. The method is validated using in silico simulations as well as in vitro mixes of DNA from different tissue sources at known proportions. We show that plasma cfDNA of healthy donors originates from white blood cells (55%), erythrocyte progenitors (30%), vascular endothelial cells (10%) and hepatocytes (1%). Deconvolution of cfDNA from patients reveals tissue contributions that agree with clinical findings in sepsis, islet transplantation, cancer of the colon, lung, breast and prostate, and cancer of unknown primary. We propose a procedure which can be easily adapted to study the cellular contributors to cfDNA in many settings, opening a broad window into healthy and pathologic human tissue dynamics. The methylation status of circulating cell-free DNA (cfDNA) can be informative about recent cell death events. Here the authors present an approach to determine the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types, and find that cfDNA from patients reveals tissue contributions that agree with clinical findings.
Collapse
Affiliation(s)
- Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Amit Korach
- Department of Cardio-Thoracic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Yaacov Samet
- Department of Vascular Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Myriam Maoz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, SE17177, Stockholm, Sweden.,Dept of Forensic Medicine, The National Board of Forensic Medicine, SE11120, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE17176, Stockholm, Sweden
| | - Keng-Yeh Fu
- Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Endre Kiss
- Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE17176, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Giora Landesberg
- Dept of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Albert Grinshpun
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - A M James Shapiro
- Department of Surgery and the Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Avigail Dreazan Wittenberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Benjamin Glaser
- Dept of Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| |
Collapse
|
91
|
Abstract
Prenatal whole exome sequencing (WES) has the potential to increase the ability to provide more diagnostic capabilities in fetuses with sonographic abnormalities, which would then improve the ability to counsel families. It is also often the first step in improving the path toward informed diagnosis and treatment, which is especially important in the era of advancing in utero fetal therapy. This article discusses the current literature regarding prenatal WES, clinical indications for WES, challenges with interpretation/counseling (variants of unknown significance), research priorities, ethical issues, and potential future advances.
Collapse
Affiliation(s)
- Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, 500 North Wolfe Street, Phipps 222, Baltimore, MD 21218, USA
| | - Neeta Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, 3010 Old Clinic Building/Cb# 7516, Chapel Hill, NC 27599, USA.
| |
Collapse
|
92
|
Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018; 392:777-786. [PMID: 30100054 DOI: 10.1016/s0140-6736(18)31268-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/18/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation represents an annotation system for marking the genetic text, thus providing instruction as to how and when to read the information and control transcription. Unlike sequence information, which is inherited, methylation patterns are established in a programmed process that continues throughout development, thus setting up stable gene expression profiles. This DNA methylation paradigm is a key player in medicine. Some changes in methylation closely correlate with age providing a marker for biological ageing, and these same sites could also play a part in cancer. The genome continues to undergo programmed variation in methylation after birth in response to environmental inputs, serving as a memory device that could affect ageing and predisposition to various metabolic, autoimmune, and neurological diseases. Taking advantage of tissue-specific differences, methylation can be used to detect cell death and thereby monitor many common diseases with a simple cell-free circulating-DNA blood test.
Collapse
Affiliation(s)
- Yuval Dor
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
93
|
Identification of a de novo fetal variant in osteogenesis imperfecta by targeted sequencing-based noninvasive prenatal testing. J Hum Genet 2018; 63:1129-1137. [PMID: 30131598 DOI: 10.1038/s10038-018-0489-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 11/08/2022]
Abstract
Noninvasive prenatal testing (NIPT), which involves analysis of circulating cell-free fetal DNA (cffDNA) from maternal plasma, is highly effective for detecting feto-placental chromosome aneuploidy. However, recent studies suggested that coverage-based shallow-depth NIPT cannot accurately detect smaller single or multi-loci genetic variants. To assess the fetal genotype of any locus using maternal plasma, we developed a novel genotyping algorithm named pseudo tetraploid genotyping (PTG). We performed paired-end captured sequencing of the plasma cell-free DNA (cfDNA), in which case a phenotypically healthy woman is suspected to be carrying a fetus with genetic defect. After a series of independent filtering of 111,407 SNPs, we found one variant in COL1A1 graded with high pathogenic potential which might cause osteogenesis imperfecta (OI). Then, we verified this mutation by Sanger sequencing of fetal and parental blood cells. In addition, we evaluated the accuracy and detection rate of the PTG algorithm through direct sequencing of the genomic DNA from maternal and fetal blood cells. Collectively, our study developed an intuitive and cost-effective method for the noninvasive detection of pathogenic mutations, and successfully identified a de novo variant in COL1A1 (c.2596 G > A, p.Gly866Ser) in the fetus implicated in OI.
Collapse
|
94
|
Dluzen DF, Noren Hooten N, De S, Wood WH, Zhang Y, Becker KG, Zonderman AB, Tanaka T, Ferrucci L, Evans MK. Extracellular RNA profiles with human age. Aging Cell 2018; 17:e12785. [PMID: 29797538 PMCID: PMC6052399 DOI: 10.1111/acel.12785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Circulating extracellular RNAs (exRNAs) are potential biomarkers of disease. We thus hypothesized that age‐related changes in exRNAs can identify age‐related processes. We profiled both large and small RNAs in human serum to investigate changes associated with normal aging. exRNA was sequenced in 13 young (30–32 years) and 10 old (80–85 years) African American women to identify all RNA transcripts present in serum. We identified age‐related differences in several RNA biotypes, including mitochondrial transfer RNAs, mitochondrial ribosomal RNA, and unprocessed pseudogenes. Age‐related differences in unique RNA transcripts were further validated in an expanded cohort. Pathway analysis revealed that EIF2 signaling, oxidative phosphorylation, and mitochondrial dysfunction were among the top pathways shared between young and old. Protein interaction networks revealed distinct clusters of functionally‐related protein‐coding genes in both age groups. These data provide timely and relevant insight into the exRNA repertoire in serum and its change with aging.
Collapse
Affiliation(s)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Supriyo De
- Laboratory of Genetics and Genomics; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - William H. Wood
- Laboratory of Genetics and Genomics; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Science; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Toshiko Tanaka
- Translational Gerontology Branch; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Luigi Ferrucci
- Translational Gerontology Branch; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science; National Institute on Aging; National Institutes of Health; Baltimore Maryland
| |
Collapse
|
95
|
Abstract
Given the rapid advances in genomics, translating new genomic tests effectively into prenatal clinical practice remains challenging. We discuss emerging genetic tests, considerations for their use, how tests should ideally be validated prior to use in clinical practice, and the role of the Federal Drug Administration, Clinical Laboratory Improvement Amendments (CLIA) laboratories, commercial laboratories, insurers, and professional societies such as the American College of Obstetricians and Gynecologists (ACOG), and the Society for Maternal-Fetal Medicine (SMFM) in the introduction of new prenatal genetic tests. After the introduction of new tests into the prenatal clinic, it is critical to utilize shared databases with measured outcomes to improve clinical care as well as to advance science.
Collapse
Affiliation(s)
- Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, 3010 Old Clinic Building, CB 7516, Chapel Hill, NC 27516, United States,Corresponding author. (N.L. Vora)
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Division of Reproductive Genetics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
96
|
Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol 2018; 102:6343-6356. [PMID: 29858957 PMCID: PMC6061472 DOI: 10.1007/s00253-018-9120-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/13/2023]
Abstract
Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and indicates common pitfalls that should be avoided whilst working with exDNA.
Collapse
Affiliation(s)
- Magdalena Nagler
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria.
| | - Heribert Insam
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
| | - Giacomo Pietramellara
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Judith Ascher-Jenull
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| |
Collapse
|
97
|
Abstract
Darwin clearly described certain anomalous phenomena, including what he referred to as "the direct action of the male element on the female form" and what we now call xenia and telegony, bud variation (mutation), reversion or atavism, and the inheritance and non-inheritance of mutilation. Some phenomena, particularly xenia, telegony and the inheritance of mutilation, were considered as doubtful phenomena by such authorities as Weismann and Morgan. Over the past 150 year, however, there has been increasing evidence for xenia, which is of great interest and importance in physiological research and plant production. The discoveries of cell-free fetal DNA, sperm RNAs, penetration of sperm into the somatic tissues of the female reproductive tract and the incorporation of exogenous DNA into somatic cells indicate that molecular mechanisms exist for telegony, one of the most controversial issues. Darwin's Pangenesis is the only theory that explains all the different types of phenomena.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
98
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
99
|
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nat Commun 2018; 9:2481. [PMID: 29946143 PMCID: PMC6018676 DOI: 10.1038/s41467-018-04894-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/30/2018] [Indexed: 01/16/2023] Open
Abstract
Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth. In utero introduction of nanoparticles containing peptide nucleic acids (PNAs) and donor DNAs corrects a disease-causing mutation in the β-globin gene in a mouse model of human β-thalassemia, yielding sustained postnatal elevation of blood hemoglobin levels into the normal range, reduced reticulocyte counts, reversal of splenomegaly, and improved survival, with no detected off-target mutations in partially homologous loci. This work may provide the basis for a safe and versatile method of fetal gene editing for human monogenic disorders.
Collapse
Affiliation(s)
- Adele S Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Raman Bahal
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - James S Farrelly
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Anthony H Bianchi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Valerie L Luks
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Rachael Putman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Francesc López-Giráldez
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, CT, 06477, USA
| | - Süleyman Coşkun
- Department of Neurosurgery, Yale University, New Haven, CT, 06520, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Wei-Che Hsieh
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Danith H Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | | | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.
- Department of Genetics, Yale University, New Haven, CT, 06520, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
100
|
Lehmann-Werman R, Magenheim J, Moss J, Neiman D, Abraham O, Piyanzin S, Zemmour H, Fox I, Dor T, Grompe M, Landesberg G, Loza BL, Shaked A, Olthoff K, Glaser B, Shemer R, Dor Y. Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA. JCI Insight 2018; 3:120687. [PMID: 29925683 DOI: 10.1172/jci.insight.120687] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 01/14/2023] Open
Abstract
Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.
Collapse
Affiliation(s)
- Roni Lehmann-Werman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofri Abraham
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilana Fox
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Talya Dor
- Neuropediatric Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Markus Grompe
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Giora Landesberg
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Li Loza
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Abraham Shaked
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Kim Olthoff
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|