51
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
52
|
Xu Y, Pickering JG, Nong Z, Gibson E, Arpino JM, Yin H, Ward AD. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis. PLoS One 2015; 10:e0126817. [PMID: 26024221 PMCID: PMC4449209 DOI: 10.1371/journal.pone.0126817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for analysis of diseased microvasculature.
Collapse
Affiliation(s)
- Yiwen Xu
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - J. Geoffrey Pickering
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Eli Gibson
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - John-Michael Arpino
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Aaron D. Ward
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Department of Oncology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
53
|
Odent Grigorescu G, Preda MB, Radu E, Rosca AM, Tutuianu R, Mitroi DN, Simionescu M, Burlacu A. Combinatorial approach for improving the outcome of angiogenic therapy in ischemic tissues. Biomaterials 2015; 60:72-81. [PMID: 25985154 DOI: 10.1016/j.biomaterials.2015.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/01/2023]
Abstract
Two major populations of endothelial progenitor cells (EPC), namely endothelial colony forming cells (ECFC, or late outgrowth EPC) and circulating angiogenic cells (CAC, or early outgrowth EPC) have been reported to play important roles in vasculogenesis in numerous pathological conditions. However, the poor retention of cells into the ischemic tissue and neovessel fragility are two major flaws that need to be overcome for successful angiogenic therapy. The objective of this study was to explore and exploit the functional properties of EPC populations in order to increase the effectiveness of post-ischemic cell therapy. The results indicate different, still complementary, effects of the two EPC populations on adherence and proliferation of vascular endothelial cells. Matrigel plug assay and mouse hind limb ischemia model showed that concomitant administration of CAC-secreted factors and ECFC resulted in three-fold increase in local cell retention and improved muscle perfusion, vessel maturation and hind limb regeneration, in comparison to either treatment alone. By concluding, factors secreted by CAC co-administered at the time of ECFC transplantation improve tissue regeneration and vascular repair through stabilization of newly-derived blood vessels.
Collapse
Affiliation(s)
- G Odent Grigorescu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - M B Preda
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - E Radu
- University Emergency Hospital, Bucharest, Romania
| | - A-M Rosca
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - R Tutuianu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - D N Mitroi
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - M Simionescu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania
| | - A Burlacu
- Institute of Cellular Biology and Pathology "NicolaeSimionescu", Bucharest, Romania.
| |
Collapse
|
54
|
Balint B, Yin H, Chakrabarti S, Chu MW, Sims SM, Pickering JG. Collectivization of Vascular Smooth Muscle Cells via TGF-β–Cadherin-11–Dependent Adhesive Switching. Arterioscler Thromb Vasc Biol 2015; 35:1254-64. [DOI: 10.1161/atvbaha.115.305310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/27/2015] [Indexed: 01/26/2023]
Abstract
Objective—
Smooth muscle cells (SMCs) in healthy arteries are arranged as a collective. However, in diseased arteries, SMCs commonly exist as individual cells, unconnected to each other. The purpose of this study was to elucidate the events that enable individualized SMCs to enter into a stable and interacting cell collective.
Approach and Results—
Human SMCs stimulated to undergo programmed collectivization were tracked by time-lapse microscopy. We uncovered a switch in the behavior of contacting SMCs from semiautonomous motility to cell–cell adherence. Central to the cell-adherent phenotype was the formation of uniquely elongated adherens junctions, up to 60 μm in length, which appeared to strap adjacent SMCs to each other. Remarkably, these junctions contained both N-cadherin and cadherin-11. Ground-state depletion super-resolution microscopy revealed that these hybrid assemblies were comprised of 2 parallel nanotracks of each cadherin, separated by 50 nm. Blocking either N-cadherin or cadherin-11 inhibited collectivization. Cell–cell adhesion and adherens junction elongation were associated with reduced transforming growth factor-β signaling, and exogenous transforming growth factor-β1 suppressed junction elongation via the noncanonical p38 pathway. Imaging of fura-2–loaded SMCs revealed that SMC assemblies displayed coordinated calcium oscillations and cell–cell transmission of calcium waves which, together with increased connexin 43–containing junctions, depended on cadherin-11 and N-cadherin function.
Conclusions—
SMCs can self-organize, structurally and functionally, via transforming growth factor-β–p38–dependent adhesive switching and a novel adherens junction architecture comprised of hybrid nanotracks of cadherin-11 and N-cadherin. The findings define a mechanism for the assembly of SMCs into networks, a process that may be relevant to the stability and function of blood vessels.
Collapse
Affiliation(s)
- Brittany Balint
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Hao Yin
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Subrata Chakrabarti
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Michael W.A. Chu
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Stephen M. Sims
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - J. Geoffrey Pickering
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| |
Collapse
|
55
|
Singla DK, Singla RD, Abdelli LS, Glass C. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS One 2015; 10:e0120739. [PMID: 25768089 PMCID: PMC4359124 DOI: 10.1371/journal.pone.0120739] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
Abstract
Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to mediate monocyte to M2 differentiation and confer cardiac protection in the post-MI diabetic heart.
Collapse
Affiliation(s)
- Dinender K. Singla
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| | - Reetu D. Singla
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Latifa S. Abdelli
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Carley Glass
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
56
|
Wallner C, Schira J, Wagner JM, Schulte M, Fischer S, Hirsch T, Richter W, Abraham S, Kneser U, Lehnhardt M, Behr B. Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration. PLoS One 2015; 10:e0118823. [PMID: 25742620 PMCID: PMC4350939 DOI: 10.1371/journal.pone.0118823] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 02/07/2023] Open
Abstract
Although bone regeneration is typically a reliable process, type 2 diabetes is associated with impaired or delayed healing processes. In addition, angiogenesis, a crucial step in bone regeneration, is often altered in the diabetic state. In this study, different stages of bone regeneration were characterized in an unicortical bone defect model comparing transgenic type 2 diabetic (db-/db-) and wild type (WT) mice in vivo. We investigated angiogenesis, callus formation and bone remodeling at early, intermediate and late time points by means of histomorphometry as well as protein level analyses. In order to enhance bone regeneration, defects were locally treated with recombinant FGF-9 or VEGFA. Histomorphometry of aniline blue stained sections indicated that bone regeneration is significantly decreased in db-/db- as opposed to WT mice at intermediate (5 days post operation) and late stages (7 days post operation) of bone regeneration. Moreover, immunohistochemical analysis revealed significantly decreased levels of RUNX-2, PCNA, Osteocalcin and PECAM-1 in db-/db- defects. In addition, osteoclastogenesis is impaired in db-/db- indicating altered bone remodeling. These results indicate significant impairments in angiogenesis and osteogenesis in type 2 diabetic bones. Importantly, angiogenesis, osteogenesis and bone remodeling could be reconstituted by application of recombinant FGF-9 and, in part, by VEGFA application. In conclusion, our study demonstrates that type 2 diabetes affects angiogenesis, osteogenesis and subsequently bone remodeling, which in turn leads to decreased bone regeneration. These effects could be reversed by local application of FGF-9 and to a lesser degree VEGFA. These data could serve as a basis for future therapeutic applications aiming at improving bone regeneration in the type 2 diabetic patient population.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jessica Schira
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG Trauma Hospital Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Matthias Schulte
- Department of Plastic Surgery, BG Trauma Hospital Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Plastic Surgery, BG Trauma Hospital Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ulrich Kneser
- Department of Plastic Surgery, BG Trauma Hospital Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
57
|
Lu J, Dai J, Wang X, Zhang M, Zhang P, Sun H, Zhang X, Yu H, Zhang W, Zhang L, Jiang X, Shen SG. Effect of fibroblast growth factor 9 on the osteogenic differentiation of bone marrow stromal stem cells and dental pulp stem cells. Mol Med Rep 2014; 11:1661-8. [PMID: 25435023 PMCID: PMC4270321 DOI: 10.3892/mmr.2014.2998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 10/24/2014] [Indexed: 11/26/2022] Open
Abstract
The role of fibroblast growth factor 9 (FGF9) in bone formation may depend on gene dosage, developmental stage, cell type or interactions with other cytokines. In the present study bone marrow stromal stem cells (BMSCs) and dental pulp stem cells (DPSCs) were cultured and osteogenically induced in vitro, treated with exogenous FGF9 at varying concentrations. Alkaline phosphatase staining, alizarin red S staining, reverse transcription quantitative polymerase chain reaction and western blot analyses were performed in order to investigate the gene expression levels of osteogenic markers. The results of the present study demonstrated that FGF9 enhanced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) during osteogenic induction in BMSCs and DPSCs, which are derived from different tissues. FGF9 also inhibited the osteogenic differentiation of BMSCs and DPSCs through the activation of ERK1/2. These findings suggested that FGF9 may be an inhibitor of osteogenesis in mesenchymal stem cells in vitro and its application in vivo requires investigation in the future.
Collapse
Affiliation(s)
- Jingting Lu
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jiewen Dai
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Maolin Zhang
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Peng Zhang
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hao Sun
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiuli Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hongbo Yu
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenbin Zhang
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lei Zhang
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xinquan Jiang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Steve Guofang Shen
- Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
58
|
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:161-79. [DOI: 10.1016/j.bbcan.2014.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
|
59
|
Said SS, Pickering JG, Mequanint K. Controlled Delivery of Fibroblast Growth Factor-9 from Biodegradable Poly(ester amide) Fibers for Building Functional Neovasculature. Pharm Res 2014; 31:3335-47. [DOI: 10.1007/s11095-014-1423-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
|
60
|
Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 2014; 20:2303-16. [PMID: 24180631 PMCID: PMC4005491 DOI: 10.1089/ars.2013.5449] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Conventional revascularization strategies or drug therapies for ischemic heart disease (IHD) are designed for reperfusion of coronary arteries to salvage cardiomyocytes, but occasionally, myocardial reperfusion injury can occur because of microcirculatory dysfunction. Therefore, a more microcirculation-friendly strategy should be explored to overcome and compensate for the shortcomings of conventional strategies. In this work, we investigated the proangiogenic effect of S-Propargyl-Cysteine (SPRC), a novel water-soluble modulator of endogenous hydrogen sulfide, and elucidated the possible mechanisms involved to provide an experimental basis for angiogenesis-mediated drug therapy for IHD. RESULTS SPRC promoted cell proliferation, adhesion, migration, and tube formation of primary human umbilical vein endothelial cells (HUVEC) and increased angiogenesis in the rat aortic ring and Matrigel plug models. In a mouse model of hindlimb ischemia and a rat model of myocardial ischemia, SPRC also promoted angiogenesis after ligation of the left femoral artery or coronary artery to ameliorate ischemic conditions. In primary HUVEC, STAT3 phosphorylation was significantly induced after SPRC treatment. The critical roles of STAT3 in mediating the proangiogenic effect of SPRC were confirmed by RNA interference. Co-crystallization excluded the possible direct interaction between SPRC and STAT3, whereas co-immunoprecipitation revealed an enhanced interaction between VEGFR2 and STAT3 after SPRC treatment. Meanwhile, immunofluorescence and chromatin immunoprecipitation showed that SPRC induced the nuclear translocation of STAT3, followed by transcriptional activation of downstream promoters, particularly the Vegf promoter. INNOVATION AND CONCLUSION We present a novel STAT3-mediated mechanism in SPRC-induced angiogenesis and demonstrate the therapeutic potential of SPRC in ischemic disease through angiogenesis promotion.
Collapse
Affiliation(s)
- Juntao Kan
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | | | | | | | | | | |
Collapse
|
61
|
Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials 2014; 35:6236-47. [PMID: 24818890 DOI: 10.1016/j.biomaterials.2014.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Airway tracts serve as a conduit of transport in the respiratory system. Architecturally, these are composed of cartilage rings that offer flexibility and prevent collapse during normal breathing. To this end, the successful regeneration of an airway tract requires the presence of differentiated chondrocytes and airway smooth muscle cells. This study investigated the role of physiological dynamic mechanical stimulation, in vitro, on the differentiation of mesenchymal stem cells (MSCs), three-dimensionally seeded within a tubular dense collagen matrix construct-reinforced with rings of electrospun silk fibroin mat (TDC-SFC). In particular, the role of either shear stress supplied by laminar fluid flow or cyclic shear stress in combination with circumferential strain, provided by pulsatile flow, on the chondrogenic differentiation, and contractile lineage of MSCs, and their effects on TDC-SFC morphology and mechanical properties were analysed. Chondrogenic differentiation of MSCs was observed in the presence of chondrogenic supplements under both static and laminar flow cultures. In contrast, physiological pulsatile flow resulted in preferential cellular orientation within TDC-SFC, as dictated by dynamic circumferential strain, and induced MSC contractile phenotype expression. In addition, pulsatile flow decreased MSC-mediated collagen matrix remodelling and increased construct circumferential strength. Therefore, TDC-SFC demonstrated the central role of a matrix in the delivery of mechanical stimuli over chemical factors, by providing an in vitro niche to control MSC differentiation, alignment and its capacity to remodel the matrix.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | - Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | - Ilaria Donelli
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Antonio Alessandrino
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Giuliano Freddi
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2.
| |
Collapse
|
62
|
Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res 2014; 20:611-8. [PMID: 24504536 DOI: 10.1007/s12253-013-9739-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Here we intend to identify key genes and pathways in the pathogenesis of colorectal cancer (CRC) through analyzing microarray data with bioinformatic tools. The gene expression profile dataset GSE23878 was downloaded from Gene Expression Omnibus and differentially expressed genes (DEGs) were screened out using Student's t-test. GO function and KEGG pathway enrichment analyses were performed for these DEGs with the DAVID online tool. Interaction network was constructed among the over-represented pathways based on the protein-protein interactions within the pathways. Besides, the protein interaction information obtained from HPRD database were applied to constructed protein-protein interaction networks among the DEGs and hub genes and function module were screened out. A total of 2,296 DEGs were obtained and they were enriched in 34 pathways. An interaction network was constructed among 32 pathways, in which p53 signaling pathway acted as the hub pathway as it showed the highest node degree. The protein-protein interaction network comprised 1,481 interaction relationships among 332 genes which included 40 DEGs. Further analysis revealed that theses DEGs formed 7 function modules and many genes, such as PDGFRB, MET, FZD2, CCND1, PRKCB, ARHGEF6, JUP, WNT2, WNT5A and WNT11 were key genes in the networks. The DEGs and disturbed biological functions uncovered in present study may play important roles in the development of CRC and can contribute to the understanding on molecular mechanisms of CRC. Further these DEGs we obtained can be acted as potential biomarkers for diagnosis and therapy of CRC.
Collapse
|
63
|
Vafaie F, Yin H, O'Neil C, Nong Z, Watson A, Arpino JM, Chu MWA, Wayne Holdsworth D, Gros R, Pickering JG. Collagenase-resistant collagen promotes mouse aging and vascular cell senescence. Aging Cell 2014; 13:121-30. [PMID: 23957394 PMCID: PMC4326859 DOI: 10.1111/acel.12155] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Collagen fibrils become resistant to cleavage over time. We hypothesized that resistance to type I collagen proteolysis not only marks biological aging but also drives it. To test this, we followed mice with a targeted mutation (Col1a1r/r) that yields collagenase-resistant type I collagen. Compared with wild-type littermates, Col1a1r/r mice had a shortened lifespan and developed features of premature aging including kyphosis, weight loss, decreased bone mineral density, and hypertension. We also found that vascular smooth muscle cells (SMCs) in the aortic wall of Col1a1r/r mice were susceptible to stress-induced senescence, displaying senescence-associated ß-galactosidase (SA-ßGal) activity and upregulated p16INK4A in response to angiotensin II infusion. To elucidate the basis of this pro-aging effect, vascular SMCs from twelve patients undergoing coronary artery bypass surgery were cultured on collagen derived from Col1a1r/r or wild-type mice. This revealed that mutant collagen directly reduced replicative lifespan and increased stress-induced SA-ßGal activity, p16INK4A expression, and p21CIP1 expression. The pro-senescence effect of mutant collagen was blocked by vitronectin, a ligand for αvß3 integrin that is presented by denatured but not native collagen. Moreover, inhibition of αvß3 with echistatin or with αvß3-blocking antibody increased senescence of SMCs on wild-type collagen. These findings reveal a novel aging cascade whereby resistance to collagen cleavage accelerates cellular aging. This interplay between extracellular and cellular compartments could hasten mammalian aging and the progression of aging-related diseases.
Collapse
Affiliation(s)
- Faran Vafaie
- Robarts Research Institute; Western University; London ON Canada
- Departments of Medicine and Biochemistry; Western University; London ON Canada
| | - Hao Yin
- Robarts Research Institute; Western University; London ON Canada
| | - Caroline O'Neil
- Robarts Research Institute; Western University; London ON Canada
| | - Zengxuan Nong
- Robarts Research Institute; Western University; London ON Canada
| | - Alanna Watson
- Robarts Research Institute; Western University; London ON Canada
- Departments of Medicine and Biochemistry; Western University; London ON Canada
| | - John-Michael Arpino
- Robarts Research Institute; Western University; London ON Canada
- Department of Medical Biophysics; Western University; London ON Canada
| | - Michael W. A. Chu
- Department of Surgery; Western University; London ON Canada
- London Health Sciences Centre; London ON Canada
| | - David Wayne Holdsworth
- Robarts Research Institute; Western University; London ON Canada
- Department of Medical Biophysics; Western University; London ON Canada
- Department of Surgery; Western University; London ON Canada
| | - Robert Gros
- Robarts Research Institute; Western University; London ON Canada
- Department of Physiology and Pharmacology; Western University; London ON Canada
| | - J. Geoffrey Pickering
- Robarts Research Institute; Western University; London ON Canada
- Departments of Medicine and Biochemistry; Western University; London ON Canada
- Department of Medical Biophysics; Western University; London ON Canada
- London Health Sciences Centre; London ON Canada
| |
Collapse
|
64
|
Sugimoto K, Yoshida S, Mashio Y, Toyota N, Xing Y, Xu H, Fujita Y, Huang Z, Touma M, Wu Q. Role of FGF10 on tumorigenesis by MS-K. Genes Cells 2013; 19:112-25. [DOI: 10.1111/gtc.12118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Kenkichi Sugimoto
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Suzuka Yoshida
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuka Mashio
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Naoka Toyota
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yanjiang Xing
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Henan Xu
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuki Fujita
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Zhijun Huang
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| | - Maki Touma
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Qiong Wu
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
65
|
Wanjare M, Kusuma S, Gerecht S. Perivascular cells in blood vessel regeneration. Biotechnol J 2013; 8:434-47. [PMID: 23554249 DOI: 10.1002/biot.201200199] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022]
Abstract
Vascular engineering seeks to design and construct functional blood vessels comprising endothelial cells (ECs) and perivascular cells (PCs), with the ultimate goal of clinical translation. While EC behavior has been extensively investigated, PCs play an equally significant role in the development of novel regenerative strategies, providing functionality and stability to vessels. The two major classes of PCs are vascular smooth muscle cells (vSMCs) and pericytes; vSMCs can be further sub-classified as either contractile or synthetic. The inclusion of these cell types is crucial for successful regeneration of blood vessels. Furthermore, understanding distinctions between vSMCs and pericytes will enable improved therapeutics in a tissue-specific manner. Here we focus on the approaches and challenges facing the use of PCs in vascular regeneration, including their characteristics, stem cell sources, and interactions with ECs. Finally, we discuss biochemical and microRNA (miR) regulators of PC behavior and engineering approaches that mimic various cues affecting PC function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
66
|
Coffey E, Newman DR, Sannes PL. Expression of fibroblast growth factor 9 in normal human lung and idiopathic pulmonary fibrosis. J Histochem Cytochem 2013; 61:671-9. [PMID: 23797050 DOI: 10.1369/0022155413497366] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF-β1 and/or overexpressing Wnt7B. The cellular distribution and established biologic activity of FGF9 make it a potentially strong candidate for contributing to the progression of IPF.
Collapse
Affiliation(s)
- Emily Coffey
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | | | | |
Collapse
|
67
|
Abstract
SIGNIFICANCE Proangiogenic therapy appeared a promising strategy for the treatment of patients with acute myocardial infarction (MI), as de novo formation of microvessels, has the potential to salvage ischemic myocardium at early stages after MI, and is also essential to prevent the transition to heart failure through the control of cardiomyocyte hypertrophy and contractility. RECENT ADVANCES Exciting preclinical studies evaluating proangiogenic therapies for MI have prompted the initiation of numerous clinical trials based on protein or gene transfer delivery of growth factors and administration of stem/progenitor cells, mainly from bone marrow origin. Nonetheless, these clinical trials showed mixed results in patients with acute MI. CRITICAL ISSUES Even though methodological caveats, such as way of delivery for angiogenic growth factors (e.g., protein vs. gene transfer) and stem/progenitor cells or isolation/culture procedure for regenerative cells might partially explain the failure of such trials, it appears that delivery of a single growth factor or cell type does not support angiogenesis sufficiently to promote cardiac repair. FUTURE DIRECTIONS Optimization of proangiogenic therapies might include stimulation of both angiogenesis and vessel maturation and/or the use of additional sources of stem/progenitor cells, such as cardiac progenitor cells. Experimental unraveling of the mechanisms of angiogenesis, vessel maturation, and endothelial cell/cardiomyocyte cross talk in the ischemic heart, analysis of emerging pathways, as well as a better understanding of how cardiovascular risk factors impact endogenous and therapeutically stimulated angiogenesis, would undoubtedly pave the way for the development of novel and hopefully efficient angiogenesis targeting therapeutics for the treatment of acute MI.
Collapse
Affiliation(s)
- Clement Cochain
- Paris Cardiovascular Research Center, INSERM UMR-S 970, Paris Descartes University, Paris, France
| | | | | |
Collapse
|
68
|
Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proc Natl Acad Sci U S A 2013; 110:4003-8. [PMID: 23431178 DOI: 10.1073/pnas.1220764110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spina bifida (SB) patients afflicted with myelomeningocele typically possess a neurogenic urinary bladder and exhibit varying degrees of bladder dysfunction. Although surgical intervention in the form of enterocystoplasty is the current standard of care in which to remedy the neurogenic bladder, it is still a stop-gap measure and is associated with many complications due to the use of bowel as a source of replacement tissue. Contemporary bladder tissue engineering strategies lack the ability to reform bladder smooth muscle, vasculature, and promote peripheral nerve tissue growth when using autologous populations of cells. Within the context of this study, we demonstrate the role of two specific populations of bone marrow (BM) stem/progenitor cells used in combination with a synthetic elastomeric scaffold that provides a unique and alternative means to current bladder regeneration approaches. In vitro differentiation, gene expression, and proliferation are similar among donor mesenchymal stem cells (MSCs), whereas poly(1,8-octanediol-cocitrate) scaffolds seeded with SB BM MSCs perform analogously to control counterparts with regard to bladder smooth muscle wall formation in vivo. SB CD34(+) hematopoietic stem/progenitor cells cotransplanted with donor-matched MSCs cause a dramatic increase in tissue vascularization as well as an induction of peripheral nerve growth in grafted areas compared with samples not seeded with hematopoietic stem/progenitor cells. Finally, MSC/CD34(+) grafts provided the impetus for rapid urothelium regeneration. Data suggest that autologous BM stem/progenitor cells may be used as alternate, nonpathogenic cell sources for SB patient-specific bladder tissue regeneration in lieu of current enterocystoplasty procedures and have implications for other bladder regenerative therapies.
Collapse
|
69
|
Serbo JV, Gerecht S. Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res Ther 2013; 4:8. [PMID: 23347554 PMCID: PMC3706776 DOI: 10.1186/scrt156] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability to understand and regulate human vasculature development and differentiation has the potential to benefit patients suffering from a variety of ailments, including cardiovascular disease, peripheral vascular disease, ischemia, and burn wounds. Current clinical treatments for vascular-related diseases commonly use the grafting from patients of autologous vessels, which are limited and often damaged due to disease. Considerable progress is being made through a tissue engineering strategy in the vascular field. Tissue engineering takes a multidisciplinary approach seeking to repair, improve, or replace biological tissue function in a controlled and predictable manner. To address the clinical need to perfuse and repair damaged, ischemic tissue, one approach of vascular engineering aims to understand and promote the growth and differentiation of vascular networks. Vascular tissue engineered constructs enable the close study of vascular network assembly and vessel interactions with the surrounding microenvironment. Scaffold platforms provide a method to control network development through the biophysical regulation of different scaffold properties, such as composition, mechanics, dimensionality, and so forth. Following a short description of vascular physiology and blood vessel biomechanics, the key principles in vascular tissue engineering are discussed. This review focuses on various biodegradable scaffold platforms and demonstrates how they are being used to regulate, promote, and understand angiogenesis and vascular network formation.
Collapse
Affiliation(s)
- Janna V Serbo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
70
|
Translation of Pro-Angiogenic and Anti-Angiogenic Therapies into Clinical Use. MECHANICAL AND CHEMICAL SIGNALING IN ANGIOGENESIS 2013. [DOI: 10.1007/978-3-642-30856-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
71
|
Lin YD, Luo CY, Hu YN, Yeh ML, Hsueh YC, Chang MY, Tsai DC, Wang JN, Tang MJ, Wei EIH, Springer ML, Hsieh PCH. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 2012; 4:146ra109. [PMID: 22875829 DOI: 10.1126/scitranslmed.3003841] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenic therapy is a promising approach for tissue repair and regeneration. However, recent clinical trials with protein delivery or gene therapy to promote angiogenesis have failed to provide therapeutic effects. A key factor for achieving effective revascularization is the durability of the microvasculature and the formation of new arterial vessels. Accordingly, we carried out experiments to test whether intramyocardial injection of self-assembling peptide nanofibers (NFs) combined with vascular endothelial growth factor (VEGF) could create an intramyocardial microenvironment with prolonged VEGF release to improve post-infarct neovascularization in rats. Our data showed that when injected with NF, VEGF delivery was sustained within the myocardium for up to 14 days, and the side effects of systemic edema and proteinuria were significantly reduced to the same level as that of control. NF/VEGF injection significantly improved angiogenesis, arteriogenesis, and cardiac performance 28 days after myocardial infarction. NF/VEGF injection not only allowed controlled local delivery but also transformed the injected site into a favorable microenvironment that recruited endogenous myofibroblasts and helped achieve effective revascularization. The engineered vascular niche further attracted a new population of cardiomyocyte-like cells to home to the injected sites, suggesting cardiomyocyte regeneration. Follow-up studies in pigs also revealed healing benefits consistent with observations in rats. In summary, this study demonstrates a new strategy for cardiovascular repair with potential for future clinical translation.
Collapse
Affiliation(s)
- Yi-Dong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Said SS, Pickering JG, Mequanint K. Advances in growth factor delivery for therapeutic angiogenesis. J Vasc Res 2012; 50:35-51. [PMID: 23154615 DOI: 10.1159/000345108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/12/2012] [Indexed: 01/09/2023] Open
Abstract
Therapeutic angiogenesis is a new revascularization strategy involving the administration of growth factors to induce new vessel formation. The biology and delivery of angiogenic growth factors involved in vessel formation have been extensively studied but success in translating the angiogenic capacity of growth factors into benefits for vascular disease patients is still limited. This could be attributed to issues related to patient selection, growth factor delivery methods or lack of vessel maturation. Comprehensive understanding of the cellular and molecular cross-talk during the different stages of vascular development is needed for the design of efficient therapeutic strategies. The presentation of angiogenic factors either in series or in parallel using a strategy that mimics physiological events, such as concentration and spatio-temporal profiles, is an immediate requirement for functional blood vessel formation. This review provides an overview of the recent delivery strategies of angiogenic factors and discusses targeting neovascular maturation as a promising approach to induce stable and functional vessels for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Somiraa S Said
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ont., Canada
| | | | | |
Collapse
|
73
|
Oxygen sensing mesenchymal progenitors promote neo-vasculogenesis in a humanized mouse model in vivo. PLoS One 2012; 7:e44468. [PMID: 22970226 PMCID: PMC3436890 DOI: 10.1371/journal.pone.0044468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/03/2012] [Indexed: 12/30/2022] Open
Abstract
Despite insights into the molecular pathways regulating hypoxia-induced gene expression, it is not known which cell types accomplish oxygen sensing during neo-vasculogenesis. We have developed a humanized mouse model of endothelial and mesenchymal progenitor co-transplantation to delineate the cellular compartments responsible for hypoxia response during vasculogenesis. Mesenchymal stem/progenitor cells (MSPCs) accumulated nuclear hypoxia-inducible transcription factor (HIF)-1α earlier and more sensitively than endothelial colony forming progenitor cells (ECFCs) in vitro and in vivo. Hypoxic ECFCs showed reduced function in vitro and underwent apoptosis within 24h in vivo when used without MSPCs. Surprisingly, only in MSPCs did pharmacologic or genetic inhibition of HIF-1α abrogate neo-vasculogenesis. HIF deletion in ECFCs caused no effect. ECFCs could be rescued from hypoxia-induced apoptosis by HIF-competent MSPCs resulting in the formation of patent perfused human vessels. Several angiogenic factors need to act in concert to partially substitute mesenchymal HIF-deficiency. Results demonstrate that ECFCs require HIF-competent vessel wall progenitors to initiate vasculogenesis in vivo and to bypass hypoxia-induced apoptosis. We describe a novel mechanistic role of MSPCs as oxygen sensors promoting vasculogenesis thus underscoring their importance for the development of advanced cellular therapies.
Collapse
|
74
|
Abstract
Therapeutic angiogenesis aims at treating ischemic diseases by generating new blood vessels from existing vasculature. It relies on delivery of exogenous factors to stimulate neovasculature formation. Current strategies using genes, proteins and cells have demonstrated efficacy in animal models. However, clinical translation of any of the three approaches has proved to be challenging for various reasons. Administration of angiogenic factors is generally considered safe, according to accumulated trials, and offers off-the-shelf availability. However, many hurdles must be overcome before therapeutic angiogenesis can become a true human therapy. This article will highlight protein-based therapeutic angiogenesis, concisely review recent progress and examine critical challenges. We will discuss growth factors that have been widely utilized in promoting angiogenesis and compare their targets and functions. Lastly, since bolus injection of free proteins usually result in poor outcomes, we will focus on controlled release of proteins.
Collapse
|
75
|
Zhou J, Zhao Y, Wang J, Zhang S, Liu Z, Zhen M, Liu Y, Liu P, Yin Z, Wang X. Therapeutic angiogenesis using basic fibroblast growth factor in combination with a collagen matrix in chronic hindlimb ischemia. ScientificWorldJournal 2012; 2012:652794. [PMID: 22666143 PMCID: PMC3362026 DOI: 10.1100/2012/652794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022] Open
Abstract
Although therapeutic angiogenesis by angiogenic cytokines is a feasible strategy to improve regional blood flow in ischemic regions, the optimal delivery mode needs to be established. Here we designed a complex of collagen matrix (CM) and basic fibroblast growth factor (bFGF) and evaluated its proangiogenic effect in ischemic hindlimbs. The bFGF-CM was prepared using lyophilization. The morphology, porosity and toxicity of CM were examined. The bFGF releasing profile and bioactivity of released bFGF were assessed. bFGF-CM was intramuscularly implanted into the rabbit ischemic hindlimb model. Oxygen saturation parameters (OSP) of ischemic hindlimbs was measured to evaluate the extremity perfusion at intervals. Histological examination was performed to evaluate the level of angiogenesis. The CM and bFGF-CM were of identical multiporous structure lacking cytotoxicity. The releasing profile lasted 10 days and the released bFGF remained bioactive. OSP in bFGF-CM group was significantly higher
than that in CM, bFGF and ischemic groups at 2 and 4 weeks. The number of capillaries and mature vessels in bFGF-CM group were significantly greater than that in untreated control, CM and bFGF groups. Therefore, bFGF-CM enables the safe and effective long-term release of bFGF with improved angiogenesis in ischemic hindlimbs compared with CM devoid of bFGF.
Collapse
Affiliation(s)
- Jianyin Zhou
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hutton DL, Logsdon EA, Moore EM, Mac Gabhann F, Gimble JM, Grayson WL. Vascular morphogenesis of adipose-derived stem cells is mediated by heterotypic cell-cell interactions. Tissue Eng Part A 2012; 18:1729-40. [PMID: 22462659 DOI: 10.1089/ten.tea.2011.0599] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are a promising cell source for vascular-based approaches to clinical therapeutics, as they have been shown to give rise to both endothelial and perivascular cells. While it is well known that ASCs can present a heterogeneous phenotypic profile, spontaneous interactions among these subpopulations that result in the formation of complex tissue structures have not been rigorously demonstrated. Our study reports the novel finding that ASCs grown in monolayers in the presence of angiogenic cues are capable of self-assembling into complex, three-dimensional vascular structures. This phenomenon is only apparent when the ASCs are seeded at a high density (20,000 cells/cm(2)) and occur through orchestrated interactions among three distinct subpopulations: CD31-positive cells (CD31+), α-smooth muscle actin-positive cells (αSMA+), and cells that are unstained for both these markers (CD31-/αSMA-). Investigations into the kinetics of the process revealed that endothelial vessel-like structures initially arose from individual CD31+ cells through proliferation and their interactions with CD31-/αSMA- cells. During this period, αSMA+ cells proliferated and appeared to migrate toward the vessel structures, eventually engaging in cell-cell contact with them after 1 week. By 2 weeks, the lumen-containing CD31+ vessels grew greater than a millimeter in length, were lined with vascular basement membrane proteins, and were encased within a dense, three-dimensional cluster of αSMA+ and CD31-/αSMA- cells. The recruitment of αSMA+ cells was largely due to platelet-derived growth factor (PDGF) signaling, as the inhibition of PDGF receptors substantially reduced αSMA+ cell growth and vessel coverage. Additionally, we found that while hypoxia increased endothelial gene expression and vessel width, it also inhibited the growth of the αSMA+ population. Together, these findings underscore the potential use of ASCs in forming mature vessels in vitro as well as the need for a further understanding of the heterotypic interactions among ASC subpopulations.
Collapse
Affiliation(s)
- Daphne L Hutton
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
77
|
Xing Y, Rainey WE, Apolzan JW, Francone OL, Harris RBS, Bollag WB. Adrenal cell aldosterone production is stimulated by very-low-density lipoprotein (VLDL). Endocrinology 2012; 153:721-31. [PMID: 22186415 PMCID: PMC3275386 DOI: 10.1210/en.2011-1752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Very low-density lipoproteins (VLDL) are a class of large lipoprotein synthesized in the liver. The key function of VLDL, in vivo, is to carry triglyceride from the liver to adipose tissue. As a steroidogenic organ, the adrenal gland mainly uses lipoproteins as sources of cholesterol. Although VLDL receptors have been detected in the human adrenal, the function of VLDL in the adrenal gland remains unknown. Herein, we used primary cultures of human and bovine adrenal cells and the adrenocortical cell line H295R as models to determine the effects of VLDL on adrenal steroidogenesis. Our studies revealed that VLDL significantly increased aldosterone synthesis in all of the models tested. This increase was largely due to VLDL's stimulation of the expression of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2). VLDL increased CYP11B2 mRNA expression in a concentration-dependent manner. Effects of VLDL on CYP11B2 transcript levels were not additive with angiotensin II or potassium but were additive with the cAMP pathway agonists ACTH and forskolin. Nifedipine completely inhibited the effects of VLDL on CYP11B2 mRNA, suggesting that calcium is the main signal transduction pathway used by VLDL in adrenal cells. Indeed, VLDL increased cytosolic free calcium levels. An in vivo study conducted in sucrose-fed rats showed a positive correlation between elevated triglyceride (VLDL) levels in plasma and CYP11B2 expression in the adrenal. In conclusion, we have shown that VLDL can stimulate aldosterone synthesis in adrenocortical cells by increasing StAR and CYP11B2 expression, an event likely mediated by a calcium-initiated signaling cascade.
Collapse
Affiliation(s)
- Yewei Xing
- Department of Physiology, Georgia Health Sciences University, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
78
|
Fuchs S, Dohle E, Kirkpatrick CJ. Sonic Hedgehog-mediated synergistic effects guiding angiogenesis and osteogenesis. VITAMINS AND HORMONES 2012; 88:491-506. [PMID: 22391318 DOI: 10.1016/b978-0-12-394622-5.00022-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) is a morphogen controlling the skeletal and vascular development in the embryo but is also reactivated during adult repair processes. Thus, this molecule holds great therapeutic potential for biotechnological and biomedical approaches aiming to enhance tissue regeneration or to replace damaged tissues. According to present knowledge, Shh signaling controls the expression of several families of growth factors involved in neovascularization and vessel maturation and acts upstream of the most prominent angiogenic growth factor, vascular endothelial growth factor. In this context, a very interesting feature of Shh is that it controls both angiogenic activity and vessel stabilization by mural cells. In parallel, Shh seems to have a direct effect on endothelial cell tube formation and seems to trigger the differentiation process of mesenchymal stem cells toward the osteogenic lineage. In this chapter, we will therefore shortly summarize the multifaceted potential of Shh for bone repair and vascularization according to the current literature. In addition, we will show how coculture models based on outgrowth endothelial cells and primary osteoblasts can be used to reveal some of the relevant mechanisms by which Shh drives and connects bone regeneration and vascularization.
Collapse
Affiliation(s)
- Sabine Fuchs
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
79
|
Khan OF, Chamberlain MD, Sefton MV. Toward an in vitro vasculature: differentiation of mesenchymal stromal cells within an endothelial cell-seeded modular construct in a microfluidic flow chamber. Tissue Eng Part A 2011; 18:744-56. [PMID: 21992078 DOI: 10.1089/ten.tea.2011.0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An in vitro tissue construct amenable to perfusion was formed by randomly packing mesenchymal stromal cell (MSC)-embedded, endothelial cell (EC)-coated collagen cylinders (modules) into a microfluidic chamber. The interstices created by the random packing of the submillimeter-sized modules created EC-lined channels. Flow caused a greater than expected amount of contraction and remodeling in the modular constructs. Flow influenced the MSC to develop smooth muscle cell markers (smooth muscle actin-positive, desmin-positive, and von Willebrand factor-negative) and migrate toward the surface of the modules. When modules were coated with EC, the extent of MSC differentiation and migration increased, suggesting that the MSC were becoming smooth muscle cell- or pericyte-like in their location and phenotype. The MSC also proliferated, resulting in a substantial increase in the number of differentiated MSC. These effects were markedly less for static controls not experiencing flow. As the MSC migrated, they created new matrix that included the deposition of proteoglycans. Collectively, these results suggest that MSC-embedded modules may be useful for the formation of functional vasculature in tissue engineered constructs. Moreover, these flow-conditioned tissue engineered constructs may be of interest as three-dimensional cell-laden platforms for drug testing and biological assays.
Collapse
Affiliation(s)
- Omar F Khan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
80
|
Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci U S A 2011; 108:14789-94. [PMID: 21878567 DOI: 10.1073/pnas.1017825108] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Severe traumatic events such as burns, and cancer therapy, often involve a significant loss of tissue, requiring surgical reconstruction by means of autologous muscle flaps. The scant availability of quality vascularized flaps and donor site morbidity often limit their use. Engineered vascularized grafts provide an alternative for this need. This work describes a first-time analysis, of the degree of in vitro vascularization and tissue organization, required to enhance the pace and efficacy of vascularized muscle graft integration in vivo. While one-day in vitro was sufficient for graft integration, a three-week culturing period, yielding semiorganized vessel structures and muscle fibers, significantly improved grafting efficacy. Implanted vessel networks were gradually replaced by host vessels, coupled with enhanced perfusion and capillary density. Upregulation of key graft angiogenic factors suggest its active role in promoting the angiogenic response. Transition from satellite cells to mature fibers was indicated by increased gene expression, increased capillary to fiber ratio, and similar morphology to normal muscle. We suggest a "relay" approach in which extended in vitro incubation, enabling the formation of a more structured vascular bed, allows for graft-host angiogenic collaboration that promotes anastomosis and vascular integration. The enhanced angiogenic response supports enhanced muscle regeneration, maturation, and integration.
Collapse
|
81
|
Steinbach SK, El-Mounayri O, DaCosta RS, Frontini MJ, Nong Z, Maeda A, Pickering JG, Miller FD, Husain M. Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2011; 31:2938-48. [PMID: 21852558 DOI: 10.1161/atvbaha.111.232975] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The goal of this study was to characterize the factors and conditions required for smooth muscle cell (SMC)-directed differentiation of Sox2(+) multipotent rat and human skin-derived precursors (SKPs) and to define whether they represent a source of fully functional vascular SMCs for applications in vivo. METHODS AND RESULTS We found that rat SKPs can differentiate almost exclusively into SMCs by reducing serum concentrations to 0.5% to 2% and plating them at low density. Human SKPs derived from foreskin required the addition of transforming growth factor-β1 or -β3 to differentiate into SMCs, but they did so even in the absence of serum. SMC formation was confirmed by quantitative reverse transcription-polymerase chain reaction, immunocytochemistry, and fluorescence-activated cell sorting, with increased expression of smoothelin-B and little to no expression of telokin or smooth muscle γ-actin, together indicating that SKPs differentiated into vascular rather than visceral SMCs. Rat and human SKP-derived SMCs were able to contract in vitro and also wrap around and support new capillary and larger blood vessel formation in angiogenesis assays in vivo. CONCLUSIONS SKPs are Sox2(+) progenitors that represent an attainable autologous source of stem cells that can be easily differentiated into functional vascular SMCs in defined serum-free conditions without reprogramming. SKPs represent a clinically viable cell source for potential therapeutic applications in neovascularization.
Collapse
|
82
|
Deimling SJ, Drysdale TA. Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm. Mech Dev 2011; 128:327-41. [PMID: 21763769 DOI: 10.1016/j.mod.2011.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
Given that the lateral plate mesoderm (LPM) gives rise to the cardiovascular system, identifying the cascade of signalling events that subdivides the LPM into distinct regions during development is an important question. Retinoic acid (RA) is known to be necessary for establishing the expression boundaries of important transcription factors that demarcate distinct regions along the anterior posterior axis of the LPM. Here, we demonstrate that fibroblast growth factor (Fgf) signalling is also necessary for regulating the expression domains of the same transcription factors (nkx2.5, foxf1, hand1 and sall3) by restricting the RA responsive LPM domains. When Fgf signalling is inhibited in neurula stage embryos, the more posterior LPM expression domains are lost, while the more anterior domains are extended further posterior. The domain changes are maintained throughout development as Fgf inhibition results in similar domain changes in late stage embryos. We also demonstrate that Fgf signalling is necessary for both the initiation of heart specification, and for maintaining heart specification until overt differentiation occurs. Fgf signalling is also necessary to restrict vascular patterning and create a vascular free domain in the posterior end of the LPM that correlates with the expression of hand1. Finally, we show cross talk between the RA and Fgf signalling pathways in the patterning of the LPM. We suggest that this tissue wide patterning event, active during the neurula stage, is an initial step in regional specification of the LPM, and this process is an essential early event in LPM patterning.
Collapse
Affiliation(s)
- Steven J Deimling
- Children's Health Research Institute, 800 Commissioners Road E., London, Ontario, Canada
| | | |
Collapse
|
83
|
In brief. Nat Rev Drug Discov 2011. [DOI: 10.1038/nrd3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Espinosa-Tanguma R, O'Neil C, Chrones T, Pickering JG, Sims SM. Essential role for calcium waves in migration of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2011; 301:H315-23. [PMID: 21572011 DOI: 10.1152/ajpheart.00355.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity.
Collapse
Affiliation(s)
- Ricardo Espinosa-Tanguma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
85
|
|