51
|
Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X. Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 2022; 32:254-268. [PMID: 34980897 PMCID: PMC8888703 DOI: 10.1038/s41422-021-00597-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), DNA damage repair factors are recruited to DNA lesions and form nuclear foci. However, the underlying molecular mechanism remains largely elusive. Here, by analyzing the localization of DSB repair factors in the XY body and DSB foci, we demonstrate that pre-ribosomal RNA (pre-rRNA) mediates the recruitment of DSB repair factors around DNA lesions. Pre-rRNA exists in the XY body, a DSB repair hub, during meiotic prophase, and colocalizes with DSB repair factors, such as MDC1, BRCA1 and TopBP1. Moreover, pre-rRNA-associated proteins and RNAs, such as ribosomal protein subunits, RNase MRP and snoRNAs, also localize in the XY body. Similar to those in the XY body, pre-rRNA and ribosomal proteins also localize at DSB foci and associate with DSB repair factors. RNA polymerase I inhibitor treatment that transiently suppresses transcription of rDNA but does not affect global protein translation abolishes foci formation of DSB repair factors as well as DSB repair. The FHA domain and PST repeats of MDC1 recognize pre-rRNA and mediate phase separation of DSB repair factors, which may be the molecular basis for the foci formation of DSB repair factors during DSB response.
Collapse
Affiliation(s)
- Xiaochen Gai
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Di Xin
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Duo Wu
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xin Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Linlin Chen
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Yiqing Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Kai Ma
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Qilin Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Peng Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
52
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
53
|
Glioblastoma recurrent cells switch between ATM and ATR pathway as an alternative strategy to survive radiation stress. Med Oncol 2022; 39:50. [PMID: 35150325 DOI: 10.1007/s12032-022-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Primary treatment modality for glioblastoma (GBM) post-surgery is radiation therapy. Due to increased DNA damage repair capacity of resistant residual GBM cells, recurrence is inevitable in glioblastoma and unfortunately the recurrent tumours are resistant to the conventional therapy. Here we used our previously described in vitro radiation survival model generated from primary GBM patient samples and cell lines, which recapitulates the clinical scenario of therapy resistance and relapse. Using the parent and recurrent GBM cells from these models, we show that similar to parent GBM, the recurrent GBM cells also elicit a competent DNA damage response (DDR) post irradiation. However, the use of apical DNA damage repair sensory kinase (ATM and/or ATR) is different in the recurrent cells compared to parent cells. Consistently, we demonstrate that there is a differential clonogenic response of parent and recurrent GBM cells to the ATM and ATR kinase inhibitors with recurrent samples switching between these sensory kinases for survival emphasizing on the underlying heterogeneity within and across GBM samples. Taken together, here we report that recurrent tumours utilize an alternate DDR kinase to overcome radiation induced DNA damage. Since there is no effective treatment specifically for recurred GBM patients, these findings provide a rationale for developing newer treatment option to sensitize recurrent GBM samples by detecting in clinics the ability of cells to activate a DNA damage repair kinase different from their parent counterparts.
Collapse
|
54
|
Phillips EO, Gunjan A. Histone Variants: The Unsung Guardians of the Genome. DNA Repair (Amst) 2022; 112:103301. [DOI: 10.1016/j.dnarep.2022.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
|
55
|
Reindl J, Kundrat P, Girst S, Sammer M, Schwarz B, Dollinger G. Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters. Sci Rep 2022; 12:1305. [PMID: 35079078 PMCID: PMC8789836 DOI: 10.1038/s41598-022-05413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 µm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/µm) and 27 MeV carbon ions (LET = 500 keV/µm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 µm. Lithium ions produce (1.5 ± 0.1) IRIF/µm track length, for carbon ions (2.2 ± 0.2) IRIF/µm are counted. These values are enhanced by a factor of 2–3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/µm is possible.
Collapse
Affiliation(s)
- Judith Reindl
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany.
| | - P Kundrat
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
| | - S Girst
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - M Sammer
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - B Schwarz
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - G Dollinger
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
56
|
Leem J, Bai GY, Kim JS, Oh JS. Increased WIP1 Expression With Aging Suppresses the Capacity of Oocytes to Respond to and Repair DNA Damage. Front Cell Dev Biol 2022; 9:810928. [PMID: 35004701 PMCID: PMC8740286 DOI: 10.3389/fcell.2021.810928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
If fertilization does not occur for a prolonged time after ovulation, oocytes undergo a time-dependent deterioration in quality in vivo and in vitro, referred to as postovulatory aging. The DNA damage response is thought to decline with aging, but little is known about how mammalian oocytes respond to the DNA damage during in vitro postovulatory aging. Here we show that increased WIP1 during in vitro postovulatory aging suppresses the capacity of oocytes to respond to and repair DNA damage. During in vitro aging, oocytes progressively lost their capacity to respond to DNA double-strand breaks, which corresponded with an increase in WIP1 expression. Increased WIP1 impaired the amplification of γ-H2AX signaling, which reduced the DNA repair capacity. WIP1 inhibition restored the DNA repair capacity, which prevented deterioration in oocyte quality and improved the fertilization and developmental competence of aged oocytes. Importantly, WIP1 was also found to be high in maternally aged oocytes, and WIP1 inhibition enhanced the DNA repair capacity of maternally aged oocytes. Therefore, our results demonstrate that increased WIP1 is responsible for the age-related decline in DNA repair capacity in oocytes, and WIP1 inhibition could restore DNA repair capacity in aged oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
57
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
58
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
59
|
Sherker A, Chaudhary N, Adam S, Heijink AM, Noordermeer SM, Fradet-Turcotte A, Durocher D. Two redundant ubiquitin-dependent pathways of BRCA1 localization to DNA damage sites. EMBO Rep 2021; 22:e53679. [PMID: 34726323 PMCID: PMC8647010 DOI: 10.15252/embr.202153679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin‐dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80‐ and RING‐dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding‐deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80–BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.
Collapse
Affiliation(s)
- Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Amélie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec, QC, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
60
|
X Chromosome Inactivation during Grasshopper Spermatogenesis. Genes (Basel) 2021; 12:genes12121844. [PMID: 34946793 PMCID: PMC8700825 DOI: 10.3390/genes12121844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, X and Y chromosomes, which usually present unsynapsed regions throughout prophase-I in male meiosis, undergo a specific pattern of transcriptional inactivation. The interdependence of synapsis and transcription has mainly been studied in mammals, basically in mouse, but our knowledge in other unrelated phylogenetically species is more limited. To gain new insights on this issue, here we analyzed the relationship between synapsis and transcription in spermatocytes of the grasshopper Eyprepocnemis plorans. Autosomal chromosomes of this species achieve complete synapsis; however, the single X sex chromosome remains always unsynapsed and behaves as a univalent. We studied transcription in meiosis by immunolabeling with RNA polymerase II phosphorylated at serine 2 and found that whereas autosomes are active from leptotene up to diakinesis, the X chromosome is inactive throughout meiosis. This inactivation is accompanied by the accumulation of, at least, two repressive epigenetic modifications: H3 methylated at lysine 9 and H2AX phosphorylated at serine 139. Furthermore, we identified that X chromosome inactivation occurs in premeiotic spermatogonia. Overall, our results indicate: (i) transcription regulation in E. plorans spermatogenesis differs from the canonical pattern found in mammals and (ii) X chromosome inactivation is likely preceded by a process of heterochromatinization before the initiation of meiosis.
Collapse
|
61
|
Al-Harazi O, Kaya IH, Al-Eid M, Alfantoukh L, Al Zahrani AS, Al Sebayel M, Kaya N, Colak D. Identification of Gene Signature as Diagnostic and Prognostic Blood Biomarker for Early Hepatocellular Carcinoma Using Integrated Cross-Species Transcriptomic and Network Analyses. Front Genet 2021; 12:710049. [PMID: 34659334 PMCID: PMC8511318 DOI: 10.3389/fgene.2021.710049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is considered the most common type of liver cancer and the fourth leading cause of cancer-related deaths in the world. Since the disease is usually diagnosed at advanced stages, it has poor prognosis. Therefore, reliable biomarkers are urgently needed for early diagnosis and prognostic assessment. Methods: We used genome-wide gene expression profiling datasets from human and rat early HCC (eHCC) samples to perform integrated genomic and network-based analyses, and discovered gene markers that are expressed in blood and conserved in both species. We then used independent gene expression profiling datasets for peripheral blood mononuclear cells (PBMCs) for eHCC patients and from The Cancer Genome Atlas (TCGA) database to estimate the diagnostic and prognostic performance of the identified gene signature. Furthermore, we performed functional enrichment, interaction networks and pathway analyses. Results: We identified 41 significant genes that are expressed in blood and conserved across species in eHCC. We used comprehensive clinical data from over 600 patients with HCC to verify the diagnostic and prognostic value of 41-gene-signature. We developed a prognostic model and a risk score using the 41-geneset that showed that a high prognostic index is linked to a worse disease outcome. Furthermore, our 41-gene signature predicted disease outcome independently of other clinical factors in multivariate regression analysis. Our data reveals a number of cancer-related pathways and hub genes, including EIF4E, H2AFX, CREB1, GSK3B, TGFBR1, and CCNA2, that may be essential for eHCC progression and confirm our gene signature's ability to detect the disease in its early stages in patients' biological fluids instead of invasive procedures and its prognostic potential. Conclusion: Our findings indicate that integrated cross-species genomic and network analysis may provide reliable markers that are associated with eHCC that may lead to better diagnosis, prognosis, and treatment options.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- AlFaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Maha Al-Eid
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lina Alfantoukh
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali Saeed Al Zahrani
- Gulf Centre for Cancer Control and Prevention, King Faisal Special Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al Sebayel
- Liver and Small Bowel Transplantation and Hepatobiliary-Pancreatic Surgery Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Surgery, University of Almaarefa, Riyadh, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
62
|
Stanic M, Mekhail K. Integration of DNA damage responses with dynamic spatial genome organization. Trends Genet 2021; 38:290-304. [PMID: 34598804 DOI: 10.1016/j.tig.2021.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
The maintenance of genome stability and cellular homeostasis depends on the temporal and spatial coordination of successive events constituting the classical DNA damage response (DDR). Recent findings suggest close integration and coordination of DDR signaling with specific cellular processes. The mechanisms underlying such coordination remain unclear. We review emerging crosstalk between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, cytoskeletal forces, and liquid-liquid phase separation (LLPS) in mediating DNA repair. We present an overarching DNA repair framework within which these dynamic processes intersect in nuclear space over time. Collectively, this interplay ensures the efficient assembly of DNA repair proteins onto shifting genome structures to preserve genome stability and cell survival.
Collapse
Affiliation(s)
- Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
63
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
64
|
Chen BR, Wang Y, Shen ZJ, Bennett A, Hindi I, Tyler JK, Sleckman BP. The RNF8 and RNF168 Ubiquitin Ligases Regulate Pro- and Anti-Resection Activities at Broken DNA Ends During Non-Homologous End Joining. DNA Repair (Amst) 2021; 108:103217. [PMID: 34481157 PMCID: PMC9586520 DOI: 10.1016/j.dnarep.2021.103217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The RING-type E3 ubiquitin ligases RNF8 and RNF168 recruit DNA damage response (DDR) factors to chromatin flanking DNA double strand breaks (DSBs) including 53BP1, which protects DNA ends from resection during DNA DSB repair by non-homologous end joining (NHEJ). Deficiency of RNF8 or RNF168 does not lead to demonstrable NHEJ defects, but like deficiency of 53BP1, the combined deficiency of XLF and RNF8 or RNF168 leads to diminished NHEJ in lymphocytes arrested in G0/G1 phase. The function of RNF8 in NHEJ depends on its E3 ubiquitin ligase activity. Loss of RNF8 or RNF168 in G0/G1-phase lymphocytes leads to the resection of broken DNA ends, demonstrating that RNF8 and RNF168 function to protect DNA ends from nucleases, pos sibly through the recruitment of 53BP1. However, the loss of 53BP1 leads to more severe resection than the loss of RNF8 or RNF168. Moreover, in 53BP1-deficient cells, the loss of RNF8 or RNF168 leads to diminished DNA end resection. We conclude that RNF8 and RNF168 regulate pathways that both prevent and promote DNA end resection in cells arrested in G0/G1 phase.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Amelia Bennett
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Issa Hindi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, United States.
| |
Collapse
|
65
|
Sun Z, Wang X, Wang J, Wang J, Liu X, Huang R, Chen C, Deng M, Wang H, Han F. Key radioresistance regulation models and marker genes identified by integrated transcriptome analysis in nasopharyngeal carcinoma. Cancer Med 2021; 10:7404-7417. [PMID: 34432380 PMCID: PMC8525106 DOI: 10.1002/cam4.4228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy that is endemic to China and Southeast Asia. Radiotherapy is the usual treatment, however, radioresistance remains a major reason for failure. This study aimed to find key radioresistance regulation models and marker genes of NPC and clarify the mechanism of NPC radioresistance by RNA sequencing and bioinformatics analysis of the differences in gene expression profiles between radioresistant and radiosensitive NPC tissues. A total of 21 NPC biopsy specimens with different radiosensitivity were analyzed by RNA sequencing. Differentially expressed genes in RNA sequencing data were identified using R software. The differentially expressed gene data derived from RNA sequencing as well as prior knowledge in the form of pathway databases were integrated to find sub‐networks of related genes. The data of RNA sequencing with the GSE48501 data from the GEO database were combined to further search for more reliable genes associated with radioresistance of NPC. Survival analyses using the Kaplan–Meier method based on the expression of the genes were conducted to facilitate the understanding of the clinical significance of the differentially expressed genes. RT‐qPCR was performed to validate the expression levels of the differentially expressed genes. We identified 1182 differentially expressed genes between radioresistant and radiosensitive NPC tissue samples. Compared to the radiosensitive group, 22 genes were significantly upregulated and 1160 genes were downregulated in the radioresistant group. In addition, 10 major NPC radiation resistance network models were identified through integration analysis with known NPC radiation resistance‐associated genes and mechanisms. Furthermore, we identified three core genes, DOCK4, MCM9, and POPDC3 among 12 common downregulated genes in the two datasets, which were validated by RT‐qPCR. The findings of this study provide new clues for clarifying the mechanism of NPC radioresistance, and further experimental studies of these core genes are warranted.
Collapse
Affiliation(s)
- Zhuang Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Xiaohui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jingyun Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | | | - Runda Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Chunyan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Meiling Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Hanyu Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| |
Collapse
|
66
|
Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: Towards predicting response to radiation treatment. Curr Med Chem 2021; 29:1543-1560. [PMID: 34348602 DOI: 10.2174/0929867328666210804085135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed male cancer worldwide. Early diagnosis of PCa, response to therapy and prognosis still represent a challenge. Nearly 60% of PCa patients undergo radiation therapy (RT) which might cause side effects. In spite of numerous researches in this field, predictive biomarkers for radiation toxicity are still not elucidated. MicroRNAs as posttranscriptional regulators of gene expression are shown to be changed during and after irradiation. Manipulation with miRNA levels might be used to modulate response to RT-to reverse radioresistance-to induce radiosensitivity, or if needed, to reduce sensitivity to treatment to avoid side effects. In this review we have listed and described miRNAs involved in response to RT in PCa, and highlighted potential candidates for future biological tests predicting radiation response to RT, with the special focus on side effects of RT. Individual radiation response is a result of the interactions between physical characteristics of radiation treatment and biological background of each patient, and miRNA expression changes among others. According to described literature we concluded that let-7, miR-21, miR-34a, miR-146a, miR-155, and members of miR-17/92 cluster might be promising candidates for biological tests predicting radiosensitivity of PCa patients undergoing radiation treatment, and as future agents for modulation of radiation response. Predictive miRNA panels, especially for acute and late side effects of RT can serve as a starting point for decisions for individualized RT planning. We believe that this review might be one step closer to understanding molecular mechanisms underlying individual radiation response of patients with PCa.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade. Serbia
| | - Tatjana P Stanojković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade. Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia, Pasterova 14, 11000 Belgrade. Serbia
| |
Collapse
|
67
|
Verma P, Greenberg RA. Communication between chromatin and homologous recombination. Curr Opin Genet Dev 2021; 71:1-9. [PMID: 34098484 DOI: 10.1016/j.gde.2021.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Higher-order chromatin packing serves as a structural barrier to the recognition and repair of genomic lesions. The initiation and outcome of the repair response is dictated by a highly coordinated yet complex interplay between chromatin modifying enzymes and their cognate readers, damage induced chemical modifications, nucleosome density, transcriptional state, and cell cycle-dependent availability of DNA repair machinery. The physical and chemical properties of the DNA lesions themselves further regulate the nature of ensuing chromatin responses. Here we review recent discoveries across these various contexts, where chromatin regulates the homology-guided double-strand break repair mechanism, homologous recombination, and also highlight the key knowledge gaps vital to generate a holistic understanding of this process and its contributions to genome integrity.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
68
|
Zaharieva E, Sasatani M, Matsumoto R, Kamiya K. Formation of DNA Damage Foci in Human and Mouse Primary Fibroblasts Chronically Exposed to Gamma Radiation at 0.1 mGy/min. Radiat Res 2021; 196:40-54. [PMID: 33857310 DOI: 10.1667/rade-20-00059.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
Low-dose-rate radiation exposures and their associated cancer risk are an important concern for radiation protection today. Nevertheless, there is almost no data concerning DNA damage at dose rates below 0.1 mGy/min. In this study, we investigated the formation of DNA damage repair foci under chronic low-dose-rate irradiation relative to acute high-dose-rate irradiation and assessed the magnitude of the dose-rate effect. Four human and four mouse normal fibroblast cell models from different organs were subjected to gamma irradiation at 0.096 mGy/min or 0.81 Gy/min, and dose-response curves were established for the dose range from 0.1 to 0.8 Gy. The results indicate that prolonged low-dose-rate exposures cause modestly increased levels of DNA repair foci, with a strongly supralinear dose-response relationship, where 40-70% of the radiation effect at 1 Gy was already present at the total dose of 0.1 Gy. Thus, compared to acute irradiation, low-dose-rate exposure was 6-9 times less efficient at a total dose of 0.1 Gy, and 10-20 times less efficient at 1 Gy. Comparison between cell models revealed a certain correlation between the presence of persistent, above-background foci at 48 h after irradiation and the sensitivity to low-dose-rate radiation, suggesting that repair capacity plays an important role in the cellular response to chronic irradiation. Given the findings reported here, we propose that establishing detailed dose-response curves and accounting for the repair rates of different cell models are essential steps in elucidating dose-rate effects.
Collapse
Affiliation(s)
- Elena Zaharieva
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryoga Matsumoto
- Graduate School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
69
|
García Fernández F, Lemos B, Khalil Y, Batrin R, Haber JE, Fabre E. Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. J Cell Sci 2021; 134:jcs.258500. [PMID: 33622771 DOI: 10.1242/jcs.258500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
In budding yeast and mammals, double-strand breaks (DSBs) trigger global chromatin mobility together with rapid phosphorylation of histone H2A over an extensive region of the chromatin. To assess the role of H2A phosphorylation in this response to DNA damage, we have constructed strains where H2A has been mutated to the phosphomimetic H2A-S129E. We show that mimicking H2A phosphorylation leads to an increase in global chromatin mobility in the absence of DNA damage. The intrinsic chromatin mobility of H2A-S129E is not due to downstream checkpoint activation, histone degradation or kinetochore anchoring. Rather, the increased intrachromosomal distances observed in the H2A-S129E mutant are consistent with chromatin structural changes. Strikingly, in this context the Rad9-dependent checkpoint becomes dispensable. Moreover, increased chromatin dynamics in the H2A-S129E mutant correlates with improved DSB repair by non-homologous end joining and a sharp decrease in interchromosomal translocation rate. We propose that changes in chromosomal conformation due to H2A phosphorylation are sufficient to modulate the DNA damage response and maintain genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Brenda Lemos
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yasmine Khalil
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Renaud Batrin
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuelle Fabre
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| |
Collapse
|
70
|
Cabrini M, Roncador M, Galbiati A, Cipolla L, Maffia A, Iannelli F, Sabbioneda S, d'Adda di Fagagna F, Francia S. DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. J Cell Sci 2021; 134:jcs.249706. [PMID: 33558311 PMCID: PMC8015226 DOI: 10.1242/jcs.249706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/23/2021] [Indexed: 11/20/2022] Open
Abstract
The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSBs) and promotes their resolution via the DNA repair pathways of non-homologous end joining (NHEJ) or homologous recombination (HR). We and others have shown that DDR activation requires DROSHA; however, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment, and how DROSHA influences DNA repair remains poorly understood. Here, we show that DROSHA associates with DSBs independently of transcription. Neither H2AX, nor ATM or DNA-PK kinase activities are required for recruitment of DROSHA to break sites. Rather, DROSHA interacts with RAD50, and inhibition of the MRN complex by mirin treatment abolishes this interaction. MRN complex inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSBs and, as a consequence, also prevents 53BP1 (also known as TP53BP1) recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increases the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and directs DNA repair towards NHEJ.
Collapse
Affiliation(s)
- Matteo Cabrini
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy.,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Marco Roncador
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Alessandro Galbiati
- IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Antonio Maffia
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Fabio Iannelli
- IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Fabrizio d'Adda di Fagagna
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy .,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy .,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| |
Collapse
|
71
|
High Throughput Proteomic Exploration of Hypothermic Preservation Reveals Active Processes within the Cell Associated with Cold Ischemia Kinetic. Int J Mol Sci 2021; 22:ijms22052384. [PMID: 33673561 PMCID: PMC7956856 DOI: 10.3390/ijms22052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a-during the first 3 h, central proteins were upregulated within these pathways; b-the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c-after that time, the overall decrease in protein expression was observed; d-at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Collapse
|
72
|
Gui SJ, Ding RL, Wan YP, Zhou L, Chen XJ, Zeng GQ, He CZ. Knockdown of annexin VII enhances nasopharyngeal carcinoma cell radiosensitivity in vivo and in vitro. Cancer Biomark 2021; 28:129-139. [PMID: 31958076 DOI: 10.3233/cbm-190739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Radioresistance leads to treatment failure in patients with nasopharyngeal carcinoma (NPC). Thus, enhancing the radiosensitivity of NPC cells would likely increase the effectiveness of radiotherapy. Annexin VII (Annexin A7, ANXA7) might be a tumor promoter in NPC but its functions in radiosensitivity remain unclear. METHODS NPC cell lines CNE2-shANXA7 and CNE2-pLKO.1 were generated and CNE2-shANXA7 nude mice xenograft tumor models were established. The main effects and molecular mechanisms of ANXA7 knockdown in NPC radiosensitivity were studied in vitro and in vivo by analyzing cell viability, clonogenicity, apoptosis, cell cycle distribution, tumor radioresponse and immunohistochemistry assay. RESULTS ANXA7 knockdown revealed potentially enhanced NPC cell radiosensitivity via apoptosis and increased the cell number at the G2/M phase. In the xenograft model, NPC cells with ANXA7 knockdown were dramatically sensitive to irradiation and tumor growth was significantly suppressed. Compared to CNE2-pLKO.1 xenografts, CNE2-shANXA7 showed more γ-H2AX foci and less phospho-DNA PKcs. CONCLUSIONS ANXA7 knockdown increased the radiosensitivity of NPC by enhancing apoptosis, modulating the cell cycle distribution into more radiosensitive phases, promoting DNA damage, and inhibiting repair. We showed that decreased ANXA7 levels enhanced radiosensitivity and provided insights into the therapeutic targets for NPC radiotherapy.
Collapse
Affiliation(s)
- Si-Jie Gui
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ru-Lei Ding
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Yan-Ping Wan
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Li Zhou
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Xu-Jun Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Gu-Qing Zeng
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Chao-Zhu He
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
73
|
Chen Q, Bian C, Wang X, Liu X, Ahmad Kassab M, Yu Y, Yu X. ADP-ribosylation of histone variant H2AX promotes base excision repair. EMBO J 2021; 40:e104542. [PMID: 33264433 PMCID: PMC7809701 DOI: 10.15252/embj.2020104542] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Optimal DNA damage response is associated with ADP-ribosylation of histones. However, the underlying molecular mechanism of DNA damage-induced histone ADP-ribosylation remains elusive. Herein, using unbiased mass spectrometry, we identify that glutamate residue 141 (E141) of variant histone H2AX is ADP-ribosylated following oxidative DNA damage. In-depth studies performed with wild-type H2AX and the ADP-ribosylation-deficient E141A mutant suggest that H2AX ADP-ribosylation plays a critical role in base excision repair (BER). Mechanistically, ADP-ribosylation on E141 mediates the recruitment of Neil3 glycosylase to the sites of DNA damage for BER. Moreover, loss of this ADP-ribosylation enhances serine-139 phosphorylation of H2AX (γH2AX) upon oxidative DNA damage and erroneously causes the accumulation of DNA double-strand break (DSB) response factors. Taken together, these results reveal that H2AX ADP-ribosylation not only facilitates BER repair, but also suppresses the γH2AX-mediated DSB response.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Chunjing Bian
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Cedar‐Sinai Medical CenterLos AngelesCAUSA
| | - Xin Wang
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Xiuhua Liu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Yonghao Yu
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Xiaochun Yu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Westlake UniversityHangzhouZhejiangChina
| |
Collapse
|
74
|
Dual RNA 3'-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nat Commun 2021; 12:359. [PMID: 33441544 PMCID: PMC7807067 DOI: 10.1038/s41467-020-20520-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated H2A.X is a critical chromatin marker of DNA damage repair (DDR) in higher eukaryotes. However, H2A.X gene expression remains relatively uncharacterised. Replication-dependent (RD) histone genes generate poly(A)- mRNA encoding new histones to package DNA during replication. In contrast, replication-independent (RI) histone genes synthesise poly(A)+ mRNA throughout the cell cycle, translated into histone variants that confer specific epigenetic patterns on chromatin. Remarkably H2AFX, encoding H2A.X, is a hybrid histone gene, generating both poly(A)+ and poly(A)- mRNA isoforms. Here we report that the selective removal of either mRNA isoform reveals different effects in different cell types. In some cells, RD H2A.X poly(A)- mRNA generates sufficient histone for deposition onto DDR associated chromatin. In contrast, cells making predominantly poly(A)+ mRNA require this isoform for de novo H2A.X synthesis, required for efficient DDR. This highlights the importance of differential H2A.X mRNA 3’-end processing in the maintenance of effective DDR. H2A.X histone variant gene encodes poly(A)+ and poly(A)- mRNA isoforms which are differentially expressed depending on cell lines. Here the authors show that upon DNA damage, cells expressing more poly(A)+ isoform require this isoform for de novo H2A.X synthesis while cells with more poly(A)- isoform have sufficient H2A.X present in chromatin.
Collapse
|
75
|
Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair (Amst) 2021; 98:103047. [PMID: 33454524 DOI: 10.1016/j.dnarep.2021.103047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Our genome bears tens of thousands of harms and devastations per day; In this regard, numerous sophisticated and complicated mechanisms are embedded by our cells in furtherance of remitting an unchanged and stable genome to their next generation. These mechanisms, that are collectively called DDR, have the duty of detecting the lesions and repairing them. it's necessary for the viability of any living cell that sustain the integrity and stability of its genetic content and this highlights the role of mediators that transduce the signals of DNA damage to the cell cycle in order to prevent the replication of a defective DNA. In this paper, we review the signaling pathways that lie between these processes and define how different ingredients of DDR are also able to affect the checkpoint signaling.
Collapse
|
76
|
Zhang J, Yan Z, Wang Y, Wang Y, Guo X, Jing J, Dong X, Dong S, Liu X, Yu X, Wu C. Cancer-associated 53BP1 mutations induce DNA damage repair defects. Cancer Lett 2020; 501:43-54. [PMID: 33359708 DOI: 10.1016/j.canlet.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
TP53 binding protein 1 (53BP1) plays an important role in DNA damage repair and maintaining genomic stability. However, the mutations of 53BP1 in human cancers have not been systematically examined. Here, we have analyzed 541 somatic mutations of 53BP1 across 34 types of human cancer from databases of The Cancer Genome Atlas, International Cancer Genome Consortium and Catalogue of Somatic Mutations in Cancer. Among these cancer-associated 53BP1 mutations, truncation mutations disrupt the nuclear localization of 53BP1 thus abolish its biological functions in DNA damage repair. Moreover, with biochemical analyses and structural modeling, we have examined the detailed molecular mechanism by which missense mutations in the key domains causes the DNA damage repair defects. Taken together, our results reveal the functional defects of a set of cancer-associated 53BP1 mutations.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Zhenzhen Yan
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Yukun Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Yaguang Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xin Guo
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Ju Jing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xiangnan Dong
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Shasha Dong
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xiuhua Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China.
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Chen Wu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
77
|
Bucher M, Endesfelder D, Roessler U, Borkhardt A, Dückers G, Kirlum HJ, Lankisch P, Oommen PT, Niehues T, Rübe CE, Baumgartner I, Bunk F, Moertl S, Hornhardt S, Gomolka M. Analysis of chromosomal aberrations and γH2A.X foci to identify radiation-sensitive ataxia-telangiectasia patients. Mutat Res 2020; 861-862:503301. [PMID: 33551102 DOI: 10.1016/j.mrgentox.2020.503301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Ataxia-telangiectasia (AT) is a rare inherited recessive disorder which is caused by a mutated Ataxia-telangiectasia mutated (ATM) gene. Hallmarks include chromosomal instability, cancer predisposition and increased sensitivity to ionizing radiation. The ATM protein plays an important role in signaling of DNA double-strand breaks (DSB), thereby phosphorylating the histone H2A.X. Non-functional ATM protein leads to defects in DNA damage response, unresolved DSBs and genomic instability. The aim of this study was to evaluate chromosomal aberrations and γH2A.X foci as potential radiation sensitivity biomarkers in AT patients. For this purpose, lymphocytes of 8 AT patients and 10 healthy controls were irradiated and induced DNA damage and DNA repair capacity were detected by the accumulation of γH2A.X foci. The results were heterogeneous among AT patients. Evaluation revealed 2 AT patients with similar γH2A.X foci numbers as controls after 1 h while 3 patients showed a lower induction. In regard to DNA repair, 3 of 5 AT patients showed poor damage repair. Therefore, DNA damage induction and DNA repair as detected by H2A.X phosphorylation revealed individual differences, seems to depend on the underlying individual mutation and thus appears not well suited as a biomarker for radiation sensitivity. In addition, chromosomal aberrations were analyzed by mFISH. An increased frequency of spontaneous chromosomal breakage was characteristic for AT cells. After irradiation, significantly increased rates for non-exchange aberrations, translocations, complex aberrations and dicentric chromosomes were observed in AT patients compared to controls. The results of this study suggested, that complex aberrations and dicentric chromosomes might be a reliable biomarker for radiation sensitivity in AT patients, while non-exchange aberrations and translocations identified both, spontaneous and radiation-induced chromosomal instability.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany.
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Gregor Dückers
- Center for Child and Adolescent Health, HELIOS Hospital Krefeld, Lutherplatz 40, 47805, Krefeld, Germany
| | - Hans-Joachim Kirlum
- Pediatric Surgery and Pediatric Orthopedics in der Au, Kühbachstraße 1, 81543, Munich, Germany
| | - Petra Lankisch
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Tim Niehues
- Center for Child and Adolescent Health, HELIOS Hospital Krefeld, Lutherplatz 40, 47805, Krefeld, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital and Saarland University Faculty of Medicine, Kirrberger Straße, Building 6.5, 66421, Homburg/Saar, Germany
| | - Ingrid Baumgartner
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Frank Bunk
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Sabine Hornhardt
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| |
Collapse
|
78
|
Navabpour S, Rogers J, McFadden T, Jarome TJ. DNA Double-Strand Breaks Are a Critical Regulator of Fear Memory Reconsolidation. Int J Mol Sci 2020; 21:ijms21238995. [PMID: 33256213 PMCID: PMC7730899 DOI: 10.3390/ijms21238995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have shown that following retrieval, a previously consolidated memory requires increased transcriptional regulation in order to be reconsolidated. Previously, it was reported that histone H3 lysine-4 trimethylation (H3K4me3), a marker of active transcription, is increased in the hippocampus after the retrieval of contextual fear memory. However, it is currently unknown how this epigenetic mark is regulated during the reconsolidation process. Furthermore, though recent evidence suggests that neuronal activity triggers DNA double-strand breaks (DSBs) in some early-response genes, it is currently unknown if DSBs contribute to the reconsolidation of a memory following retrieval. Here, using chromatin immunoprecipitation (ChIP) analyses, we report a significant overlap between DSBs and H3K4me3 in area CA1 of the hippocampus during the reconsolidation process. We found an increase in phosphorylation of histone H2A.X at serine 139 (H2A.XpS139), a marker of DSB, in the Npas4, but not c-fos, promoter region 5 min after retrieval, which correlated with increased H3K4me3 levels, suggesting that the two epigenetic marks may work in concert during the reconsolidation process. Consistent with this, in vivo siRNA-mediated knockdown of topoisomerase II β, the enzyme responsible for DSB, prior to retrieval, reduced Npas4 promoter-specific H2A.XpS139 and H3K4me3 levels and impaired long-term memory, indicating an indispensable role of DSBs in the memory reconsolidation process. Collectively, our data propose a novel mechanism for memory reconsolidation through increases in epigenetic-mediated transcriptional control via DNA double-strand breaks.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
| | - Jessie Rogers
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Timothy J. Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-3520
| |
Collapse
|
79
|
Chen B, Lai J, Dai D, Chen R, Liao N, Gao G, Tang H. PARPBP is a prognostic marker and confers anthracycline resistance to breast cancer. Ther Adv Med Oncol 2020; 12:1758835920974212. [PMID: 33281951 PMCID: PMC7692344 DOI: 10.1177/1758835920974212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PARPBP (PARP1 binding protein) is an important suppressor of homologous recombination during DNA repair, but the expression and function of PARPBP in breast cancer remain unclear. METHODS PARPBP expression was analyzed in breast cancer patient samples and public datasets for its correlation with clinical outcome. The function of PARPBP in breast cancer cell proliferation and anthracycline treatment response were studied both in vitro and in vivo. RESULTS PARPBP was upregulated significantly at both mRNA and protein levels in breast cancer tissues compared with normal breast tissues. PARPBP high expression group had poorer overall survival (OS) than the PARPBP low expression group. Knockdown of PARPBP suppressed breast cancer cell proliferation and colony formation while overexpression of PARPBP did the opposite. We found that transcription factor forkhead box M1 (FOXM1) could activate PARPBP expression by directly binding to the promoter of PARPBP. In addition, high expression of PARPBP related with anthracycline resistance in breast cancer. Depletion of PARPBP increased breast cancer cell apoptosis and DNA damage caused by epirubicin. Moreover, tumor xenograft experiments further demonstrated that PARPBP was involved in breast cancer anthracycline resistance. CONCLUSION Taken together, our results highlight that PARPBP is a prognostic marker and confers anthracycline resistance on breast cancer.
Collapse
Affiliation(s)
- Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Danian Dai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Rong Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
80
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|
81
|
Jang TW, Choi JS, Park JH. Protective and inhibitory effects of acteoside from Abeliophyllum distichum Nakai against oxidative DNA damage. Mol Med Rep 2020; 22:2076-2084. [PMID: 32582974 PMCID: PMC7411339 DOI: 10.3892/mmr.2020.11258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/24/2023] Open
Abstract
Abeliophyllum distichum Nakai is a Korean endemic plant of the Oleaceae family that contains acteoside, a glycosylated caffeic acid, with neuroprotective, anti‑inflammatory and antibacterial properties. Previous studies, involving Accelerated Chromatographic Isolation, a high‑performance liquid chromatography‑photodiode array detector and a liquid chromatograph‑mass selective detector, isolated and identified acteoside in A. distichum (AAD) and documented its antioxidant and anti‑inflammatory activities. The aim of the present study was to determine whether AAD could protect from DNA damage by reducing oxidative stress. AAD treatment protected plasmid DNA against damage to DNA double‑strands induced by reactive oxygen species (ROS) and decreased the levels of phosphorylated p53 and γ‑H2AX in ROS‑treated NIH 3T3 cells. These findings suggested that AAD could reduce ROS‑mediated cellular damage and may represent an effective, natural antioxidant with the ability to protect genetic material.
Collapse
Affiliation(s)
- Tae Won Jang
- Department of Medicinal Plant Resources, Andong National University, Andong, Geongsangbuk 36729, Republic of Korea
| | - Ji Soo Choi
- Department of Medicinal Plant Science, Jungwon University, Geosan, Chungcheongbuk 28024, Republic of Korea
| | - Jae Ho Park
- Department of Medicinal Plant Science, Jungwon University, Geosan, Chungcheongbuk 28024, Republic of Korea
- Department of Pharmaceutical Science, Jungwon University, Geosan, Chungcheongbuk 28024, Republic of Korea
| |
Collapse
|
82
|
Liddle P, Jara-Wilde J, Lafon-Hughes L, Castro I, Härtel S, Folle G. dSTORM microscopy evidences in HeLa cells clustered and scattered γH2AX nanofoci sensitive to ATM, DNA-PK, and ATR kinase inhibitors. Mol Cell Biochem 2020; 473:77-91. [PMID: 32638256 DOI: 10.1007/s11010-020-03809-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
In response to DNA double-strand breaks (DSB), histone H2AX is phosphorylated around the lesion by a feed forward signal amplification loop, originating γH2AX foci detectable by immunofluorescence and confocal microscopy as elliptical areas of uniform intensity. We exploited the significant increase in resolution (~ × 10) provided by single-molecule localization microscopy (SMLM) to investigate at nanometer scale the distribution of γH2AX signals either endogenous (controls) or induced by the radiomimetic bleomycin (BLEO) in HeLa cells. In both conditions, clustered substructures (nanofoci) confined to γH2AX foci and scattered nanofoci throughout the remnant nuclear area were detected. SR-Tesseler software (Voronoï tessellation-based segmentation) was combined with a custom Python script to first separate clustered nanofoci inside γH2AX foci from scattered nanofoci, and then to perform a cluster analysis upon each nanofoci type. Compared to controls, γH2AX foci in BLEO-treated nuclei presented on average larger areas (0.41 versus 0.19 µm2), more nanofoci per focus (22.7 versus 13.2) and comparable nanofoci densities (~ 60 nanofoci/µm2). Scattered γH2AX nanofoci were equally present (~ 3 nanofoci/µm2), suggesting an endogenous origin. BLEO-treated cells were challenged with specific inhibitors of canonical H2AX kinases, namely: KU-55933, VE-821 and NU-7026 for ATM, ATR and DNA-PK, respectively. Under treatment with pooled inhibitors, clustered nanofoci vanished from super-resolution images while scattered nanofoci decreased (~ 50%) in density. Residual scattered nanofoci could reflect, among other alternatives, H2AX phosphorylation mediated by VRK1, a recently described non-canonical H2AX kinase. In addition to H2AX findings, an analytical approach to quantify clusters of highly differing density from SMLM data is put forward.
Collapse
Affiliation(s)
- Pablo Liddle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Departamento de Ciencias de la Computación, Universidad de Chile, Santiago, Chile
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Iván Castro
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gustavo Folle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
83
|
LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ 2020; 27:3337-3353. [PMID: 32587379 DOI: 10.1038/s41418-020-0581-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the function of long noncoding RNAs (lncRNAs), their roles and functions in DNA repair pathways remain poorly understood. By screening a panel of uncharacterized lncRNAs to identify those whose transcription is induced by double-strand breaks (DSBs), we identified a novel lncRNA referred to as LRIK that interacts with Ku, which enhances the ability of the Ku heterodimer to detect the presence of DSBs. Here, we show that depletion of LRIK generates significantly enhanced sensitivity to DSB-inducing agents and reduced DSB repair efficiency. In response to DSBs, LRIK enhances the recruitment of repair factors at DSB sites and facilitates γH2AX signaling. Our results demonstrate that LRIK is necessary for efficient repairing DSBs via nonhomologous end-joining pathway.
Collapse
|
84
|
Meng F, Qian M, Peng B, Peng L, Wang X, Zheng K, Liu Z, Tang X, Zhang S, Sun S, Cao X, Pang Q, Zhao B, Ma W, Songyang Z, Xu B, Zhu WG, Xu X, Liu B. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. eLife 2020; 9:55828. [PMID: 32538779 PMCID: PMC7324161 DOI: 10.7554/elife.55828] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
The DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR in human and mouse cells. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair in humans and mice.
Collapse
Affiliation(s)
- Fanbiao Meng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Bin Peng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaohui Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Kang Zheng
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shuju Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Bosheng Zhao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Xu
- The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.,International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.,International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.,International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
85
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
86
|
Gomez Godinez V, Kabbara S, Sherman A, Wu T, Cohen S, Kong X, Maravillas-Montero JL, Shi Z, Preece D, Yokomori K, Berns MW. DNA damage induced during mitosis undergoes DNA repair synthesis. PLoS One 2020; 15:e0227849. [PMID: 32343690 PMCID: PMC7188217 DOI: 10.1371/journal.pone.0227849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the mitotic DNA damage response (DDR) is critical to our comprehension of cancer, premature aging and developmental disorders which are marked by DNA repair deficiencies. In this study we use a micro-focused laser to induce DNA damage in selected mitotic chromosomes to study the subsequent repair response. Our findings demonstrate that (1) mitotic cells are capable of DNA repair as evidenced by DNA synthesis at damage sites, (2) Repair is attenuated when DNA-PKcs and ATM are simultaneously compromised, (3) Laser damage may permit the observation of previously undetected DDR proteins when damage is elicited by other methods in mitosis, and (4) Twenty five percent of mitotic DNA-damaged cells undergo a subsequent mitosis. Together these findings suggest that mitotic DDR is more complex than previously thought and may involve factors from multiple repair pathways that are better understood in interphase.
Collapse
Affiliation(s)
- Veronica Gomez Godinez
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Sami Kabbara
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
| | - Adria Sherman
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
| | - Tao Wu
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| | - Shirli Cohen
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, University of California-Irvine, Irvine, California, United States of America
| | | | - Zhixia Shi
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
| | - Daryl Preece
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| | - Kyoko Yokomori
- Department of Biological Chemistry, University of California-Irvine, Irvine, California, United States of America
| | - Michael W. Berns
- Institute of Engineering in Medicine, University of California-San Diego, San Diego, California, United States of America
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California, United States of America
- Beckman Laser Institute, University of California-Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, United States of America
| |
Collapse
|
87
|
Feng JX, Riddle NC. Epigenetics and genome stability. Mamm Genome 2020; 31:181-195. [PMID: 32296924 DOI: 10.1007/s00335-020-09836-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Maintaining genome stability is essential to an organism's health and survival. Breakdown of the mechanisms protecting the genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.
Collapse
Affiliation(s)
- Justina X Feng
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
88
|
Yang G, Chen Y, Wu J, Chen SH, Liu X, Singh AK, Yu X. Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions. Nucleic Acids Res 2020; 48:3001-3013. [PMID: 31965183 PMCID: PMC7102957 DOI: 10.1093/nar/gkaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 11/14/2022] Open
Abstract
Nucleosomal histones are barriers to the DNA repair process particularly at DNA double-strand breaks (DSBs). However, the molecular mechanism by which these histone barriers are removed from the sites of DNA damage remains elusive. Here, we have generated a single specific inducible DSB in the cells and systematically examined the histone removal process at the DNA lesion. We found that histone removal occurred immediately following DNA damage and could extend up to a range of few kilobases from the lesion. To examine the molecular mechanism underlying DNA damage-induced histone removal, we screened histone modifications and found that histone ADP-ribosylation was associated with histone removal at DNA lesions. PARP inhibitor treatment suppressed the immediate histone eviction at DNA lesions. Moreover, we examined histone chaperones and found that the FACT complex recognized ADP-ribosylated histones and mediated the removal of histones in response to DNA damage. Taken together, our results reveal a pathway that regulates early histone barrier removal at DNA lesions. It may also explain the mechanism by which PARP inhibitor regulates early DNA damage repair.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yibin Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiaxue Wu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiuhua Liu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Anup Kumar Singh
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
89
|
Ihara M, Shichijo K, Takeshita S, Kudo T. Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, induces accumulation of DNA double-strand breaks. JOURNAL OF RADIATION RESEARCH 2020; 61:171-176. [PMID: 32052028 PMCID: PMC7246056 DOI: 10.1093/jrr/rrz102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Wortmannin, a fungal metabolite, is a specific inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, which includes double-stranded DNA dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated kinase (ATM). We investigated the effects of wortmannin on DNA damage in DNA-PK-deficient cells obtained from severe combined immunodeficient mice (SCID cells). Survival of wortmannin-treated cells decreased in a concentration-dependent manner. After treatment with 50 μM wortmannin, survival decreased to 60% of that of untreated cells. We observed that treatment with 20 and 50 μM wortmannin induced DNA damage equivalent to that by 0.37 and 0.69 Gy, respectively, of γ-ray radiation. The accumulation of DNA double-strand breaks (DSBs) in wortmannin-treated SCID cells was assessed using pulsed-field gel electrophoresis. The maximal accumulation was observed 4 h after treatment. Moreover, the presence of DSBs was confirmed by the ability of nuclear extracts from γ-ray-irradiated SCID cells to produce in vitro phosphorylation of histone H2AX. These results suggest that wortmannin induces cellular toxicity by accumulation of spontaneous DSBs through inhibition of ATM.
Collapse
Affiliation(s)
- Makoto Ihara
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
- Department of Molecular Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
| | - Satoshi Takeshita
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
- Joint Research Office, Research Promotion Division, Office for Research Initiative and Development, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
90
|
Sarkar R, Patra U, Lo M, Mukherjee A, Biswas A, Chawla-Sarkar M. Rotavirus activates a noncanonical ATM-Chk2 branch of DNA damage response during infection to positively regulate viroplasm dynamics. Cell Microbiol 2020; 22:e13149. [PMID: 31845505 DOI: 10.1111/cmi.13149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Surveillance for maintaining genomic pristineness, a protective safeguard of great onco-preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double-stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV-SA11-infected cells, the activation response being maximal at 6-hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11-Rad50-Nbs1 (MRN) complex. Interestingly, RV-SA11-mediated maximal induction of ATM-Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage-induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM-Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV-mediated activation of a noncanonical ATM-Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mahadeb Lo
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Asim Biswas
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
91
|
Massonneau J, Lacombe-Burgoyne C, Boissonneault G. pH-induced variations in the TK1 gene model. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503128. [PMID: 32087849 DOI: 10.1016/j.mrgentox.2019.503128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
A physiological decrease in extracellular pH (pHe) alters the efficiency of DNA repair and increases formation of DNA double-strand breaks (DSBs). Whether this could translate into genetic instability and variations, was investigated using the TK6 cell model, in which positive selection of the TK1 gene loss-of-function mutations can be achieved from resistance to trifluorothymidine. Cell exposure to suboptimal pH (down to 6.9) for 3 weeks resulted in the 100 % frequency of a stronger frameshift mutation that has spread to both TK1 alleles, whereas weaker frameshift mutations within the 3'exon were eliminated during the selection. Suboptimal pHe values were also found to alter the proportion of the TK1 splicing variant expressed as percent spliced in index values and promote selection of truncated exons as well as intron retention. Although recovery at pH 7.4 did not reverse the selected frameshift mutation, reversal of splice variants and exon truncation towards control values were observed. Hence, suboptimal pHe can induce a combination of mutational events and splicing alterations within the same gene in the resistant clones. This model of positive selection for loss-of-function clearly demonstrates that suboptimal pHe may confer a similar growth advantage when such instability occurs within tumor suppressor genes.
Collapse
Affiliation(s)
- Julien Massonneau
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chloë Lacombe-Burgoyne
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
92
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
93
|
Zhang F, Lou L, Peng B, Song X, Reizes O, Almasan A, Gong Z. Nudix Hydrolase NUDT16 Regulates 53BP1 Protein by Reversing 53BP1 ADP-Ribosylation. Cancer Res 2020; 80:999-1010. [PMID: 31911551 DOI: 10.1158/0008-5472.can-19-2205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/11/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
53BP1 controls two downstream subpathways, one mediated by PTIP and Artemis and the other by RIF1 and MAD2L2/Shieldin, to coordinate DNA repair pathway choices. However, the upstream regulator(s) of 53BP1 function in DNA repair remain unknown. We and others recently reported that TIRR associates with 53BP1 to stabilize it and prevents 53BP1 localization to DNA damage sites by blocking 53BP1 Tudor domain binding to H4K20me2 sites. Here, we report that the Nudix hydrolase NUDT16, a TIRR homolog, regulates 53BP1 stability. We identified a novel posttranslational modification of 53BP1 by ADP-ribosylation that is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to 53BP1 polyubiquitination and degradation. In response to DNA damage, ADP-ribosylated 53BP1 increased significantly, resulting in its ubiquitination and degradation. These data suggest that NUDT16 plays a major role in controlling 53BP1 levels under both normal growth conditions and during DNA damage. Notably, overexpression of a NUDT16 catalytically inactive mutant blocked 53BP1 localization to double-strand breaks because (i) the mutant binding to TIRR increased after IR; (ii) the mutant enhanced 53BP1 Tudor domain binding to TIRR, and (iii) the mutant impaired the interaction of 53BP1 Tudor domain with H4K20me2. Moreover, NUDT16's catalytic hydrolase activity was required for 53BP1 de-ADP-ribosylation, 53BP1 protein stability, and its function in cell survival. In summary, we demonstrate that NUDT16 regulates 53BP1 stability and 53BP1 recruitment at double-strand breaks, providing yet another mechanism of 53BP1 regulation.Significance: This study provides a novel mechanism of 53BP1 regulation by demonstrating that NUDT16 has hydrolase activities that remove ADP-ribosylation of 53BP1 to regulate 53BP1 stability and 53BP1 localization at DSBs.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Lihong Lou
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Bo Peng
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Xiaotian Song
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| |
Collapse
|
94
|
Qi Y, Lang J, Zhu X, Huang J, Li L, Yi G. Retracted Article: Down-regulation of the radiation-induced pEGFR Thr654 mediated activation of DNA-PK by Cetuximab in cervical cancer cells. RSC Adv 2020; 10:1132-1141. [PMID: 35494466 PMCID: PMC9047960 DOI: 10.1039/c9ra04962b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma. Now, we aim to examine the role of pEGFRThr654 in the activation of DNA-PK and radio resistance. Either CaSki or HeLa cells were exposed to a dose of 4 Gy with a 6 MV X-ray in the presence or absence of Cetuximab or Gefitinib, then EGFR, pEGFRThr654, DNA-PKcs and pDNA-PKThr2609 levels were determined using a western blot. DNA damage was quantified with γH2AX foci analysis and the response of CaSki and HeLa cells to irradiation was determined using a colony formation assay. In CaSki and HeLa cells, irradiation induced nuclear EGFR accumulation, and pEGFRThr654 and pDNA-PKThr2609 levels were both significantly increased. Cetuximab pre-treatment significantly reduced the expression of pEGFRThr654 and pDNA-PKThr2609 and enhanced the γH2AX foci per cell and sensitivity enhancement ratio in CaSki cells. Gefitinib pre-treatment had a similar but weaker effect. In HeLa cells, similar effects of Cetuximab and Gefitinib on pEGFRThr654 and pDNA-PKThr2609 were observed, and no significant difference was found. We found that Cetuximab had a better effect than Gefitinib on attenuating the radio resistance in cervical squamous carcinoma cells via inhibiting pEGFRThr654-mediated nuclear EGFR transport and related DNA-PKT2609-mediated DNA repair. However, in adenocarcinoma cells, both EGFR-targeted drugs had no remarkable effects on the radio sensitivity. Taken together, radiotherapy combined with Cetuximab may be a promising strategy to improve the therapeutic gain for cervical squamous carcinoma patients. The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma.![]()
Collapse
Affiliation(s)
- Yunxiang Qi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Xiaodong Zhu
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jianming Huang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Lu Li
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Guangming Yi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| |
Collapse
|
95
|
Zelensky AN, Schoonakker M, Brandsma I, Tijsterman M, van Gent DC, Essers J, Kanaar R. Low dose ionizing radiation strongly stimulates insertional mutagenesis in a γH2AX dependent manner. PLoS Genet 2020; 16:e1008550. [PMID: 31945059 PMCID: PMC6964834 DOI: 10.1371/journal.pgen.1008550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
Extrachromosomal DNA can integrate into the genome with no sequence specificity producing an insertional mutation. This process, which is referred to as random integration (RI), requires a double stranded break (DSB) in the genome. Inducing DSBs by various means, including ionizing radiation, increases the frequency of integration. Here we report that non-lethal physiologically relevant doses of ionizing radiation (10-100 mGy), within the range produced by medical imaging equipment, stimulate RI of transfected and viral episomal DNA in human and mouse cells with an extremely high efficiency. Genetic analysis of the stimulated RI (S-RI) revealed that it is distinct from the background RI, requires histone H2AX S139 phosphorylation (γH2AX) and is not reduced by DNA polymerase θ (Polq) inactivation. S-RI efficiency was unaffected by the main DSB repair pathway (homologous recombination and non-homologous end joining) disruptions, but double deficiency in MDC1 and 53BP1 phenocopies γH2AX inactivation. The robust responsiveness of S-RI to physiological amounts of DSBs can be exploited for extremely sensitive, macroscopic and direct detection of DSB-induced mutations, and warrants further exploration in vivo to determine if the phenomenon has implications for radiation risk assessment.
Collapse
Affiliation(s)
- Alex N. Zelensky
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mascha Schoonakker
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Inger Brandsma
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Tijsterman
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
96
|
Andrejsová L, Šinkorová Z, Šinkora J, Tichý A, Filipová A, Němcová M, Šinkora M. IN VIVO BIODOSIMETRY OF PORCINE T-LYMPHOCYTE SUBSETS AND NK CELLS. RADIATION PROTECTION DOSIMETRY 2019; 186:181-185. [PMID: 31943099 DOI: 10.1093/rpd/ncz199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to evaluate the biodosimetric potential of peripheral blood lymphocytes, particularly of T-cell subsets (null and T helper) and natural killer cells (NK), upon exposure to gamma irradiation (60Co) in vivo. For this purpose, the change in relative numbers of NK cells and T-lymphocyte subsets, as well as in the H2AX phosphorylation rate, were evaluated as potential early markers of the lymphocytic response to irradiation in vivo. These experiments were performed on a Large White Pig model. As a result, significant but not dose-dependent changes in the proportion of lymphocyte subpopulations (NK cells, null and T helper cells) were found after exposure to ionising radiation in vivo. On the other hand, circulating NK cells showed relatively higher radioresistance capacity when compared to the T-lymphocyte subsets; however, gamma-H2AX expression showed no significant difference between the evaluated lymphocyte subsets.
Collapse
Affiliation(s)
- Lenka Andrejsová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Jiří Šinkora
- BD Czechia s.r.o., 162 00 Prague, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Markéta Němcová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marek Šinkora
- Department of Immunology and Gnotobiology, Institute of Microbiology of the CAS, v.v.i., 142 20 Prague, Czech Republic
| |
Collapse
|
97
|
Wang C, Li H, Ma P, Sun J, Li L, Wei J, Tao L, Qian K. The third-generation retinoid adapalene triggered DNA damage to induce S-phase arrest in HaCat cells. Fundam Clin Pharmacol 2019; 34:380-388. [PMID: 31808972 DOI: 10.1111/fcp.12527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Epidermal proliferative diseases consisted of a series of common skin diseases, most of which were recurrent chronic skin diseases, and had greatly negative influence on the life quality of patient. Retinoids exhibited vital roles in the treatment of many skin diseases. Our recent study demonstrated that adapalene significantly inhibited the growth of HaCat cells, and the inhibitory activity was stronger than other retinoids, such as all-trans-retinoic acid, acitretin, isotretinoin, tazarotene, and bexarotene. Further study showed that adapalene suppressed the colony formation of HaCat cells, and it dramatically triggered S-phase arrest and apoptosis, rather than G1 phase arrest which was reported in other retinoids in several studies. Additionally, adapalene treatment greatly upregulated the protein expression of DNA damage marker γ-H2AX, which was in accord with the results of the elongation of tail moment by comet electrophoresis analysis. Moreover, DNA damage was triggered and DNA repair was suppressed synchronously with adapalene treatment, which accounted for the mechanism of S-phase arrest induced by adapalene. In summary, our recent work demonstrated that adapalene showed strong anti-proliferation activity in HaCat cells and could be an alternative agent for the epidermal proliferative disease.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Lingjun Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jun Wei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Lei Tao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Qian
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| |
Collapse
|
98
|
Salguero I, Belotserkovskaya R, Coates J, Sczaniecka-Clift M, Demir M, Jhujh S, Wilson MD, Jackson SP. MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance. Nat Commun 2019; 10:5191. [PMID: 31729360 PMCID: PMC6858307 DOI: 10.1038/s41467-019-12929-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Histone H2AX and MDC1 are key DNA repair and DNA-damage signalling proteins. When DNA double-strand breaks (DSBs) occur, H2AX is phosphorylated and then recruits MDC1, which in turn serves as a docking platform to promote the localization of other factors, including 53BP1, to DSB sites. Here, by using CRISPR-Cas9 engineered human cell lines, we identify a hitherto unknown, H2AX-independent, function of MDC1 mediated by its PST-repeat region. We show that the PST-repeat region directly interacts with chromatin via the nucleosome acidic patch and mediates DNA damage-independent association of MDC1 with chromatin. We find that this region is largely functionally dispensable when the canonical γH2AX-MDC1 pathway is operative but becomes critical for 53BP1 recruitment to DNA-damage sites and cell survival following DSB induction when H2AX is not available. Consequently, our results suggest a role for MDC1 in activating the DDR in areas of the genome lacking or depleted of H2AX.
Collapse
Affiliation(s)
- Israel Salguero
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Rimma Belotserkovskaya
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Julia Coates
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Matylda Sczaniecka-Clift
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mukerrem Demir
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Satpal Jhujh
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Stephen P Jackson
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
99
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 951] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
100
|
Paul S, Patra D, Kundu R. Lignan enriched fraction (LRF) of Phyllanthus amarus promotes apoptotic cell death in human cervical cancer cells in vitro. Sci Rep 2019; 9:14950. [PMID: 31628385 PMCID: PMC6802087 DOI: 10.1038/s41598-019-51480-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Phyllanthus amarus is widely grown in this sub-continent and used traditionally to treat many common ailments. In the present study, lignan rich fraction of P. amarus extract was used on cervical cancer cell lines (HeLa, SiHa and C33A) to study it's mechanism of cell death induction. As the cells were treated with IC50 doses of LRF, characteristic apoptotic features were observed. Increased sub G0 population were observed both in Hela and C33 cells, while G1/S arrest was observed in SiHa cells than their untreated counterparts. Increased production of ROS and change in MMP were also detected in the treated cells. Presence of γH2AX, was observed by immunofluorescence. Reduced expression of HPV (16/18) as well as ET-1, an autocrine growth substance, were observed in the treated cells. Immunoblotting as well as ICFC studies showed enhanced expressions of BAX, Caspase 3 and PARP (cleaved) in the treated cells. A major lignan, phyllanthin was isolated from the chloroform fraction and showed strong irreversible affinities for viral E6 and MDM2 in in silico analysis. The study conclusively indicates that LRF has the potential to induce apoptotic cell death in cervical cancer cells by activation of p53 and p21 against DNA damage.
Collapse
Affiliation(s)
- Subhabrata Paul
- Bioprospecting Laboratory, School of Biotechnology, Department of Life Sciences, Presidency University, Kolkata, India
| | - Debashis Patra
- Chemistry Laboratory, Department of Science & Humanities, Acharya Jagadish Chandra Bose Polytechnic, Berachampa, West Bengal, India
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India.
| |
Collapse
|