51
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
52
|
Wen W, Wang Y, Li H, Xu H, Xu M, Frank JA, Ma M, Luo J. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Regulates Neurite Outgrowth Through the Activation of Akt/mTOR and Erk/mTOR Signaling Pathways. Front Mol Neurosci 2020; 13:560020. [PMID: 33071755 PMCID: PMC7541815 DOI: 10.3389/fnmol.2020.560020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Neurite outgrowth is essential for brain development and the recovery of brain injury and neurodegenerative diseases. In this study, we examined the role of the neurotrophic factor MANF in regulating neurite outgrowth. We generated MANF knockout (KO) neuro2a (N2a) cell lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and demonstrated that MANF KO N2a cells failed to grow neurites in response to RA stimulation. Using MANF siRNA, this finding was confirmed in human SH-SY5Y neuronal cell line. Nevertheless, MANF overexpression by adenovirus transduction or addition of MANF into culture media facilitated the growth of longer neurites in RA-treated N2a cells. MANF deficiency resulted in inhibition of Akt, Erk, mTOR, and P70S6, and impaired protein synthesis. MANF overexpression on the other hand facilitated the growth of longer neurites by activating Akt, Erk, mTOR, and P70S6. Pharmacological blockade of Akt, Erk or mTOR eliminated the promoting effect of MANF on neurite outgrowth. These findings suggest that MANF positively regulated neurite outgrowth by activating Akt/mTOR and Erk/mTOR signaling pathways.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
53
|
Aiyama T, Orimo T, Yokoo H, Ohata T, Hatanaka KC, Hatanaka Y, Fukai M, Kamiyama T, Taketomi A. Adenomatous polyposis coli-binding protein end-binding 1 promotes hepatocellular carcinoma growth and metastasis. PLoS One 2020; 15:e0239462. [PMID: 32956413 PMCID: PMC7505586 DOI: 10.1371/journal.pone.0239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
This study was performed to determine the clinical significance of adenomatous polyposis coli (APC)-binding protein end-binding 1 (EB1) in hepatocellular carcinoma (HCC) and to characterize its biochemical role in comparison with previous reports. We performed immunohistochemical staining to detect EB1 expression in tissues from 235 patients with HCC and investigated its correlations with clinicopathological features and prognosis. We also investigated the roles of EB1 in cell proliferation, migration, and tumorigenesis in vitro and in vivo by siRNA- and CRISPR/Cas9-mediated modulation of EB1 expression in human HCC cell lines. The results showed that EB1 expression was significantly correlated with several important factors associated with tumor malignancy, including histological differentiation, portal vein invasion status, and intrahepatic metastasis. Patients with high EB1 expression in HCC tissue had poorer overall survival and higher recurrence rates than patients with low EB1 expression. EB1 knockdown and knockout in HCC cells reduced cell proliferation, migration, and invasion in vitro and inhibited tumor growth in vivo. Further, genes encoding Dlk1, HAMP, and SLCO1B3 that were differentially expressed in association with EB1 were identified using RNA microarray analysis. In conclusion, elevated expression of EB1 promotes tumor growth and metastasis of HCC. EB1 may serve as a new biomarker for HCC, and genes coexpressed with EB1 may represent potential targets for therapy.
Collapse
Affiliation(s)
- Takeshi Aiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Hideki Yokoo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takanori Ohata
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
54
|
Simón O, Palma L, Fernández AB, Williams T, Caballero P. Baculovirus Expression and Functional Analysis of Vpa2 Proteins from Bacillus thuringiensis. Toxins (Basel) 2020; 12:toxins12090543. [PMID: 32842608 PMCID: PMC7551607 DOI: 10.3390/toxins12090543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpa1/Vpa2 is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.
Collapse
Affiliation(s)
- Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Correspondence: ; Tel.: +34-948168012
| | - Leopoldo Palma
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional De Villa María, Villa María, Córdoba 5900, Argentina;
| | - Ana Beatriz Fernández
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| | | | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| |
Collapse
|
55
|
Te Molder L, Hoekman L, Kreft M, Bleijerveld O, Sonnenberg A. Comparative interactomics analysis reveals potential regulators of α6β4 distribution in keratinocytes. Biol Open 2020; 9:bio.054155. [PMID: 32709696 PMCID: PMC7438003 DOI: 10.1242/bio.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrin α6β4 and cytoskeletal adaptor plectin are essential components of type I and type II hemidesmosomes (HDs). We recently identified an alternative type II HD adhesion complex that also contains CD151 and the integrin α3β1. Here, we have taken a BioID proximity labeling approach to define the proximity protein environment for α6β4 in keratinocytes. We identified 37 proteins that interacted with both α6 and β4, while 20 and 78 proteins specifically interacted with the α6 and β4 subunits, respectively. Many of the proximity interactors of α6β4 are components of focal adhesions (FAs) and the cortical microtubule stabilizing complex (CMSC). Though the close association of CMSCs with α6β4 in HDs was confirmed by immunofluorescence analysis, CMSCs have no role in the assembly of HDs. Analysis of the β4 interactome in the presence or absence of CD151 revealed that they are strikingly similar; only 11 different interactors were identified. One of these was the integrin α3β1, which interacted with α6β4 more strongly in the presence of CD151 than in its absence. These findings indicate that CD151 does not significantly contribute to the interactome of α6β4, but suggest a role of CD151 in linking α3β1 and α6β4 together in tetraspanin adhesion structures. Summary: Comparative interactomics analysis reveals close proximity of HDs, FAs and CMSCs, and a role of CD151 in linking α3β1 and α6β4 together in an alternative type II HD-like adhesion complex.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Onno Bleijerveld
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
56
|
Garamella J, Regan K, Aguirre G, McGorty RJ, Robertson-Anderson RM. Anomalous and heterogeneous DNA transport in biomimetic cytoskeleton networks. SOFT MATTER 2020; 16:6344-6353. [PMID: 32555863 PMCID: PMC7388685 DOI: 10.1039/d0sm00544d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytoskeleton, a complex network of protein filaments and crosslinking proteins, dictates diverse cellular processes ranging from division to cargo transport. Yet, the role the cytoskeleton plays in the intracellular transport of DNA and other macromolecules remains poorly understood. Here, using single-molecule conformational tracking, we measure the transport and conformational dynamics of linear and relaxed circular (ring) DNA in composite networks of actin and microtubules with variable types of crosslinking. While both linear and ring DNA undergo anomalous, non-Gaussian, and non-ergodic subdiffusion, the detailed dynamics are controlled by both DNA topology (linear vs. ring) and crosslinking motif. Ring DNA swells, exhibiting heterogeneous subdiffusion controlled via threading by cytoskeleton filaments, while linear DNA compacts, exhibiting transport via caging and hopping. Importantly, while the crosslinking motif has little effect on ring DNA, linear DNA in networks with actin-microtubule crosslinking is significantly less ergodic and shows more heterogeneous transport than with actin-actin or microtubule-microtubule crosslinking.
Collapse
Affiliation(s)
- Jonathan Garamella
- Department of Physics & Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | | | | | | | | |
Collapse
|
57
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
58
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
59
|
Whitelaw JA, Swaminathan K, Kage F, Machesky LM. The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells 2020; 9:E1635. [PMID: 32646006 PMCID: PMC7407199 DOI: 10.3390/cells9071635] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
Collapse
Affiliation(s)
| | - Karthic Swaminathan
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1PD, UK
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755-3844, USA;
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Laura M. Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
60
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
61
|
Yang H, Zhang L, Liu S. Determination of reference genes for ovine pulmonary adenocarcinoma infected lung tissues using RNA-seq transcriptome profiling. J Virol Methods 2020; 284:113923. [PMID: 32615131 DOI: 10.1016/j.jviromet.2020.113923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/25/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a globally occurring tumor of lung epithelium which seriously affects the development of sheep farming. In our research, lung tissues of 3 naturally infected OPA individuals and 3 healthy individuals (2-4 years old) were collected. RNA was extracted for transcriptome analysis and reference gene selection. According to transcriptome analysis, 7 candidate reference genes (eukaryotic translation initiation factor 1, EIF1; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; beta-actin, ACTB; GABA Type A receptor-associated protein, GABARAP; activating transcription factor 4, ATF4; ribosomal protein S15, RPS15; and Y-Box binding protein 1, YBX1) showed fragments per kilobase of transcript per million fragments mapped (FPKM) values > 200.0 and standard errors of the means (SEM) < 20.0. Expression of the above candidate reference genes was evaluated by Real-time quantitative polymerase chain reaction (RT-qPCR) combined with the analysis using GeNorm, NormFinder, and BestKeeper software. Comprehensive analysis of the results showed that ACTB was the most stable one, followed by EIF1 and GABARAP. Then, expression stability of the above three genes were validated, suggesting as suitable reference genes in sheep lung tissue, in additional 30 OPA-affected lung tissues and 10 healthy ovine lung tissues. Finally, our findings will be helpful for the subsequent study on the tumorigenic mechanism of OPA.
Collapse
Affiliation(s)
- Hui Yang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| | - Liang Zhang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| | - Shuying Liu
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| |
Collapse
|
62
|
Chakraborty S, Mahamid J, Baumeister W. Cryoelectron Tomography Reveals Nanoscale Organization of the Cytoskeleton and Its Relation to Microtubule Curvature Inside Cells. Structure 2020; 28:991-1003.e4. [PMID: 32579947 DOI: 10.1016/j.str.2020.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are the most rigid elements of the cytoskeleton with in vitro persistence lengths (Lp) in the range of 1-6 mm. In cellular environments, however, MTs often appear strongly curved. This has been attributed to the forces acting upon them in situ where they are embedded in composite networks of different cytoskeletal elements. Hitherto, the nanoscale organization of these networks has remained largely uncharacterized. Cryo-electron tomography (cryo-ET) allowed to visualize and analyze the in situ structure of cytoskeletal networks in pristinely preserved cellular environments and at high resolution. Here, we studied the molecular organization of MTs and their interactions with the composite cytoskeleton in frozen-hydrated HeLa and P19 cells at different cell-cycle stages. We describe modulation of MT curvature correlated with the surrounding molecular architecture, and show that nanoscale defects occur in curved MTs. The data presented here contribute to constructing realistic models of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
63
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
64
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
65
|
Li T, Liu X, Xu B, Wu W, Zang Y, Li J, Wei L, Qian Y, Xu H, Xie M, Wang Q, Wang L. SKA1 regulates actin cytoskeleton remodelling via activating Cdc42 and influences the migration of pancreatic ductal adenocarcinoma cells. Cell Prolif 2020; 53:e12799. [PMID: 32232899 PMCID: PMC7162805 DOI: 10.1111/cpr.12799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives Spindle and kinetochore–associated protein 1(SKA1), originally identified as a protein essential for proper chromosome segregation, has been recently linked to multiple malignancies. This study aimed to explore the biological, clinical role and molecular mechanism of SKA1 in pancreatic carcinogenesis. Materials and Methods SKA1 expression was detected in 145 pancreatic ductal adenocarcinoma (PDAC) specimens by immunohistochemistry. Biological behaviour assays were used to determine the role of SKA1 in PDAC progression in vitro and in vivo. Using isobaric tags for relative and absolute quantitation (iTRAQ), SKA1’s downstream proteins were examined. Moreover, cytochalasin B and ZCL278 were used to explore the changes of SKA1‐induced signalling and cell morphology, with further confirmation by immunoblotting and immunofluorescence assays. Results Increased SKA1 expression was significantly correlated with tumour size and cellular differentiation degree in PDAC tissues. Furthermore, elevated levels of SKA1 reflected shorter overall survival (P = .019). As for biological behaviour, SKA1 acted as a tumour promotor in PDAC, overexpression of SKA1 facilitates cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, we demonstrated that SKA1 enhanced pancreatic cancer aggressiveness by inhibiting G2/M arrest and regulating actin cytoskeleton organization via activating Cdc42. Conclusions This study revealed novel roles for SKA1 as an important regulator of actin cytoskeleton organization and an oncogene in PDAC cells, which may provide insights into developing novel therapeutics.
Collapse
Affiliation(s)
- Tong Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Liu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingping Xie
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Wang X, Tang S, Qin F, Liu Y, Liang Z, Cai H, Mo L, Xiao D, Guo S, Ouyang Y, Sun B, Lu C, Li X. Proteomics and phosphoproteomics study of LCMT1 overexpression and oxidative stress: overexpression of LCMT1 arrests H 2O 2-induced lose of cells viability. Redox Rep 2020; 24:1-9. [PMID: 30898057 PMCID: PMC6748586 DOI: 10.1080/13510002.2019.1595332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives: Protein phosphatase 2A (PP2A), a major serine/threonine
phosphatase, is also known to be a target of ROS. The methylation of PP2A can be
catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A
activity and substrate specificity. Methods: In the previous study, we have showed that LCMT1-dependent
PP2Ac methylation arrests H2O2-induced cell oxidative
stress damage. To explore the possible protective mechanism, we performed
iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of
H2O2-treated vector control and LCMT1-overexpressing
cells. Results: A total of 4480 non-redundant proteins and 3801 unique
phosphopeptides were identified by this means. By comparing the
H2O2-regulated proteins in LCMT1-overexpressing and
vector control cells, we found that these differences were mainly related to
protein phosphorylation, gene expression, protein maturation, the cytoskeleton
and cell division. Further investigation of LCMT1 overexpression-specific
regulated proteins under H2O2 treatment supported the idea
that LCMT1 overexpression induced ageneral dephosphorylation of proteins and
indicated increased expression of non-erythrocytic hemoglobin, inactivation of
MAPK3 and regulation of proteins related to Rho signal transduction, which were
known to be linked to the regulation of the cytoskeleton. Discussion: These data provide proteomics and phosphoproteomics
insights into the association of LCMT1-dependent PP2Ac methylation and oxidative
stress and indirectly indicate that the methylation of PP2A plays an important
role against oxidative stress.
Collapse
Affiliation(s)
- Xinhang Wang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Shen Tang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Fu Qin
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Yuyang Liu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Ziwei Liang
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Haiqing Cai
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Laiming Mo
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Deqiang Xiao
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Songcao Guo
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Yiqiang Ouyang
- d Laboratory Animal Centre , Guangxi Medical University , Nanning , People's Republic of China
| | - Bin Sun
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Cailing Lu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Xiyi Li
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| |
Collapse
|
67
|
Natali L, Caprini L, Cecconi F. How a local active force modifies the structural properties of polymers. SOFT MATTER 2020; 16:2594-2604. [PMID: 32091062 DOI: 10.1039/c9sm02258a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the dynamics of a polymer, described as a variant of a Rouse chain, driven by an active terminal monomer (head). The local active force induces a transition from a globule-like to an elongated state, as revealed by the study of the end-to-end distance, the variance of which is analytically predicted under suitable approximations. The change in the relaxation times of the Rouse-modes produced by the local self-propulsion is consistent with the transition from globule to elongated conformations. Moreover, also the bond-bond spatial correlation for the chain head are affected by the self-propulsion and a gradient of over-stretched bonds along the chain is observed. We compare our numerical results both with the phenomenological stiff-polymer theory and several analytical predictions in the Rouse-chain approximation.
Collapse
Affiliation(s)
- Laura Natali
- Dipartimento di Fisica, Università"Sapienza", Piazzale A. Moro 5, I00185 Rome, Italy
| | | | | |
Collapse
|
68
|
Anand SK, Singh SP. Conformation and dynamics of a self-avoiding active flexible polymer. Phys Rev E 2020; 101:030501. [PMID: 32289970 DOI: 10.1103/physreve.101.030501] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
We investigate conformations and dynamics of a polymer considering its monomers to be active Brownian particles. This active polymer shows very intriguing physical behavior which is absent in an active Rouse chain. The chain initially shrinks with active force, which starts swelling on further increase in force. The shrinkage followed by swelling is attributed purely to excluded-volume interactions among the monomers. In the swelling regime, the chain shows a crossover from the self-avoiding behavior to the Rouse behavior with scaling exponent ν_{a}≈1/2 for end-to-end distance. The nonmonotonicity in the structure is analyzed through various physical quantities; specifically, radial distribution function of monomers, scattering time, as well as various energy calculations. The chain relaxes faster than the Rouse chain in the intermediate force regime, with a crossover in variation of relaxation time at large active force as given by a power law τ_{r}∼Pe^{-4/3} (Pe is Péclet number).
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
69
|
Li S, Wang Z, Tong H, Li S, Yan Y. TCP11L2 promotes bovine skeletal muscle-derived satellite cell migration and differentiation via FMNL2. J Cell Physiol 2020; 235:7183-7193. [PMID: 32017087 DOI: 10.1002/jcp.29617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
T-complex 11 like 2 (TCP11L2) is a protein containing a serine-rich region in its N-terminal region. However, the function of TCP11L2 is unclear. Here, we showed that TCP11L2 expression gradually increased during muscle-derived satellite cell (MDSC) differentiation in vitro, reaching a peak on Day 3, which is the migration and fusion stage of MDSCs. Using CRISPR/dCas9 gene-editing technology to elevate or repress the expression of TCP11L2, we also showed that TCP11L2 promoted MDSC differentiation. Moreover, wound-healing assays showed that TCP11L2 promoted the migration of MDSCs during differentiation. Additionally, immunofluorescence analyses showed that TCP11L2 was mainly distributed around the microfilament and microtubules. Furthermore, the expression of TCP11L2 affected the expression of actin-related protein 2/3 (ARP2/3) complex. Co-immunoprecipitation assays and immunofluorescence analysis showed that TCP11L2 interacted with formin-like 2 (FMNL2). This protein promoted migration of bovine MDSCs by affecting the expression of ARP2/3. Finally, the activities of TCP11L2 during MDSC differentiation and migration were blocked when FMNL2 was inhibited. Taken together, our data established that TCP11L2 interacted with FMNL2 to promote MDSC migration and differentiation.
Collapse
Affiliation(s)
- Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China.,College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang, China
| | - Zhiqi Wang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
70
|
Woo Y, Kim SJ, Suh BK, Kwak Y, Jung HJ, Nhung TTM, Mun DJ, Hong JH, Noh SJ, Kim S, Lee A, Baek ST, Nguyen MD, Choe Y, Park SK. Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis. eLife 2019; 8:e50850. [PMID: 31815665 PMCID: PMC6927744 DOI: 10.7554/elife.50850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
Abstract
Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation of NDEL1 S332 by GSK3β. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3β to form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual phosphorylation increases the filamentous actin dynamics. Ultimately, the phosphorylation enhances both axonal and dendritic outgrowth and promotes their arborization. Together, our findings suggest the NDEL1 phosphorylation at S336/S332 by the TARA-DYRK2-GSK3β complex as a novel regulatory mechanism underlying neuronal morphogenesis.
Collapse
Affiliation(s)
- Youngsik Woo
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Soo Jeong Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Bo Kyoung Suh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Yongdo Kwak
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hyun-Jin Jung
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Truong Thi My Nhung
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Dong Jin Mun
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ji-Ho Hong
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Su-Jin Noh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seunghyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ahryoung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seung Tae Baek
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Cell Biology and Anatomy, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | | | - Sang Ki Park
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
71
|
Wulstein DM, Regan KE, Garamella J, McGorty RJ, Robertson-Anderson RM. Topology-dependent anomalous dynamics of ring and linear DNA are sensitive to cytoskeleton crosslinking. SCIENCE ADVANCES 2019; 5:eaay5912. [PMID: 31853502 PMCID: PMC6910835 DOI: 10.1126/sciadv.aay5912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 05/21/2023]
Abstract
Cytoskeletal crowding plays a key role in the diffusion of DNA molecules through the cell, acting as a barrier to effective intracellular transport and conformational stability required for processes such as transfection, viral infection, and gene therapy. Here, we elucidate the transport properties and conformational dynamics of linear and ring DNA molecules diffusing through entangled and crosslinked composite networks of actin and microtubules. We couple single-molecule conformational tracking with differential dynamic microscopy to reveal that ring and linear DNA exhibit unexpectedly distinct transport properties that are influenced differently by cytoskeleton crosslinking. Ring DNA coils are swollen and undergo heterogeneous and biphasic subdiffusion that is hindered by crosslinking. Conversely, crosslinking actually facilitates the single-mode subdiffusion that compacted linear chains exhibit. Our collective results demonstrate that transient threading by cytoskeleton filaments plays a key role in the dynamics of ring DNA, whereas the mobility of the cytoskeleton dictates transport of linear DNA.
Collapse
Affiliation(s)
| | | | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | | | | |
Collapse
|
72
|
Anderson SJ, Matsuda C, Garamella J, Peddireddy KR, Robertson-Anderson RM, McGorty R. Filament Rigidity Vies with Mesh Size in Determining Anomalous Diffusion in Cytoskeleton. Biomacromolecules 2019; 20:4380-4388. [PMID: 31687803 DOI: 10.1021/acs.biomac.9b01057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diffusion of microscopic particles through the cell, important to processes such as viral infection, gene delivery, and vesicle transport, is largely controlled by the complex cytoskeletal network, comprised of semiflexible actin filaments and rigid microtubules, that pervades the cytoplasm. By varying the relative concentrations of actin and microtubules, the cytoskeleton can display a host of different structural and dynamic properties that, in turn, impact the diffusion of particles through the composite network. Here, we couple single-particle tracking with differential dynamic microscopy to characterize the transport of microsphere tracers diffusing through composite in vitro networks with varying ratios of actin and microtubules. We analyze multiple complementary metrics for anomalous transport to show that particles exhibit anomalous subdiffusion in all networks, which our data suggest arises from caging by networks. Further, subdiffusive characteristics are markedly more pronounced in actin-rich networks, which exhibit similarly more prominent viscoelastic properties compared to microtubule-rich composites. While the smaller mesh size of actin-rich composites compared to microtubule-rich composites plays an important role in these results, the rigidity of the filaments comprising the network also influences the anomalous characteristics that we observe. Our results suggest that as microtubules in our composites are replaced with actin filaments, the decreasing filament rigidity competes with increasing network connectivity to drive anomalous transport.
Collapse
Affiliation(s)
- Sylas J Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Christelle Matsuda
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Jonathan Garamella
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Karthik Reddy Peddireddy
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Ryan McGorty
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| |
Collapse
|
73
|
Sato Y, Kamijo K, Tsutsumi M, Murakami Y, Takahashi M. Nonmuscle myosin IIA and IIB differently suppress microtubule growth to stabilize cell morphology. J Biochem 2019; 167:25-39. [DOI: 10.1093/jb/mvz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Precise regulation of cytoskeletal dynamics is important in many fundamental cellular processes such as cell shape determination. Actin and microtubule (MT) cytoskeletons mutually regulate their stability and dynamics. Nonmuscle myosin II (NMII) is a candidate protein that mediates the actin–MT crosstalk. NMII regulates the stability and dynamics of actin filaments to control cell morphology. Additionally, previous reports suggest that NMII-dependent cellular contractility regulates MT dynamics, and MTs also control cell morphology; however, the detailed mechanism whereby NMII regulates MT dynamics and the relationship among actin dynamics, MT dynamics and cell morphology remain unclear. The present study explores the roles of two well-characterized NMII isoforms, NMIIA and NMIIB, on the regulation of MT growth dynamics and cell morphology. We performed RNAi and drug experiments and demonstrated the NMII isoform-specific mechanisms—NMIIA-dependent cellular contractility upregulates the expression of some mammalian diaphanous-related formin (mDia) proteins that suppress MT dynamics; NMIIB-dependent inhibition of actin depolymerization suppresses MT growth independently of cellular contractility. The depletion of either NMIIA or NMIIB resulted in the increase in cellular morphological dynamicity, which was alleviated by the perturbation of MT dynamics. Thus, the NMII-dependent control of cell morphology significantly relies on MT dynamics.
Collapse
Affiliation(s)
- Yuta Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Keiju Kamijo
- Division of Anatomy and Cell Biology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai Miyagi, Japan
| | - Motosuke Tsutsumi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| |
Collapse
|
74
|
Chen D, Xiang M, Gong Y, Xu L, Zhang T, He Y, Zhou M, Xin L, Li J, Song J. LIPUS promotes FOXO1 accumulation by downregulating miR-182 to enhance osteogenic differentiation in hPDLCs. Biochimie 2019; 165:219-228. [DOI: 10.1016/j.biochi.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
|
75
|
Sugarcane glycoproteins control dynamics of cytoskeleton during teliospore germination of Sporisorium scitamineum. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
76
|
Ricketts SN, Francis ML, Farhadi L, Rust MJ, Das M, Ross JL, Robertson-Anderson RM. Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites. Sci Rep 2019; 9:12831. [PMID: 31492892 PMCID: PMC6731314 DOI: 10.1038/s41598-019-49236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
The cytoskeleton precisely tunes its mechanics by altering interactions between semiflexible actin filaments, rigid microtubules, and crosslinking proteins. We use optical tweezers microrheology and confocal microscopy to characterize how varying crosslinking motifs impact the mesoscale mechanics and mobility of actin-microtubule composites. We show that, upon subtle changes in crosslinking patterns, composites can exhibit two distinct classes of force response - primarily elastic versus more viscous. For example, a composite in which actin and microtubules are crosslinked to each other but not to themselves is markedly more elastic than one in which both filaments are independently crosslinked. Notably, this distinction only emerges at mesoscopic scales in response to nonlinear forcing, whereas varying crosslinking motifs have little impact on the microscale mechanics and mobility. Our unexpected scale-dependent results not only inform the physics underlying key cytoskeleton processes and structures, but, more generally, provide valuable perspective to materials engineering endeavors focused on polymer composites.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madison L Francis
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St., Chicago, IL, 60637, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA.
| |
Collapse
|
77
|
Müller MT, Schempp R, Lutz A, Felder T, Felder E, Miklavc P. Interaction of microtubules and actin during the post-fusion phase of exocytosis. Sci Rep 2019; 9:11973. [PMID: 31427591 PMCID: PMC6700138 DOI: 10.1038/s41598-019-47741-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis.
Collapse
Affiliation(s)
- M Tabitha Müller
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rebekka Schempp
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Anngrit Lutz
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Tatiana Felder
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Edward Felder
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Pika Miklavc
- School of Environment and Life Sciences, University of Salford, The Crescent, M54WT, Salford, United Kingdom.
| |
Collapse
|
78
|
Tedeschi A, Dupraz S, Curcio M, Laskowski CJ, Schaffran B, Flynn KC, Santos TE, Stern S, Hilton BJ, Larson MJE, Gurniak CB, Witke W, Bradke F. ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Neuron 2019; 103:1073-1085.e6. [PMID: 31400829 DOI: 10.1016/j.neuron.2019.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 11/27/2022]
Abstract
Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Sebastian Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Michele Curcio
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Claudia J Laskowski
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Barbara Schaffran
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Kevin C Flynn
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Telma E Santos
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Sina Stern
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Brett J Hilton
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Molly J E Larson
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460 W. 12th Ave., Columbus, OH 43210, USA
| | - Christine B Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany.
| |
Collapse
|
79
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
80
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
81
|
Shakhov AS, Dugina VB, Alieva IB. Structural Features of Actin Cytoskeleton Required for Endotheliocyte Barrier Function. BIOCHEMISTRY (MOSCOW) 2019; 84:358-369. [PMID: 31228927 DOI: 10.1134/s0006297919040035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic actin structures are essential components of the eukaryotic cytoskeleton. According to the classic concepts, actin structures perform contractile and motor functions, ensuring the possibility of cell shape changes during cell spreading, polarization, and movement both in vitro and in vivo, from the early embryogenesis stages and throughout the life of a multicellular organism. Intracellular organization of actin structures, their biochemical composition, and dynamic properties play a key role in the realization of specific cellular and tissue functions and vary in different cell types. This paper is a review of recent studies on the organization and properties of actin structures in endotheliocytes, interaction of these structures with other cytoskeletal components and elements involved in cell adhesion, as well as their role in the functional activity of endothelial cells.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - V B Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I B Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
82
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
83
|
Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J, Waring T, Bithell J, Scita G, Thery M, Blanchoin L, Zech T, Baum B. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 2019; 38:e99843. [PMID: 31015335 PMCID: PMC6545563 DOI: 10.15252/embj.201899843] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.
Collapse
Affiliation(s)
- Francesca Farina
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- University of Grenoble, Grenoble, France
| | | | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | | | | | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Buzz Baum
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
| |
Collapse
|
84
|
Rohožková J, Hůlková L, Fukalová J, Flachs P, Hozák P. Pairing of homologous chromosomes in C. elegans meiosis requires DEB-1 - an orthologue of mammalian vinculin. Nucleus 2019; 10:93-115. [PMID: 31068058 PMCID: PMC6527391 DOI: 10.1080/19491034.2019.1602337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
During meiosis, homologous chromosomes undergo a dramatic movement in order to correctly align. This is a critical meiotic event but the molecular properties of this 'chromosomal dance' still remainunclear. We identified DEB-1 - an orthologue of mammalian vinculin - as a new component of the mechanistic modules responsible for attaching the chromosomes to the nuclear envelope as apart of the LINC complex. In early meiotic nuclei of C. elegans, DEB-1 is localized to the nuclear periphery and alongside the synaptonemal complex of paired homologues. Upon DEB-1 depletion, chromosomes attached to SUN-1 foci remain highly motile until late pachytene. Although the initiation of homologue pairing started normally, irregularities in the formation of the synaptonemal complex occur, and these results in meiotic defects such as increased number of univalents at diakinesis and high embryonic lethality. Our data identify DEB-1 as a new player regulating chromosome dynamics and pairing during meiotic prophase I.
Collapse
Affiliation(s)
- Jana Rohožková
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Lenka Hůlková
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Jana Fukalová
- b Department of Biology of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic
| | - Petr Flachs
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Pavel Hozák
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic.,b Department of Biology of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic.,c Microscopy centre , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic
| |
Collapse
|
85
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
86
|
Mechanical Model of Nuclei Ordering in Drosophila Embryos Reveals Dilution of Stochastic Forces. Biophys J 2019; 114:1730-1740. [PMID: 29642041 DOI: 10.1016/j.bpj.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/16/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
During the initial development of syncytial embryos, nuclei go through cycles of nuclear division and spatial rearrangement. The arising spatial pattern of nuclei is important for subsequent cellularization and morphing of the embryo. Although nuclei are contained within a common cytoplasm, cytoskeletal proteins are nonuniformly packaged into regions around every nucleus. In fact, cytoskeletal elements like microtubules and their associated motor proteins exert stochastic forces between nuclei, actively driving their rearrangement. Yet, it is unknown how the stochastic forces are balanced to maintain nuclear order in light of increased nuclear density upon every round of divisions. Here, we investigate the nuclear arrangements in Drosophila melanogaster over the course of several nuclear divisions starting from interphase 11. We develop a theoretical model in which we distinguish long-ranged passive forces due to the nuclei as inclusions in the elastic matrix, namely the cytoplasm, and active, stochastic forces arising from the cytoskeletal dynamics mediated by motor proteins. We perform computer simulations and quantify the observed degree of orientational and spatial order of nuclei. Solely doubling the nuclear density upon nuclear division, the model predicts a decrease in nuclear order. Comparing results to experimental recordings of tracked nuclei, we make contradictory observations, finding an increase in nuclear order upon nuclear divisions. Our analysis of model parameters resulting from this comparison suggests that overall motor protein density as well as relative active-force amplitude has to decrease by a factor of about two upon nuclear division to match experimental observations. We therefore expect a dilution of cytoskeletal motors during the rapid nuclear division to account for the increase in nuclear order during syncytial embryo development. Experimental measurements of kinesin-5 cluster lifetimes support this theoretical finding.
Collapse
|
87
|
Shi P, Wang Y, Huang Y, Zhang C, Li Y, Liu Y, Li T, Wang W, Liang X, Wu C. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution. J Cell Sci 2019; 132:jcs.226506. [PMID: 30782777 DOI: 10.1242/jcs.226506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Actin and microtubule cytoskeletons regulate cell morphology, participate in organelle trafficking and function in response to diverse environmental cues. Precise spatial-temporal coordination between these two cytoskeletons is essential for cells to live and move. Here, we report a novel crosstalk between actin and microtubules, in which the branched actin maintains microtubule organization, dynamics and stability by affecting tubulin acetylation levels. We observed that acetylated tubulin significantly decreases upon perturbation of the Arp2/3-branched actin. We subsequently discover that HDAC6 participates in this process by altering its interaction with tubulin and the Arp2/3-stabilizer cortactin. We further identify that the homeostasis of branched actin controls mitochondrial distribution via this microtubule acetylation-dependent mechanism. Our findings shed new light on the integral view of cytoskeletal networks, highlighting post-translational modification as another possible form of cytoskeletal inter-regulation, aside from the established crosstalks through structural connection or upstream signaling pathways.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuan Wang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuxing Huang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Chunlei Zhang
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Ying Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences and Max-Plank Partner Group, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
88
|
Inoue D, Obino D, Pineau J, Farina F, Gaillard J, Guerin C, Blanchoin L, Lennon-Duménil AM, Théry M. Actin filaments regulate microtubule growth at the centrosome. EMBO J 2019; 38:embj.201899630. [PMID: 30902847 DOI: 10.15252/embj.201899630] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The centrosome is the main microtubule-organizing centre. It also organizes a local network of actin filaments. However, the precise function of the actin network at the centrosome is not well understood. Here, we show that increasing densities of actin filaments at the centrosome of lymphocytes are correlated with reduced amounts of microtubules. Furthermore, lymphocyte activation resulted in disassembly of centrosomal actin and an increase in microtubule number. To further investigate the direct crosstalk between actin and microtubules at the centrosome, we performed in vitro reconstitution assays based on (i) purified centrosomes and (ii) on the co-micropatterning of microtubule seeds and actin filaments. These two assays demonstrated that actin filaments constitute a physical barrier blocking elongation of nascent microtubules. Finally, we showed that cell adhesion and cell spreading lead to lower densities of centrosomal actin, thus resulting in higher microtubule growth. We therefore propose a novel mechanism, by which the number of centrosomal microtubules is regulated by cell adhesion and actin-network architecture.
Collapse
Affiliation(s)
- Daisuke Inoue
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France
| | - Dorian Obino
- INSERM, U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France
| | - Judith Pineau
- INSERM, U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France
| | - Francesca Farina
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France
| | - Jérémie Gaillard
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France.,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | - Christophe Guerin
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France.,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | - Laurent Blanchoin
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France .,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | | | - Manuel Théry
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France .,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| |
Collapse
|
89
|
Costa AC, Carvalho F, Cabanes D, Sousa S. Stathmin recruits tubulin to Listeria monocytogenes-induced actin comets and promotes bacterial dissemination. Cell Mol Life Sci 2019; 76:961-975. [PMID: 30506415 PMCID: PMC11105747 DOI: 10.1007/s00018-018-2977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/18/2023]
Abstract
The tubulin cytoskeleton is one of the main components of the cytoarchitecture and is involved in several cellular functions. Here, we examine the interplay between Listeria monocytogenes (Lm) and the tubulin cytoskeleton upon cellular infection. We show that non-polymeric tubulin is present throughout Lm actin comet tails and, to a less extent, in actin clouds. Moreover, we demonstrate that stathmin, a regulator of microtubule dynamics, is also found in these Lm-associated actin structures and is required for tubulin recruitment. Depletion of host stathmin results in longer comets containing less F-actin, which may be correlated with higher levels of inactive cofilin in the comet, thus suggesting a defect on local F-actin dynamics. In addition, intracellular bacterial speed is significantly reduced in stathmin-depleted cells, revealing the importance of stathmin/tubulin in intracellular Lm motility. In agreement, the area of infection foci and the total bacterial loads are also significantly reduced in stathmin-depleted cells. Collectively, our results demonstrate that stathmin promotes efficient cellular infection, possibly through tubulin recruitment and control of actin dynamics at Lm-polymerized actin structures.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25 Rue du Dr Roux, 75015, Paris, France
| | - Didier Cabanes
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
90
|
Girola N, Resende-Lara PT, Figueiredo CR, Massaoka MH, Azevedo RA, Cunha RLOR, Polonelli L, Travassos LR. Molecular, Biological and Structural Features of V L CDR-1 Rb44 Peptide, Which Targets the Microtubule Network in Melanoma Cells. Front Oncol 2019; 9:25. [PMID: 30740361 PMCID: PMC6355703 DOI: 10.3389/fonc.2019.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Microtubules are important drug targets in tumor cells, owing to their role in supporting and determining the cell shape, organelle movement and cell division. The complementarity-determining regions (CDRs) of immunoglobulins have been reported to be a source of anti-tumor peptide sequences, independently of the original antibody specificity for a given antigen. We found that, the anti-Lewis B mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and induced depolymerization, with subsequent degradation of actin filaments, leading to depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest at G2/M, cleavage of caspase-9, caspase-3 and PARP, upregulation of Bax and downregulation of Bcl-2, altogether resulting in intrinsic apoptosis of melanoma cells. The in vitro inhibition of angiogenesis was also an Rb44 effect. Peritumoral injection of Rb44L1 delayed growth of subcutaneously grafted melanoma cells in a syngeneic mouse model. L1-CDRs from immunoglobulins and their interactions with tubulin-dimers were explored to interpret effects on microtubule stability. The opening motion of tubulin monomers allowed for efficient L1-CDR docking, impairment of dimer formation and microtubule dissociation. We conclude that Rb44 VL-CDR1 is a novel peptide that acts on melanoma microtubule network causing cell apoptosis in vitro and melanoma growth inhibition in vivo.
Collapse
Affiliation(s)
- Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro T Resende-Lara
- Computational Biology and Bioinformatics Laboratory, Federal University of ABC, Santo André, Brazil
| | - Carlos R Figueiredo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Ricardo A Azevedo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo L O R Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Luciano Polonelli
- Unit of Biomedical, Biotechnological and Translational Sciences, Department of Medicine and Surgery, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil.,Recepta Biopharma, São Paulo, Brazil
| |
Collapse
|
91
|
Regan K, Wulstein D, Rasmussen H, McGorty R, Robertson-Anderson RM. Bridging the spatiotemporal scales of macromolecular transport in crowded biomimetic systems. SOFT MATTER 2019; 15:1200-1209. [PMID: 30543245 PMCID: PMC6365203 DOI: 10.1039/c8sm02023j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection, and transfection require DNA to traverse the crowded cytoplasm, including the cytoskeletal network of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. In composite networks of both filaments, scale-dependent effects emerge such that actin dictates ensemble DNA transport while microtubules influence single-molecule dynamics. We show that these intriguing results arise from a complex interplay between network rigidity, mesh size, filament concentration, and DNA size.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | | | | | |
Collapse
|
92
|
Moslehi M, Ng DCH, Bogoyevitch MA. Doublecortin X (DCX) serine 28 phosphorylation is a regulatory switch, modulating association of DCX with microtubules and actin filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:638-649. [PMID: 30625347 DOI: 10.1016/j.bbamcr.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022]
Abstract
Doublecortin X (DCX) plays essential roles in neuronal development via its regulation of cytoskeleton dynamics. This is mediated through direct interactions between its doublecortin (DC) domains (DC1 and DC2) with microtubules (MTs) and indirect association with actin filaments (F-ACT). While the regulatory role of the DCX C-terminus following DC2 (i.e. DCX residues 275-366) has been established, less is known of the possible contributions made by the DCX N-terminus preceding DC1 (i.e. DCX residues 1-44). Here, we assessed the influence of DCX Ser28 within the DCX N-terminus, on the association of DCX with MTs and F-ACT. We compared the cytoskeletal interactions of the DCX S28E phosphomimetic and DCX S28A phospho-resistant mutants and wild-type DCX. Immunoprecipitation and colocalisation analyses indicated increased association of DCX S28E with F-ACT but decreased interaction with MTs, and conversely enhanced DCX S28A association with MTs but decreased association with F-ACT. To evaluate the impact of DCX mutants on cytoskeletal filaments we performed fluorescence recovery after photobleaching (FRAP) studies on SiR-tubulin and β-actin-mCherry and observed comparable tubulin and actin exchange rates in the presence of DCX WT and DCX S28A. However, we observed faster tubulin exchange rates but slower actin exchange rates in the presence of DCX S28E. Moreover, DCX S28E enhanced the association with the actin-binding protein spinophilin (Spn) suggesting the shift to favour association with both F-ACT and Spn in the presence of DCX S28E. Taken together, our results highlight a new role for DCX S28 as a regulatory switch for cytoskeletal organisation.
Collapse
Affiliation(s)
- Maryam Moslehi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
93
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
94
|
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys Rev 2018; 10:1553-1569. [PMID: 30392063 DOI: 10.1007/s12551-018-0468-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, 420 Washington Ave SE, 6-130 MCB, Minneapolis, MN, 55455, USA.
| |
Collapse
|
95
|
Craig EM. Model for Coordination of Microtubule and Actin Dynamics in Growth Cone Turning. Front Cell Neurosci 2018; 12:394. [PMID: 30450038 PMCID: PMC6225807 DOI: 10.3389/fncel.2018.00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022] Open
Abstract
In the developing nervous system, axons are guided to their synaptic targets by motile structures at the axon tip called growth cones, which reorganize their cytoskeleton in order to steer in response to chemotactic cues. Growth cone motility is mediated by an actin-adhesion “clutch” mechanism, in which mechanical attachment to a substrate, coupled with polarized actin growth, produces leading-edge protrusion. Several studies suggest that dynamic microtubules (MTs) in the growth cone periphery play an essential role in growth cone steering. It is not yet well-understood how the MT cytoskeleton and the dynamic actin-adhesion clutch system are coordinated to promote growth cone navigation. I introduce an experimentally motivated stochastic model of the dynamic reorganization of the growth cone cytoskeleton in response to external guidance cues. According to this model, asymmetric decoupling of MTs from actin retrograde flow leads to a local influx of MTs to the growth cone leading edge, and the leading-edge MT accumulation is amplified by positive feedback between MTs and the actin-adhesion clutch system. Local accumulation of MTs at the leading edge is hypothesized to increase actin adhesion to the substrate, which attenuates actin retrograde flow and promotes leading-edge protrusion. Growth cone alignment with the chemotactic gradient is predicted to be most effective for intermediate levels of sensitivity of the adhesion strength to the presence of leading-edge MTs. Quantitative predictions of the MT distribution and the local rate of retrograde actin flow will allow the hypothetical positive feedback mechanism to be experimentally tested.
Collapse
Affiliation(s)
- Erin M Craig
- Department of Physics, Central Washington University, Ellensburg, WA, United States
| |
Collapse
|
96
|
Stauffer W, Sheng H, Lim HN. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep 2018; 8:15764. [PMID: 30361629 PMCID: PMC6202351 DOI: 10.1038/s41598-018-33592-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Insight into the function and regulation of biological molecules can often be obtained by determining which cell structures and other molecules they localize with (i.e. colocalization). Here we describe an open source plugin for ImageJ called EzColocalization to visualize and measure colocalization in microscopy images. EzColocalization is designed to be easy to use and customize for researchers with minimal experience in quantitative microscopy and computer programming. Features of EzColocalization include: (i) tools to select individual cells and organisms from images; (ii) filters to select specific types of cells and organisms based on physical parameters and signal intensity; (iii) heat maps and scatterplots to visualize the localization patterns of reporters; (iv) multiple metrics to measure colocalization for two or three reporters; (v) metric matrices to systematically measure colocalization at multiple combinations of signal intensity thresholds; and (vi) data tables that provide detailed information on each cell in a sample. These features make EzColocalization well-suited for experiments with low reporter signal, complex patterns of localization, and heterogeneous populations of cells and organisms.
Collapse
Affiliation(s)
- Weston Stauffer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Huanjie Sheng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Han N Lim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Atomwise Inc., San Francisco, CA, USA.
| |
Collapse
|
97
|
Ibrahim M, Schoelermann J, Mustafa K, Cimpan MR. TiO
2
nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast‐like cells in a size dependent manner. J Biomed Mater Res A 2018; 106:2582-2593. [DOI: 10.1002/jbm.a.36448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/07/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergen Norway
| | - Julia Schoelermann
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- BerGenBio ASBergen Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| | - Mihaela R. Cimpan
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| |
Collapse
|
98
|
Yano T, Torisawa T, Oiwa K, Tsukita S. AMPK-dependent phosphorylation of cingulin reversibly regulates its binding to actin filaments and microtubules. Sci Rep 2018; 8:15550. [PMID: 30341325 PMCID: PMC6195624 DOI: 10.1038/s41598-018-33418-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal organization is essential for the precise morphogenesis of cells, tissues, and organs. Cytoskeletons, bound to scaffolding proteins, regulate the apical junction complex (AJC), which is composed of tight and adherens junctions, and located at the apical side of epithelial cell sheets. Cingulin is a tight junction-associated protein that binds to both actin filaments and microtubules. However, how cingulin binds to microtubules and whether cingulin can bind to actin and microtubules simultaneously are unclear. Here we examined the mechanisms behind cingulin’s cytoskeleton-binding properties. First, using total internal reflection fluorescence microscopy, we detected cingulin at microtubule cross points. We then found the interdomain interactions in cingulin molecules. Notably, we found that this interaction was regulated by AMPK-dependent phosphorylation and changed cingulin’s conformation and binding properties to actin filaments and microtubules. Finally, we found that the AMPK-regulated cingulin properties regulated the barrier functions of epithelial cell sheets. We propose that the cellular metabolic state, which involves AMPK, can contribute to the organization and maintenance of epithelial tissues through cingulin’s tight junction/cytoskeleton regulation.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Takayuki Torisawa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, 651-2492, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, 651-2492, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
99
|
Ricketts SN, Ross JL, Robertson-Anderson RM. Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation. Biophys J 2018; 115:1055-1067. [PMID: 30177441 PMCID: PMC6139891 DOI: 10.1016/j.bpj.2018.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
We use optical tweezers microrheology and fluorescence microscopy to characterize the nonlinear mesoscale mechanics and mobility of in vitro co-entangled actin-microtubule composites. We create a suite of randomly oriented, well-mixed networks of actin and microtubules by co-polymerizing varying ratios of actin and tubulin in situ. To perturb each composite far from equilibrium, we use optical tweezers to displace an embedded microsphere a distance greater than the lengths of the filaments at a speed much faster than their intrinsic relaxation rates. We simultaneously measure the force the filaments exert on the bead and the subsequent force relaxation. We find that the presence of a large fraction of microtubules (>0.7) is needed to substantially increase the measured force, which is accompanied by large heterogeneities in force response. Actin minimizes these heterogeneities by reducing the mesh size of the composites and supporting microtubules against buckling. Composites also undergo a sharp transition from strain softening to stiffening when the fraction of microtubules (ϕT) exceeds 0.5, which we show arises from faster poroelastic relaxation and suppressed actin bending fluctuations. The force after bead displacement relaxes via power-law decay after an initial period of minimal relaxation. The short-time relaxation profiles (t < 0.06 s) arise from poroelastic and bending contributions, whereas the long-time power-law relaxation is indicative of filaments reptating out of deformed entanglement constraints. The scaling exponents for the long-time relaxation exhibit a nonmonotonic dependence on ϕT, reaching a maximum for equimolar composites (ϕT = 0.5), suggesting that reptation is fastest in ϕT = 0.5 composites. Corresponding mobility measurements of steady-state actin and microtubules show that both filaments are indeed the most mobile in ϕT = 0.5 composites. This nonmonotonic dependence of mobility on ϕT demonstrates the important interplay between mesh size and filament rigidity in polymer networks and highlights the surprising emergent properties that can arise in composites.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, San Diego, California
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts
| | | |
Collapse
|
100
|
Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex. PLoS Comput Biol 2018; 14:e1006344. [PMID: 30222728 PMCID: PMC6171965 DOI: 10.1371/journal.pcbi.1006344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Filamentous actin (F-actin) and non-muscle myosin II motors drive cell motility and cell shape changes that guide large scale tissue movements during embryonic morphogenesis. To gain a better understanding of the role of actomyosin in vivo, we have developed a two-dimensional (2D) computational model to study emergent phenomena of dynamic unbranched actomyosin arrays in the cell cortex. These phenomena include actomyosin punctuated contractions, or "actin asters" that form within quiescent F-actin networks. Punctuated contractions involve both formation of high intensity aster-like structures and disassembly of those same structures. Our 2D model allows us to explore the kinematics of filament polarity sorting, segregation of motors, and morphology of F-actin arrays that emerge as the model structure and biophysical properties are varied. Our model demonstrates the complex, emergent feedback between filament reorganization and motor transport that generate as well as disassemble actin asters. Since intracellular actomyosin dynamics are thought to be controlled by localization of scaffold proteins that bind F-actin or their myosin motors we also apply our 2D model to recapitulate in vitro studies that have revealed complex patterns of actomyosin that assemble from patterning filaments and motor complexes with microcontact printing. Although we use a minimal representation of filament, motor, and cross-linker biophysics, our model establishes a framework for investigating the role of other actin binding proteins, how they might alter actomyosin dynamics, and makes predictions that can be tested experimentally within live cells as well as within in vitro models. Recent genetic and mechanical studies of embryonic development reveal a critical role for intracellular scaffolds in generating the shape of the embryo and constructing internal organs. In this paper we developed computer simulations of these scaffolds, composed of filamentous actin (F-actin), a rod-like protein polymer, and mini-thick filaments, composed of non-muscle myosin II, forming a two headed spring-like complex of motor proteins that can walk on, and remodel F-actin networks. Using simulations of these dynamic interactions, we can carry out virtual experiments where we change the physics and chemistry of F-actin polymers, their associated myosin motors, and cross-linkers and observe the changes in scaffolds that emerge. For example, by modulating the motor stiffness of the myosin motors in our model we can observe the formation or loss of large aster-like structures. Such fine-grained control over the physical properties of motors or filaments within simulations are not currently possible with biological experiments, even where mutant proteins or small molecule inhibitors can be targeted to specific sites on filaments or motors. Our approach reflects a growing adoption of simulation methods to investigate microscopic features that shape actomyosin arrays and the mesoscale effects of molecular scale processes. We expect predictions from these models will drive more refined experimental approaches to expose the many roles of actomyosin in development.
Collapse
|