51
|
Kokail C, Sundar B, Zache TV, Elben A, Vermersch B, Dalmonte M, van Bijnen R, Zoller P. Quantum Variational Learning of the Entanglement Hamiltonian. PHYSICAL REVIEW LETTERS 2021; 127:170501. [PMID: 34739272 DOI: 10.1103/physrevlett.127.170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
Collapse
Affiliation(s)
- Christian Kokail
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Bhuvanesh Sundar
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- JILA, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Torsten V Zache
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Andreas Elben
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Benoît Vermersch
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| | - Marcello Dalmonte
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Rick van Bijnen
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Peter Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
52
|
Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A, Wang Y, Grusdt F, Demler E, Salomon G, Gross C, Bloch I. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Science 2021; 374:82-86. [PMID: 34591626 DOI: 10.1126/science.abe7165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joannis Koepsell
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Dominik Bourgund
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Pimonpan Sompet
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Sarah Hirthe
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Annabelle Bohrdt
- Munich Center for Quantum Science and Technology, 80799 München, Germany.,Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Yao Wang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - Fabian Grusdt
- Munich Center for Quantum Science and Technology, 80799 München, Germany.,Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Guillaume Salomon
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| |
Collapse
|
53
|
Gluza M, Eisert J. Recovering Quantum Correlations in Optical Lattices from Interaction Quenches. PHYSICAL REVIEW LETTERS 2021; 127:090503. [PMID: 34506183 DOI: 10.1103/physrevlett.127.090503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Quantum simulations with ultracold atoms in optical lattices open up an exciting path toward understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of local coherent currents is out of reach. In this Letter, we show how to achieve that by measuring densities that are altered in response to quenches to noninteracting dynamics, e.g., after tilting the optical lattice. For this, we establish a data analysis method solving the closed set of equations relating tunneling currents and atom number dynamics, allowing us to reliably recover the full covariance matrix, including off-diagonal terms representing coherent currents. The signal processing builds upon semidefinite optimization, providing bona fide covariance matrices optimally matching the observed data. We demonstrate how the obtained information about noncommuting observables allows one to quantify entanglement at finite temperature, which opens up the possibility to study quantum correlations in quantum simulations going beyond classical capabilities.
Collapse
Affiliation(s)
- Marek Gluza
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
54
|
Azadi S, Drummond ND, Foulkes WMC. Quasiparticle Effective Mass of the Three-Dimensional Fermi Liquid by Quantum Monte Carlo. PHYSICAL REVIEW LETTERS 2021; 127:086401. [PMID: 34477398 DOI: 10.1103/physrevlett.127.086401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
According to Landau's Fermi liquid theory, the main properties of the quasiparticle excitations of an electron gas are embodied in the effective mass m^{*}, which determines the energy of a single quasiparticle, and the Landau interaction function, which indicates how the energy of a quasiparticle is modified by the presence of other quasiparticles. This simple paradigm underlies most of our current understanding of the physical and chemical behavior of metallic systems. The quasiparticle effective mass of the three-dimensional homogeneous electron gas has been the subject of theoretical controversy, and there is a lack of experimental data. In this Letter, we deploy diffusion Monte Carlo (DMC) methods to calculate m^{*} as a function of density for paramagnetic and ferromagnetic three-dimensional homogeneous electron gases. The DMC results indicate that m^{*} decreases when the density is reduced, especially in the ferromagnetic case. The DMC quasiparticle energy bands exclude the possibility of a reduction in the occupied bandwidth relative to that of the free-electron model at density parameter r_{s}=4, which corresponds to Na metal.
Collapse
Affiliation(s)
- Sam Azadi
- Department of Physics and the Thomas Young Centre for Theory and Simulation of Materials, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - N D Drummond
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - W M C Foulkes
- Department of Physics and the Thomas Young Centre for Theory and Simulation of Materials, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
55
|
Shi Y, Li Q, Yu J, He J, Wu YJ. Competition between spin density wave and charge density wave driven by interactions of spinful Haldane model on honeycomb lattices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:395602. [PMID: 34243171 DOI: 10.1088/1361-648x/ac1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
We investigate the interacting spinful Haldane model with on-site and nearest-neighbor repulsions on honeycomb lattices. Interactions drive spin-density and charge-density waves competing with each other. This competition enriches the phase diagram of the system greatly, where both topological and non-topological coexistence phases emerge with spin-density and charge-density wave orders. Moreover, the topological phase transition accompanied by the energy gap closure in coexistence phases is of third order. Finally, we study the topological properties consisting ofChernnumbers and edge states for different phases.
Collapse
Affiliation(s)
- Yue Shi
- Department of Physics, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Qingmin Li
- Department of Physics, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jing Yu
- Faculty of Science, Liaoning Shihua University, Fushun 113001, People's Republic of China
| | - Jing He
- Department of Physics, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Ya-Jie Wu
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| |
Collapse
|
56
|
Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice. PHYSICAL REVIEW LETTERS 2021; 127:033201. [PMID: 34328765 DOI: 10.1103/physrevlett.127.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical checkerboard square lattice. For the spin-polarized case, extreme band lifetimes above 10 s are observed, reflecting the suppression of collisions by Pauli's exclusion principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions between different spin components, but still remarkably large values of about 1 s are found. By analyzing momentum spectra, we can directly observe the orbital character of the optical lattice. The observations demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components in orbital optical lattices, including the regime of unitarity.
Collapse
Affiliation(s)
- M Hachmann
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - Y Kiefer
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - J Riebesehl
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - R Eichberger
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - A Hemmerich
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
57
|
Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 2021; 595:227-232. [PMID: 34234334 DOI: 10.1038/s41586-021-03582-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022]
Abstract
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2-6, while at the same time enabling new methods for computation7-10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms.
Collapse
|
58
|
Miles C, Bohrdt A, Wu R, Chiu C, Xu M, Ji G, Greiner M, Weinberger KQ, Demler E, Kim EA. Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data. Nat Commun 2021; 12:3905. [PMID: 34162847 PMCID: PMC8222395 DOI: 10.1038/s41467-021-23952-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyzing image-like data including many-body snapshots from quantum simulators. Recently, they have successfully distinguished between simulated snapshots that are indistinguishable from one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from such approaches. Here, we develop a set of nonlinearities for use in a neural network architecture that discovers features in the data which are directly interpretable in terms of physical observables. Applied to simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, we uncover that the key distinguishing features are fourth-order spin-charge correlators. Our approach lends itself well to the construction of simple, versatile, end-to-end interpretable architectures, thus paving the way for new physical insights from machine learning studies of experimental and numerical data.
Collapse
Affiliation(s)
- Cole Miles
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Annabelle Bohrdt
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics and Institute for Advanced Study, Technical University of Munich, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - Ruihan Wu
- Department of Computer Science, Cornell University, Ithaca, NY, USA
| | - Christie Chiu
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
- Princeton Center for Complex Materials, Princeton University, Princeton, NJ, USA
| | - Muqing Xu
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Geoffrey Ji
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Eun-Ah Kim
- Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
59
|
Liang D, Li H. Optical two-dimensional coherent spectroscopy of many-body dipole-dipole interactions and correlations in atomic vapors. J Chem Phys 2021; 154:214301. [PMID: 34240988 DOI: 10.1063/5.0052982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body interactions and correlations in atomic ensembles are fundamental in understanding many-body effects such as collective and emergent phenomena and also play an important role in various atom-based applications. Optical two-dimensional coherent spectroscopy (2DCS) provides a powerful tool to measure many-body interactions and correlations. Here, we present the study of many-body dipole-dipole interactions and correlations in potassium and rubidium atomic vapors by using double-quantum and multi-quantum 2DCS. The results show that double-quantum 2DCS provides sensitive and background-free detection of weak dipole-dipole interaction between atoms with a mean separation up to about 16 μm, and multi-quantum 2DCS can excite and detect multi-atom states (Dicke states) with up to eight correlated atoms. The technique of optical 2DCS can provide a new approach to study many-body physics in atomic ensembles and can be potentially implemented to measure many-body effects in cold atoms and other atomic/molecular systems.
Collapse
Affiliation(s)
- Danfu Liang
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | - Hebin Li
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
60
|
Petrović MD, Mondal P, Feiguin AE, Nikolić BK. Quantum Spin Torque Driven Transmutation of an Antiferromagnetic Mott Insulator. PHYSICAL REVIEW LETTERS 2021; 126:197202. [PMID: 34047602 DOI: 10.1103/physrevlett.126.197202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The standard model of spin-transfer torque (STT) in antiferromagnetic spintronics considers the exchange of angular momentum between quantum spins of flowing electrons and noncollinear-to-them localized spins treated as classical vectors. These vectors are assumed to realize Néel order in equilibrium, ↑↓⋯↑↓, and their STT-driven dynamics is described by the Landau-Lifshitz-Gilbert (LLG) equation. However, many experimentally employed materials (such as archetypal NiO) are strongly electron-correlated antiferromagnetic Mott insulators (AFMIs) whose localized spins form a ground state quite different from the unentangled Néel state |↑↓⋯↑↓⟩. The true ground state is entangled by quantum spin fluctuations, leading to the expectation value of all localized spins being zero, so that LLG dynamics of classical vectors of fixed length rotating due to STT cannot even be initiated. Instead, a fully quantum treatment of both conduction electrons and localized spins is necessary to capture the exchange of spin angular momentum between them, denoted as quantum STT. We use a recently developed time-dependent density matrix renormalization group approach to quantum STT to predict how injection of a spin-polarized current pulse into a normal metal layer coupled to an AFMI overlayer via exchange interaction and possibly small interlayer hopping-mimicking, e.g., topological-insulator/NiO bilayer employed experimentally-will induce a nonzero expectation value of AFMI localized spins. This new nonequilibrium phase is a spatially inhomogeneous ferromagnet with a zigzag profile of localized spins. The total spin absorbed by AFMI increases with electron-electron repulsion in AFMIs, as well as when the two layers do not exchange any charge.
Collapse
Affiliation(s)
- Marko D Petrović
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Priyanka Mondal
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Adrian E Feiguin
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Branislav K Nikolić
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
61
|
Lee JM, Oshikawa M, Cho GY. Non-Fermi Liquids in Conducting Two-Dimensional Networks. PHYSICAL REVIEW LETTERS 2021; 126:186601. [PMID: 34018806 DOI: 10.1103/physrevlett.126.186601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
We explore the physics of novel fermion liquids emerging from conducting networks, where 1D metallic wires form a periodic 2D superstructure. Such structure naturally appears in marginally twisted bilayer graphenes, moire transition metal dichalcogenides, and also in some charge-density wave materials. For these network systems, we theoretically show that a remarkably wide variety of new non-Fermi liquids emerge and that these non-Fermi liquids can be classified by the characteristics of the junctions in networks. Using this, we calculate the electric conductivity of the non-Fermi liquids as a function of temperature, which show markedly different scaling behaviors than a regular 2D Fermi liquid.
Collapse
Affiliation(s)
- Jongjun M Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Masaki Oshikawa
- Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
- Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa 277-8583, Japan
- Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gil Young Cho
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
| |
Collapse
|
62
|
Chung WC, de Hond J, Xiang J, Cruz-Colón E, Ketterle W. Tunable Single-Ion Anisotropy in Spin-1 Models Realized with Ultracold Atoms. PHYSICAL REVIEW LETTERS 2021; 126:163203. [PMID: 33961481 DOI: 10.1103/physrevlett.126.163203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for low-dimensional magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar. Our results are supported by many-body numerical simulations and are captured by the analytical solution of a two-site model.
Collapse
Affiliation(s)
- Woo Chang Chung
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julius de Hond
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jinggang Xiang
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Enid Cruz-Colón
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wolfgang Ketterle
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
63
|
Andersen TI, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild DS, Gelly RJ, Heo H, Bérubé D, Joe AY, Jauregui LA, Watanabe K, Taniguchi T, Kim P, Park H, Lukin MD. Excitons in a reconstructed moiré potential in twisted WSe 2/WSe 2 homobilayers. NATURE MATERIALS 2021; 20:480-487. [PMID: 33398121 DOI: 10.1038/s41563-020-00873-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.
Collapse
Affiliation(s)
| | - Giovanni Scuri
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Andrey Sushko
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Kristiaan De Greve
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- imec, Leuven, Belgium
| | - Jiho Sung
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - You Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dominik S Wild
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Ryan J Gelly
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hoseok Heo
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Damien Bérubé
- Department of Physics, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Y Joe
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Luis A Jauregui
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics and Astronomy, UC Irvine, Irvine, CA, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Philip Kim
- Department of Physics, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
64
|
Luo XW, Zhang C. Spin-Twisted Optical Lattices: Tunable Flat Bands and Larkin-Ovchinnikov Superfluids. PHYSICAL REVIEW LETTERS 2021; 126:103201. [PMID: 33784151 DOI: 10.1103/physrevlett.126.103201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Moiré superlattices in twisted bilayer graphene and transition-metal dichalcogenides have emerged as a powerful tool for engineering novel band structures and quantum phases of two-dimensional quantum materials. Here we investigate Moiré physics emerging from twisting two independent hexagonal optical lattices of atomic (pseudo-)spin states (instead of bilayers) that exhibit remarkably different physics from twisted bilayer graphene. We employ a momentum-space tight-binding calculation that includes all range real-space tunnelings and show that all twist angles θ≲6° can become magic and support gapped flat bands. Because of the greatly enhanced density of states near the flat bands, the system can be driven to superfluidity by weak attractive interaction. Strikingly, the superfluid phase corresponds to a Larkin-Ovchinnikov state with finite momentum pairing that results from the interplay between flat bands and interspin interactions in the unique single-layer spin-twisted lattice. Our work may pave the way for exploring novel quantum phases and twistronics in cold atomic systems.
Collapse
Affiliation(s)
- Xi-Wang Luo
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Chuanwei Zhang
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| |
Collapse
|
65
|
Lenihan C, Kim AJ, Šimkovic Iv F, Kozik E. Entropy in the Non-Fermi-Liquid Regime of the Doped 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2021; 126:105701. [PMID: 33784123 DOI: 10.1103/physrevlett.126.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
We study thermodynamic properties of the doped Hubbard model on the square lattice in the regime of strong charge and spin fluctuations at low temperatures near the metal-to-insulator crossover and obtain results with controlled accuracy using the diagrammatic Monte Carlo method directly in the thermodynamic limit. The behavior of the entropy reveals a non-Fermi-liquid state at sufficiently high interactions near half filling: A maximum in the entropy at nonzero doping develops as the coupling strength is increased, along with an inflection point, evidencing a metal to non-Fermi-liquid crossover. The specific heat exhibits additional distinctive features of a non-Fermi-liquid state. Measurements of the entropy can, therefore, be used as a probe of the state of the system in quantum simulation experiments with ultracold atoms in optical lattices.
Collapse
Affiliation(s)
- Connor Lenihan
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Aaram J Kim
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Fedor Šimkovic Iv
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Evgeny Kozik
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
66
|
Zaletel MP, Kaufman A, Stamper-Kurn DM, Yao NY. Preparation of Low Entropy Correlated Many-Body States via Conformal Cooling Quenches. PHYSICAL REVIEW LETTERS 2021; 126:103401. [PMID: 33784144 DOI: 10.1103/physrevlett.126.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We propose and analyze a method for preparing low entropy many-body states in isolated quantum optical systems of atoms, ions, and molecules. Our approach is based upon shifting entropy between different regions of a system by spatially modulating the magnitude of the effective Hamiltonian. We conduct two case studies, on a topological spin chain and the spinful fermionic Hubbard model, focusing on the key question: can a "conformal cooling quench" remove sufficient entropy within experimentally accessible timescales? Finite-temperature, time-dependent matrix product state calculations reveal that even moderately sized bath regions can remove enough energy and entropy density to expose coherent low-temperature physics. The protocol is particularly natural in systems with long-range interactions, such as lattice-trapped polar molecules and Rydberg-excited atoms, where the magnitude of the Hamiltonian scales directly with the interparticle spacing. To this end, we propose simple, near-term implementations of conformal cooling quenches in systems of atoms or molecules, where signatures of low-temperature phases may be observed.
Collapse
Affiliation(s)
- Michael P Zaletel
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Adam Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Dan M Stamper-Kurn
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Norman Y Yao
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
67
|
Carcy C, Hercé G, Tenart A, Roscilde T, Clément D. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition. PHYSICAL REVIEW LETTERS 2021; 126:045301. [PMID: 33576669 DOI: 10.1103/physrevlett.126.045301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
We present a joint experimental and theoretical analysis to assess the adiabatic experimental preparation of ultracold bosons in optical lattices aimed at simulating the three-dimensional Bose-Hubbard model. Thermometry of lattice gases is realized from the superfluid to the Mott regime by combining the measurement of three-dimensional momentum-space densities with ab initio quantum Monte Carlo (QMC) calculations of the same quantity. The measured temperatures are in agreement with isentropic lines reconstructed via QMC for the experimental parameters of interest, with a conserved entropy per particle of S/N=0.8(1)k_{B}. In addition, the Fisher information associated with this thermometry method shows that the latter is most accurate in the critical regime close to the Mott transition, as confirmed in the experiment. These results prove that equilibrium states of the Bose-Hubbard model-including those in the quantum-critical regime above the Mott transition-can be adiabatically prepared in cold-atom apparatus.
Collapse
Affiliation(s)
- Cécile Carcy
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Gaétan Hercé
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Antoine Tenart
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Tommaso Roscilde
- Université de Lyon, Ens de Lyon, Université Claude Bernard and CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - David Clément
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| |
Collapse
|
68
|
Bohrdt A, Wang Y, Koepsell J, Kánasz-Nagy M, Demler E, Grusdt F. Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets. PHYSICAL REVIEW LETTERS 2021; 126:026401. [PMID: 33512175 DOI: 10.1103/physrevlett.126.026401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer be sufficient, because higher-order correlations are crucial to understanding the character of the many-body system and can be numerically dominant. Experimentally, such higher-order correlations have recently become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We study a single mobile hole in the t-J model using the density matrix renormalization group and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our results to predictions using models based on doped quantum spin liquids which feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to experimentally study the same fifth-order spin-charge correlations as a function of doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant for understanding high-T_{c} superconductivity.
Collapse
Affiliation(s)
- A Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Y Wang
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - J Koepsell
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - M Kánasz-Nagy
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - E Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - F Grusdt
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, München D-80333, Germany
| |
Collapse
|
69
|
Competing magnetic orders in a bilayer Hubbard model with ultracold atoms. Nature 2021; 589:40-43. [PMID: 33408376 DOI: 10.1038/s41586-020-03058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/02/2020] [Indexed: 11/09/2022]
Abstract
Fermionic atoms in optical lattices have served as a useful model system in which to study and emulate the physics of strongly correlated matter. Driven by the advances of high-resolution microscopy, the current research focus is on two-dimensional systems1-3, in which several quantum phases-such as antiferromagnetic Mott insulators for repulsive interactions4-7 and charge-density waves for attractive interactions8-have been observed. However, the lattice structure of real materials, such as bilayer graphene, is composed of coupled layers and is therefore not strictly two-dimensional, which must be taken into account in simulations. Here we realize a bilayer Fermi-Hubbard model using ultracold atoms in an optical lattice, and demonstrate that the interlayer coupling controls a crossover between a planar antiferromagnetically ordered Mott insulator and a band insulator of spin-singlets along the bonds between the layers. We probe the competition of the magnetic ordering by measuring spin-spin correlations both within and between the two-dimensional layers. Our work will enable the exploration of further properties of coupled-layer Hubbard models, such as theoretically predicted superconducting pairing mechanisms9,10.
Collapse
|
70
|
Dawid A, Tomza M. Magnetic properties and quench dynamics of two interacting ultracold molecules in a trap. Phys Chem Chem Phys 2020; 22:28140-28153. [PMID: 33290463 DOI: 10.1039/d0cp05542e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a one-dimensional harmonic trap in external electric and magnetic fields. The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions. We show that various magnetization states arise from the interplay of the molecular interactions, electronic spins, dipole moments, rotational structures, external fields, and spin-rotation coupling. The rich magnetization diagrams depend primarily on the anisotropy of the intermolecular interaction and the spin-rotation coupling. These specific molecular properties are challenging to calculate or measure. Therefore, we propose the quench dynamics experiments for extracting them from observing the time evolution of the analyzed system. Our results indicate the possibility of controlling the molecular few-body magnetization with the external electric field and pave the way towards studying the magnetization of ultracold molecules trapped in optical tweezers or optical lattices and their application in quantum simulation of molecular multichannel many-body Hamiltonians and quantum information storing.
Collapse
Affiliation(s)
- Anna Dawid
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | | |
Collapse
|
71
|
Grusdt F, Pollet L. Z_{2} Parton Phases in the Mixed-Dimensional t-J_{z} Model. PHYSICAL REVIEW LETTERS 2020; 125:256401. [PMID: 33416402 DOI: 10.1103/physrevlett.125.256401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We study the interplay of spin and charge degrees of freedom in a doped Ising antiferromagnet, where the motion of charges is restricted to one dimension. The phase diagram of this mixed-dimensional t-J_{z} model can be understood in terms of spinless chargons coupled to a Z_{2} lattice gauge field. The antiferromagnetic couplings give rise to interactions between Z_{2} electric field lines which, in turn, lead to a robust stripe phase at low temperatures. At higher temperatures, a confined meson-gas phase is found for low doping whereas at higher doping values, a robust deconfined chargon-gas phase is seen, which features hidden antiferromagnetic order. We confirm these phases in quantum Monte Carlo simulations. Our model can be implemented and its phases detected with existing technology in ultracold atom experiments. The critical temperature for stripe formation with a sufficiently high hole concentration is around the spin-exchange energy J_{z}, i.e., well within reach of current experiments.
Collapse
Affiliation(s)
- Fabian Grusdt
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Lode Pollet
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
72
|
Valley interference and spin exchange at the atomic scale in silicon. Nat Commun 2020; 11:6124. [PMID: 33257680 PMCID: PMC7705737 DOI: 10.1038/s41467-020-19835-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Tunneling is a fundamental quantum process with no classical equivalent, which can compete with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon can be placed with atomic precision to address the different regimes arising from this competition. However, they exploit wavefunctions relying on crystal band symmetries, which tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic valley interference between coupled atoms in silicon using scanning tunneling microscopy. Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant placement on the Heisenberg spin exchange interaction. We find that the exchange can become immune to valley interference by engineering in-plane dopant placement along specific crystallographic directions. A vacuum-like behaviour is recovered, where the exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations limited to a factor of less than 10 considering the accuracy in dopant positioning. This robustness remains over a large range of distances, from the strongly Coulomb interacting regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of interest for quantum simulation in silicon. Coupled donor wavefunctions in silicon are spatially resolved to evidence valley interference processes. An atomic-scale understanding of the interplay between interference, envelope anisotropy and crystal symmetries unveils a placement strategy compatible with existing technology where the exchange is insensitive to interference.
Collapse
|
73
|
Li J, Eckstein M. Manipulating Intertwined Orders in Solids with Quantum Light. PHYSICAL REVIEW LETTERS 2020; 125:217402. [PMID: 33275019 DOI: 10.1103/physrevlett.125.217402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Intertwined orders exist ubiquitously in strongly correlated electronic systems and lead to intriguing phenomena in quantum materials. In this Letter, we explore the unique opportunity of manipulating intertwined orders through entangling electronic states with quantum light. Using a quantum Floquet formalism to study the cavity-mediated interaction, we show the vacuum fluctuations effectively enhance the charge-density-wave correlation, giving rise to a phase with entangled electronic order and photon coherence, with putative superradiant behaviors in the thermodynamic limit. Furthermore, upon injecting even one single photon in the cavity, different orders, including s-wave and η-paired superconductivity, can be selectively enhanced. Our study suggests a new and generalizable pathway to control intertwined orders and create light-matter entanglement in quantum materials. The mechanism and methodology can be readily generalized to more complicated scenarios.
Collapse
Affiliation(s)
- Jiajun Li
- Institute of Theoretical Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Martin Eckstein
- Institute of Theoretical Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| |
Collapse
|
74
|
Abstract
It has been a long-sought goal of quantum simulation to find answers to outstanding questions in condensed-matter physics. A famous example is finding the ground state and the excitations of the two-dimensional (2D) Hubbard model with strong repulsion below half-filling. This system is a doped antiferromagnet and is of great interest because of its possible relation to high-[Formula: see text] superconductors. Theoretically, the fermion excitations of this model are believed to split up into holons and spinons, and a moving holon is believed to leave behind it a string of "wrong" spins that mismatch with the antiferromagnetic background. Here, we show that the properties of the ground-state wavefunction and the holon excitation of the 2D Hubbard model can be revealed in unprecedented detail by using the imaging and the interference technique in atomic physics. They allow one to reveal the Marshall sign of the doped antiferromagnet. The region of wrong Marshall sign indicates the location of the holon string.
Collapse
|
75
|
Hartke T, Oreg B, Jia N, Zwierlein M. Doublon-Hole Correlations and Fluctuation Thermometry in a Fermi-Hubbard Gas. PHYSICAL REVIEW LETTERS 2020; 125:113601. [PMID: 32975995 DOI: 10.1103/physrevlett.125.113601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We report on the single atom and single site-resolved detection of the total density in a cold atom realization of the 2D Fermi-Hubbard model. Fluorescence imaging of doublons is achieved by splitting each lattice site into a double well, thereby separating atom pairs. Full density readout yields a direct measurement of the equation of state, including direct thermometry via the fluctuation-dissipation theorem. Site-resolved density correlations reveal the Pauli hole at low filling, and strong doublon-hole correlations near half filling. These are shown to account for the difference between local and nonlocal density fluctuations in the Mott insulator. Our technique enables the study of atom-resolved charge transport in the Fermi-Hubbard model, the site-resolved observation of molecules, and the creation of bilayer Fermi-Hubbard systems.
Collapse
Affiliation(s)
- Thomas Hartke
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Botond Oreg
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ningyuan Jia
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Zwierlein
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
76
|
Gillmeister K, Golež D, Chiang CT, Bittner N, Pavlyukh Y, Berakdar J, Werner P, Widdra W. Ultrafast coupled charge and spin dynamics in strongly correlated NiO. Nat Commun 2020; 11:4095. [PMID: 32796844 PMCID: PMC7429846 DOI: 10.1038/s41467-020-17925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Charge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund’s physics in strongly correlated photoexcited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲10 fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2 ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes slightly above the Néel temperature. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and antiferromagnetic spin correlations. Nickel Oxide (NiO) is a strongly correlated insulator with antiferromagnetic (AFM) ordering. Here, using pump-probe photoemission on NiO, the authors observe coherent terahertz oscillations in the photoemission signal, a signature of an in-gap state coupled to the AFM background.
Collapse
Affiliation(s)
- Konrad Gillmeister
- Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - Denis Golež
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA.,Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Cheng-Tien Chiang
- Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - Nikolaj Bittner
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Yaroslav Pavlyukh
- Department of Physics, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Jamal Berakdar
- Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - Philipp Werner
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Wolf Widdra
- Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany. .,Max Planck Institute of Microstructure Physics, 06120, Halle, Germany.
| |
Collapse
|
77
|
Wang L, Shih EM, Ghiotto A, Xian L, Rhodes DA, Tan C, Claassen M, Kennes DM, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy AN, Dean CR. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. NATURE MATERIALS 2020; 19:861-866. [PMID: 32572205 DOI: 10.1038/s41563-020-0708-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/11/2020] [Indexed: 05/06/2023]
Abstract
In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. Such flat bands in twisted graphene-based systems result in correlated insulator, superconducting and topological states. Here we report evidence of low-energy flat bands in twisted bilayer WSe2, with signatures of collective phases observed over twist angles that range from 4 to 5.1°. At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. At a 5.1° twist, zero-resistance pockets were observed on doping away from half filling at temperatures below 3 K, which indicates a possible transition to a superconducting state. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, Columbia University, New York, NY, USA
| | - En-Min Shih
- Department of Physics, Columbia University, New York, NY, USA
| | - Augusto Ghiotto
- Department of Physics, Columbia University, New York, NY, USA
| | - Lede Xian
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Cheng Tan
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Martin Claassen
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - Dante M Kennes
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- Institut für Theorie der Statistischen Physik RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Yusong Bai
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | | | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, San Sebastian, Spain.
| | | | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
78
|
Yamamoto D, Suzuki C, Marmorini G, Okazaki S, Furukawa N. Quantum and Thermal Phase Transitions of the Triangular SU(3) Heisenberg Model under Magnetic Fields. PHYSICAL REVIEW LETTERS 2020; 125:057204. [PMID: 32794836 DOI: 10.1103/physrevlett.125.057204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We study the quantum and thermal phase transition phenomena of the SU(3) Heisenberg model on triangular lattice in the presence of magnetic fields. Performing a scaling analysis on large-size cluster mean-field calculations endowed with a density-matrix renormalization-group solver, we reveal the quantum phases selected by quantum fluctuations from the massively degenerate classical ground-state manifold. The magnetization process up to saturation reflects three different magnetic phases. The low- and high-field phases have strong nematic nature, and especially the latter is found only via a nontrivial reconstruction of symmetry generators from the standard spin and quadrupolar description. We also perform a semiclassical Monte Carlo simulation to show that thermal fluctuations prefer the same three phases as well. Moreover, we find that exotic topological phase transitions driven by the binding-unbinding of fractional (half-)vortices take place, due to the nematicity of the low- and high-field phases. Possible experimental realization with alkaline-earth-like cold atoms is also discussed.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Chihiro Suzuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Giacomo Marmorini
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Sho Okazaki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Nobuo Furukawa
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
79
|
Luick N, Sobirey L, Bohlen M, Singh VP, Mathey L, Lompe T, Moritz H. An ideal Josephson junction in an ultracold two-dimensional Fermi gas. Science 2020; 369:89-91. [DOI: 10.1126/science.aaz2342] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/07/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Vijay Pal Singh
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ludwig Mathey
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
80
|
Koepsell J, Hirthe S, Bourgund D, Sompet P, Vijayan J, Salomon G, Gross C, Bloch I. Robust Bilayer Charge Pumping for Spin- and Density-Resolved Quantum Gas Microscopy. PHYSICAL REVIEW LETTERS 2020; 125:010403. [PMID: 32678648 DOI: 10.1103/physrevlett.125.010403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Quantum gas microscopy has emerged as a powerful new way to probe quantum many-body systems at the microscopic level. However, layered or efficient spin-resolved readout methods have remained scarce as they impose strong demands on the specific atomic species and constrain the simulated lattice geometry and size. Here we present a novel high-fidelity bilayer readout, which can be used for full spin- and density-resolved quantum gas microscopy of two-dimensional systems with arbitrary geometry. Our technique makes use of an initial Stern-Gerlach splitting into adjacent layers of a highly stable vertical superlattice and subsequent charge pumping to separate the layers by 21 μm. This separation enables independent high-resolution images of each layer. We benchmark our method by spin- and density-resolving two-dimensional Fermi-Hubbard systems. Our technique furthermore enables the access to advanced entropy engineering schemes, spectroscopic methods, or the realization of tunable bilayer systems.
Collapse
Affiliation(s)
- Joannis Koepsell
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Sarah Hirthe
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Dominik Bourgund
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Pimonpan Sompet
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Jayadev Vijayan
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Guillaume Salomon
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| |
Collapse
|
81
|
Yang B, Sun H, Huang CJ, Wang HY, Deng Y, Dai HN, Yuan ZS, Pan JW. Cooling and entangling ultracold atoms in optical lattices. Science 2020; 369:550-553. [DOI: 10.1126/science.aaz6801] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/05/2020] [Indexed: 11/02/2022]
Abstract
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of 1.9−0.4+1.7×10−3kB. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 ± 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement.
Collapse
Affiliation(s)
- Bing Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Jiong Huang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Han-Yi Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Han-Ning Dai
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Sheng Yuan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
82
|
Shen C, Chen C, Wu XL, Dong S, Cui Y, You L, Tey MK. High-resolution imaging of Rydberg atoms in optical lattices using an aspheric-lens objective in vacuum. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:063202. [PMID: 32611022 DOI: 10.1063/5.0006026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
We present a high-resolution, simple, and versatile system for imaging ultracold Rydberg atoms in optical lattices. The imaging objective is a single aspheric lens [with a working distance of 20.6 mm and a numerical aperture (NA) of 0.51] placed inside the vacuum chamber. Adopting a large-working-distance lens leaves room for electrodes and electrostatic shields to control electric fields around Rydberg atoms. With this setup, we achieve a Rayleigh resolution of 1.10 μm or 1.41λ (λ = 780 nm), limited by the NA of the aspheric lens. For systems of highly excited Rydberg states with blockade radii greater than a few μm, the resolution achieved is sufficient for studying many physical processes of interest.
Collapse
Affiliation(s)
- Chuyang Shen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiao-Ling Wu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shen Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yue Cui
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Li You
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Meng Khoon Tey
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
83
|
Huang B, Liu WV. Floquet Higher-Order Topological Insulators with Anomalous Dynamical Polarization. PHYSICAL REVIEW LETTERS 2020; 124:216601. [PMID: 32530681 DOI: 10.1103/physrevlett.124.216601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Higher-order topological insulators (HOTIs) have emerged as a new class of phases, whose robust in-gap "corner" modes arise from the bulk higher-order multipoles beyond the dipoles in conventional topological insulators. Here, we incorporate Floquet driving into HOTIs, and report for the first time a dynamical polarization theory with anomalous nonequilibrium multipoles. Further, a proposal to detect not only corner states but also their dynamical origin in cold atoms is demonstrated, with the latter one never achieved before. Experimental determination of anomalous Floquet corner modes is also proposed.
Collapse
Affiliation(s)
- Biao Huang
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - W Vincent Liu
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260, USA
- Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
84
|
Quantum Correlation via Skew Information and Bell Function Beyond Entanglement in a Two-Qubit Heisenberg XYZ Model: Effect of the Phase Damping. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we analyze the dynamics of non-local correlations (NLCs) in an anisotropic two-qubit Heisenberg XYZ model under the effect of the phase damping. An analytical solution is obtained by applying a method based on the eigenstates and the eigenvalues of the Hamiltonian. It is observed that the generated NLCs are controlled by the Dzyaloshinskii–Moriya interaction, the purity indicator, the interaction with the environment, and the anisotropy. Furthermore, it is found that the quantum correlations, as well as the sudden death and sudden birth phenomena, depend on the considered physical parameters. In particular, the system presents a special correlation: the skew-information correlation. The log-negativity and the uncertainty-induced non-locality exhibit the sudden-change behavior. The purity of the initial states plays a crucial role on the generated nonlocal correlations. These correlations are sensitive to the DM interaction, anisotropy, and phase damping.
Collapse
|
85
|
Li Z, Zou L, Hsieh TH. Hamiltonian Tomography via Quantum Quench. PHYSICAL REVIEW LETTERS 2020; 124:160502. [PMID: 32383955 DOI: 10.1103/physrevlett.124.160502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
We show that it is possible to uniquely reconstruct a generic many-body local Hamiltonian from a single pair of generic initial and final states related by evolving with the Hamiltonian for any time interval. We then propose a practical version of the protocol involving multiple pairs of such initial and final states. Using the eigenstate thermalization hypothesis, we provide bounds on the protocol's performance and stability against errors from measurements and in the ansatz of the Hamiltonian. The protocol is efficient (requiring experimental resources scaling polynomially with system size in general and constant with system size given translation symmetry) and thus enables analog and digital quantum simulators to verify implementation of a putative Hamiltonian.
Collapse
Affiliation(s)
- Zhi Li
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, USA
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Liujun Zou
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Timothy H Hsieh
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
86
|
Edri H, Raz B, Matzliah N, Davidson N, Ozeri R. Observation of Spin-Spin Fermion-Mediated Interactions between Ultracold Bosons. PHYSICAL REVIEW LETTERS 2020; 124:163401. [PMID: 32383926 DOI: 10.1103/physrevlett.124.163401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Interactions in an ultracold boson-fermion mixture are often manifested by elastic collisions. In a mixture of a condensed Bose gas (BEC) and spin polarized degenerate Fermi gas (DFG), fermions can mediate spin-spin interactions between bosons, leading to an effective long-range magnetic interaction analogous to Ruderman-Kittel-Kasuya-Yosida [Phys. Rev. 96, 99 (1954); Prog. Theor. Phys. 16, 45 (1956); Phys. Rev. 106, 893 (1957)] interaction in solids. We used Ramsey spectroscopy of the hyperfine clock transition in a ^{87}Rb BEC to measure the interaction mediated by a ^{40}K DFG. By controlling the boson density we isolated the effect of mediated interactions from mean-field frequency shifts due to direct collision with fermions. We measured an increase of boson spin-spin interaction by a factor of η=1.45±0.05^{stat}±0.13^{syst} in the presence of the DFG, providing clear evidence of spin-spin fermion mediated interaction. Decoherence in our system was dominated by inhomogeneous boson density shift, which increased significantly in the presence of the DFG, again indicating mediated interactions. We also measured a frequency shift due to boson-fermion interactions in accordance with a scattering length difference of a_{bf_{2}}-a_{bf_{1}}=-5.36±0.44^{stat}±1.43^{syst}a_{0} between the clock-transition states, a first measurement beyond the low-energy elastic approximation [R. Côté, A. Dalgarno, H. Wang, and W. C. Stwalley, Phys. Rev. A 57, R4118 (1998); A. Dalgarno and M. Rudge, Proc. R. Soc. A 286, 519 (1965)] in this mixture. This interaction can be tuned with a future use of a boson-fermion Feshbach resonance. Fermion-mediated interactions can potentially give rise to interesting new magnetic phases and extend the Bose-Hubbard model when the atoms are placed in an optical lattice.
Collapse
Affiliation(s)
- Hagai Edri
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boaz Raz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Matzliah
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Davidson
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roee Ozeri
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
87
|
Knottnerus IHA, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou GA. Microscope objective for imaging atomic strontium with 0.63 micrometer resolution. OPTICS EXPRESS 2020; 28:11106-11116. [PMID: 32403628 DOI: 10.1364/oe.388809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Imaging and manipulating individual atoms with submicrometer separation can be instrumental for quantum simulation of condensed matter Hamiltonians and quantum computation with neutral atoms. Here we present an open-source design of a microscope objective for atomic strontium, consisting solely of off-the-shelf lenses, that is diffraction-limited for 461 nm light. A prototype built with a simple stacking design is measured to have a resolution of 0.63(4) µm, which is in agreement with the predicted value. This performance, together with the near diffraction-limited performance for 532 nm light, makes this design useful for both quantum gas microscopes and optical tweezer experiments with strontium. Our microscope can easily be adapted to experiments with other atomic species such as erbium, ytterbium, and dysprosium, as with rubidium Rydberg atoms.
Collapse
|
88
|
Nakagawa M, Tsuji N, Kawakami N, Ueda M. Dynamical Sign Reversal of Magnetic Correlations in Dissipative Hubbard Models. PHYSICAL REVIEW LETTERS 2020; 124:147203. [PMID: 32338955 DOI: 10.1103/physrevlett.124.147203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
In quantum magnetism, the virtual exchange of particles mediates an interaction between spins. Here, we show that an inelastic Hubbard interaction fundamentally alters the magnetism of the Hubbard model due to dissipation in spin-exchange processes, leading to sign reversal of magnetic correlations in dissipative quantum dynamics. This mechanism is applicable to both fermionic and bosonic Mott insulators, and can naturally be realized with ultracold atoms undergoing two-body inelastic collisions. The dynamical reversal of magnetic correlations can be detected by using a double-well optical lattice or quantum-gas microscopy, the latter of which facilitates the detection of the magnetic correlations in one-dimensional systems because of spin-charge separation. Our results open a new avenue toward controlling quantum magnetism by dissipation.
Collapse
Affiliation(s)
- Masaya Nakagawa
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoto Tsuji
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Norio Kawakami
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Masahito Ueda
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
89
|
Chiu CS, Ji G, Bohrdt A, Xu M, Knap M, Demler E, Grusdt F, Greiner M, Greif D. String patterns in the doped Hubbard model. Science 2020; 365:251-256. [PMID: 31320533 DOI: 10.1126/science.aav3587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/05/2019] [Indexed: 11/02/2022]
Abstract
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
Collapse
Affiliation(s)
- Christie S Chiu
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Geoffrey Ji
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Annabelle Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Muqing Xu
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Michael Knap
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Eugene Demler
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - Fabian Grusdt
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.,Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Markus Greiner
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.
| | - Daniel Greif
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
90
|
Kim AJ, Simkovic F, Kozik E. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2020; 124:117602. [PMID: 32242729 DOI: 10.1103/physrevlett.124.117602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
The 2D Hubbard model with nearest-neighbor hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge correlation functions and present results obtained with controlled accuracy using the diagrammatic Monte Carlo approach in the range of parameters amenable to experimental verification with ultracold atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-Fermi-liquid character, where local magnetic moments are formed and nonlocal fluctuations in both channels are essential.
Collapse
Affiliation(s)
- Aaram J Kim
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Fedor Simkovic
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Evgeny Kozik
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
91
|
Raghunandan M, Wolf F, Ospelkaus C, Schmidt PO, Weimer H. Initialization of quantum simulators by sympathetic cooling. SCIENCE ADVANCES 2020; 6:eaaw9268. [PMID: 32181335 PMCID: PMC7060053 DOI: 10.1126/sciadv.aaw9268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Simulating computationally intractable many-body problems on a quantum simulator holds great potential to deliver insights into physical, chemical, and biological systems. While the implementation of Hamiltonian dynamics within a quantum simulator has already been demonstrated in many experiments, the problem of initialization of quantum simulators to a suitable quantum state has hitherto remained mostly unsolved. Here, we show that already a single dissipatively driven auxiliary particle can efficiently prepare the quantum simulator in a low-energy state of largely arbitrary Hamiltonians. We demonstrate the scalability of our approach and show that it is robust against unwanted sources of decoherence. While our initialization protocol is largely independent of the physical realization of the simulation device, we provide an implementation example for a trapped ion quantum simulator.
Collapse
Affiliation(s)
- Meghana Raghunandan
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraβe 2, 30167 Hannover, Germany
| | - Fabian Wolf
- QUEST Institut, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Christian Ospelkaus
- QUEST Institut, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Piet O. Schmidt
- QUEST Institut, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Hendrik Weimer
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraβe 2, 30167 Hannover, Germany
| |
Collapse
|
92
|
Fremling M, Slingerland JK. An investigation of pre-crystalline order, ruling out Pauli crystals and introducing Pauli anti-crystals. Sci Rep 2020; 10:3710. [PMID: 32111894 PMCID: PMC7048835 DOI: 10.1038/s41598-020-60556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Fluid states of matter can locally exhibit characteristics of the onset of crystalline order. Traditionally this has been theoretically investigated using multipoint correlation functions. However new measurement techniques now allow multiparticle configurations of cold atomic systems to be observed directly. This has led to a search for new techniques to characterize the configurations that are likely to be observed. One of these techniques is the configuration density (CD), which has been used to argue for the formation of “Pauli crystals” by non-interacting electrons in e.g. a harmonic trap. We show here that such Pauli crystals do not exist, but that other other interesting spatial structures can occur in the form of an “anti-Crystal”, where the fermions preferentially avoid a lattice of positions surrounding any given fermion. Further, we show that configuration densities must be treated with great care as naive application can lead to the identification of crystalline structures which are artifacts of the method and of no physical significance. We analyze the failure of the CD and suggest methods that might be more suitable for characterizing multiparticle correlations which may signal the onset of crystalline order. In particular, we introduce neighbour counting statistics (NCS), which is the full counting statistics of the particle number in a neighborhood of a given particle. We test this on two dimensional systems with emerging triangular and square crystal structures.
Collapse
Affiliation(s)
- Mikael Fremling
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands. .,Department of Theoretical Physics, Maynooth University, Maynooth, co. Kildare, Ireland.
| | - J K Slingerland
- Department of Theoretical Physics, Maynooth University, Maynooth, co. Kildare, Ireland.,Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland
| |
Collapse
|
93
|
Bohrdt A, Omran A, Demler E, Gazit S, Grusdt F. Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms. PHYSICAL REVIEW LETTERS 2020; 124:073601. [PMID: 32142349 DOI: 10.1103/physrevlett.124.073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J-Q model, a candidate for hosting a deconfined quantum critical point.
Collapse
Affiliation(s)
- Annabelle Bohrdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Ahmed Omran
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Snir Gazit
- Racah Institute of Physics and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Fabian Grusdt
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, München D-80333, Germany
| |
Collapse
|
94
|
Dimitrova I, Jepsen N, Buyskikh A, Venegas-Gomez A, Amato-Grill J, Daley A, Ketterle W. Enhanced Superexchange in a Tilted Mott Insulator. PHYSICAL REVIEW LETTERS 2020; 124:043204. [PMID: 32058779 DOI: 10.1103/physrevlett.124.043204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In an optical lattice, entropy and mass transport by first-order tunneling are much faster than spin transport via superexchange. Here we show that adding a constant force (tilt) suppresses first-order tunneling, but not spin transport, realizing new features for spin Hamiltonians. Suppression of the superfluid transition can stabilize larger systems with faster spin dynamics. For the first time in a many-body spin system, we vary superexchange rates by over a factor of 100 and tune spin-spin interactions via the tilt. In a tilted lattice, defects are immobile and pure spin dynamics can be studied.
Collapse
Affiliation(s)
- Ivana Dimitrova
- Department of Physics, Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Niklas Jepsen
- Department of Physics, Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anton Buyskikh
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Araceli Venegas-Gomez
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Jesse Amato-Grill
- Department of Physics, Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrew Daley
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Wolfgang Ketterle
- Department of Physics, Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
95
|
Šimkovic F, LeBlanc JPF, Kim AJ, Deng Y, Prokof'ev NV, Svistunov BV, Kozik E. Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2020; 124:017003. [PMID: 31976700 DOI: 10.1103/physrevlett.124.017003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.
Collapse
Affiliation(s)
- Fedor Šimkovic
- Department of Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
| | - J P F LeBlanc
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| | - Aaram J Kim
- Department of Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - N V Prokof'ev
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
- National Research Center "Kurchatov Institute," 123182 Moscow, Russia
| | - B V Svistunov
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
- National Research Center "Kurchatov Institute," 123182 Moscow, Russia
- Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Evgeny Kozik
- Department of Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
96
|
Gall M, Chan CF, Wurz N, Köhl M. Simulating a Mott Insulator Using Attractive Interaction. PHYSICAL REVIEW LETTERS 2020; 124:010403. [PMID: 31976738 DOI: 10.1103/physrevlett.124.010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Indexed: 06/10/2023]
Abstract
We study the particle-hole symmetry in the Hubbard model using ultracold fermionic atoms in an optical lattice. We demonstrate the mapping between charge and spin degrees of freedom and, in particular, show the occurrence of a state with "incompressible" magnetization for attractive interactions. Our results present a novel approach to quantum simulation by giving access to strongly correlated phases of matter through an experimental mapping to easier detectable observables.
Collapse
Affiliation(s)
- M Gall
- Physikalisches Institut, University of Bonn, Wegelerstraße 8, 53115 Bonn, Germany
| | - C F Chan
- Physikalisches Institut, University of Bonn, Wegelerstraße 8, 53115 Bonn, Germany
| | - N Wurz
- Physikalisches Institut, University of Bonn, Wegelerstraße 8, 53115 Bonn, Germany
| | - M Köhl
- Physikalisches Institut, University of Bonn, Wegelerstraße 8, 53115 Bonn, Germany
| |
Collapse
|
97
|
Barbarino S, Yu J, Zoller P, Budich JC. Preparing Atomic Topological Quantum Matter by Adiabatic Nonunitary Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:010401. [PMID: 31976708 DOI: 10.1103/physrevlett.124.010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Motivated by the outstanding challenge of realizing low-temperature states of quantum matter in synthetic materials, we propose and study an experimentally feasible protocol for preparing topological states such as Chern insulators. By definition, such (nonsymmetry protected) topological phases cannot be attained without going through a phase transition in a closed system, largely preventing their preparation in coherent dynamics. To overcome this fundamental caveat, we propose to couple the target system to a conjugate system, so as to prepare a symmetry protected topological phase in an extended system by intermittently breaking the protecting symmetry. Finally, the decoupled conjugate system is discarded, thus projecting onto the desired topological state in the target system. By construction, this protocol may be immediately generalized to the class of invertible topological phases, characterized by the existence of an inverse topological order. We illustrate our findings with microscopic simulations on an experimentally realistic Chern insulator model of ultracold fermionic atoms in a driven spin-dependent hexagonal optical lattice.
Collapse
Affiliation(s)
- S Barbarino
- Institute of Theoretical Physics, Technische Universität Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat, 01062 Dresden, Germany
| | - J Yu
- Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - P Zoller
- Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - J C Budich
- Institute of Theoretical Physics, Technische Universität Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat, 01062 Dresden, Germany
| |
Collapse
|
98
|
Condon G, Rabault M, Barrett B, Chichet L, Arguel R, Eneriz-Imaz H, Naik D, Bertoldi A, Battelier B, Bouyer P, Landragin A. All-Optical Bose-Einstein Condensates in Microgravity. PHYSICAL REVIEW LETTERS 2019; 123:240402. [PMID: 31922832 DOI: 10.1103/physrevlett.123.240402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We report on the all-optical production of Bose-Einstein condensates in microgravity using a combination of grey molasses cooling, light-shift engineering and optical trapping in a painted potential. Forced evaporative cooling in a 3-m high Einstein elevator results in 4×10^{4} condensed atoms every 13.5 s, with a temperature as low as 35 nK. In this system, the atomic cloud can expand in weightlessness for up to 400 ms, paving the way for atom interferometry experiments with extended interrogation times and studies of ultracold matter physics at low energies on ground or in Space.
Collapse
Affiliation(s)
- G Condon
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - M Rabault
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - B Barrett
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - L Chichet
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - R Arguel
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - H Eneriz-Imaz
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - D Naik
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - A Bertoldi
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - B Battelier
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - P Bouyer
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - A Landragin
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France
| |
Collapse
|
99
|
Lin J, Nan J, Luo Y, Yao XC, Li X. Quantum Adiabatic Doping with Incommensurate Optical Lattices. PHYSICAL REVIEW LETTERS 2019; 123:233603. [PMID: 31868469 DOI: 10.1103/physrevlett.123.233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Quantum simulations of Fermi-Hubbard models have been attracting considerable effort in the optical lattice research, with the ultracold antiferromagnetic atomic phase reached at half filling in recent years. An unresolved issue is to dope the system while maintaining the low thermal entropy. Here we propose to achieve the low temperature phase of the doped Fermi-Hubbard model using incommensurate optical lattices through adiabatic quantum evolution. In this theoretical proposal, we find that one major problem about the adiabatic doping is atomic localization in the incommensurate lattice, potentially causing an exponential slowing down of the adiabatic procedure. We study both one- and two-dimensional incommensurate optical lattices, and find that the localization prevents efficient adiabatic doping in the strong lattice regime for both cases. With density matrix renormalization group calculation, we further show that the slowing down problem in one dimension can be circumvented by considering interaction induced many-body delocalization, which is experimentally feasible using Feshbach resonance techniques. This protocol is expected to be efficient as well in two dimensions where the localization phenomenon is less stable.
Collapse
Affiliation(s)
- Jian Lin
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jue Nan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuchen Luo
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xing-Can Yao
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
100
|
Light-induced evaporative cooling of holes in the Hubbard model. Nat Commun 2019; 10:5556. [PMID: 31804500 PMCID: PMC6895176 DOI: 10.1038/s41467-019-13557-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
An elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we propose a mechanism based on light-induced evaporative cooling of holes in a correlated fermionic system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature. Strongly correlated Fermi liquids and symmetry-broken states could thus be produced by dipolar excitations. Using nonequilibrium dynamical mean field theory, we show that suitably designed chirped pulses may realize this cooling effect. In particular, we demonstrate the emergence of antiferromagnetic order in a system which is initially in a weakly correlated state above the maximum Néel temperature. Our work suggests a general strategy for inducing strong correlation phenomena in periodically modulated atomic gases in optical lattices or light-driven materials. Driven quantum many-body systems can host finite densities of quasiparticles with the potential to realise emergent behaviour that is distinct from the equilibrium state. Werner et al. propose a method to cool holes in a correlated system so that more exotic low-entropy phases can be reached.
Collapse
|