51
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
52
|
Hjortland NM, Mesecar AD. Steady-state kinetic studies reveal that the anti-cancer target Ubiquitin-Specific Protease 17 (USP17) is a highly efficient deubiquitinating enzyme. Arch Biochem Biophys 2016; 612:35-45. [PMID: 27756680 DOI: 10.1016/j.abb.2016.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
Abstract
USP17 is a deubiquitinating enzyme that is upregulated in numerous cancers and therefore a drug target. We developed a robust expression, purification, and assay system for USP17 enabling its enzymatic and structural characterization. USP17 was expressed in E. coli as inclusion bodies and then solubilized, refolded, and purified using affinity and size-exclusion chromatography. Milligram quantities of pure USP17 can be produced that is catalytically more efficient (kcat/Km = 1500 (x103) M-1sec-1) than other human USPs studied to date. Analytical size-exclusion chromatography, analytical ultracentrifugation, and dynamic light scattering studies suggest that the quaternary structure of USP17 is a monomer. Steady-state kinetic studies show that USP17 efficiently hydrolyzes both ubiquitin-AMC (kcat = 1.5 sec-1 and Km = 1.0 μM) and ubiquitin-rhodamine110 (kcat = 1.8 sec-1 and Km = 2.0 μM) substrates. Ubiquitin chain cleavage assays reveal that USP17 efficiently cleaves di-ubiquitin chains with Lys11, Lys33, Lys48 and Lys63 linkages and tetra-ubiquitin chains with Lys11, Lys48 and Lys63 linkages but is inefficient in cleaving di-ubiquitin chains with Lys6, Lys27, or Lys29 linkages or linear ubiquitin chains. The substrate specificity of USP17 is most similar to that of USP1, where both USPs display higher specificity than other characterized members of the USP family.
Collapse
Affiliation(s)
- Nicole M Hjortland
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States; Department of Biochemistry, Purdue University, West Lafayette, IN 47906, United States; Department of Chemistry, Purdue University, West Lafayette, IN 47906, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
53
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
54
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
55
|
Li Q, Chang Z, Oliveira G, Xiong M, Smith LM, Frey BL, Welham NV. Protein turnover during in vitro tissue engineering. Biomaterials 2015; 81:104-113. [PMID: 26724458 DOI: 10.1016/j.biomaterials.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Repopulating acellular biological scaffolds with phenotypically appropriate cells is a promising approach for regenerating functional tissues and organs. Under this tissue engineering paradigm, reseeded cells are expected to remodel the scaffold by active protein synthesis and degradation; however, the rate and extent of this remodeling remain largely unknown. Here, we present a technique to measure dynamic proteome changes during in vitro remodeling of decellularized tissue by reseeded cells, using vocal fold mucosa as the model system. Decellularization and recellularization were optimized, and a stable isotope labeling strategy was developed to differentiate remnant proteins constituting the original scaffold from proteins newly synthesized by reseeded cells. Turnover of matrix and cellular proteins and the effects of cell-scaffold interaction were elucidated. This technique sheds new light on in vitro tissue remodeling and the process of tissue regeneration, and is readily applicable to other tissue and organ systems.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Chang
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Gisele Oliveira
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Maiyer Xiong
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
56
|
Jo MJ, Paek AR, Choi JS, Ok CY, Jeong KC, Lim JH, Kim SH, You HJ. Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment. Eur J Pharmacol 2015; 769:257-65. [PMID: 26607468 DOI: 10.1016/j.ejphar.2015.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
The proto-oncogene c-Myc has been implicated in a variety of cellular processes, such as proliferation, differentiation and apoptosis. Several c-Myc targets have been studied; however, selective regulation of c-Myc is not easy in cancer cells. Herein, we attempt to identify chemical compounds that induce cell death in c-Myc-overexpressing cells (STF-cMyc and STF-Control) by conducting MTS assays on approximately 4000 chemical compounds. One compound, C604, induced cell death in STF-cMyc cells but not STF-Control cells. Apoptotic proteins, including caspase-3 and poly(ADP-ribose) polymerase (PARP), were cleaved in C604-treated STF-cMyc cells. In addition, SW620, HCT116 and NCI-H23 cells, which exhibit higher basal levels of c-Myc, underwent apoptotic cell death in response to C604, suggesting a role for C604 as an inducer of apoptosis in cancer cells with c-Myc amplification. C604 induced cell cycle arrest at the G2/M phase in cells, which was not affected by apoptotic inhibitors. Interestingly, C604 induced accumulation of c-Myc and Cdc25A proteins. In summary, a chemical compound was identified that may induce cell death in cancer cells with c-Myc amplification specifically through an apoptotic pathway.
Collapse
Affiliation(s)
- Mun Jeong Jo
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - A Rome Paek
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Ji Seung Choi
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Chang Youp Ok
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Kyung Chae Jeong
- Biomolecular Function Research Branch, Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Seok Hyun Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Hye Jin You
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea.
| |
Collapse
|
57
|
Ni Y, Tao L, Chen C, Song H, Li Z, Gao Y, Nie J, Piccioni M, Shi G, Li B. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. Int J Mol Sci 2015; 16:27956-66. [PMID: 26610488 PMCID: PMC4661921 DOI: 10.3390/ijms161126063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/13/2015] [Indexed: 11/16/2022] Open
Abstract
IL-33 is a new member of the IL-1 family cytokines, which is expressed by different types of immune cells and non-immune cells. IL-33 is constitutively expressed in the nucleus, where it can act as a transcriptional regulator. So far, no direct target for nuclear IL-33 has been identified, and the regulation of IL-33 nuclear function remains largely unclear. Here, we report that the transcription of type 2 inflammatory cytokine IL-13 is positively regulated by nuclear IL-33. IL-33 can directly bind to the conserved non-coding sequence (CNS) before the translation initiation site in the IL13 gene locus. Moreover, IL-33 nuclear function and stability are regulated by the enzyme ubiquitin-specific protease 17 (USP17) through deubiquitination of IL-33 both at the K48 and at the K63 sites. Our data suggest that IL13 gene transcription can be directly activated by nuclear IL-33, which is negatively regulated by the deubiquitinase USP17.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Lianqin Tao
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Chen Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Huihui Song
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhiyuan Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yayi Gao
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jia Nie
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Miranda Piccioni
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Guochao Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
58
|
D'Arcy P, Linder S. Molecular pathways: translational potential of deubiquitinases as drug targets. Clin Cancer Res 2015; 20:3908-14. [PMID: 25085788 DOI: 10.1158/1078-0432.ccr-14-0568] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS coupled with the clinical success of bortezomib for the treatment of multiple myeloma have made the UPS an obvious target for drug development. Deubiquitinases (DUB) are components of the UPS that encompass a diverse family of ubiquitin isopeptidases that catalyze the removal of ubiquitin moieties from target proteins or from polyubiquitin chains, resulting in altered signaling or changes in protein stability. Increasing evidence has implicated deregulation of DUB activity in the initiation and progression of cancer. The altered pattern of DUB expression observed in many tumors can potentially serve as a clinical marker for predicting disease outcome and therapy response. The finding of DUB overexpression in tumor cells suggests that they may serve as novel targets for the development of anticancer therapies. Several specific and broad-spectrum DUB inhibitors are shown to have antitumor activity in preclinical in vivo models with low levels of systemic toxicity. Future studies will hopefully establish the clinical potential for DUB inhibitors as a strategy to treat cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Department of Oncology-Pathology, Karolinska Institute, Stockholm and
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm and Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
59
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
60
|
Ostapenko D, Burton JL, Solomon MJ. The Ubp15 deubiquitinase promotes timely entry into S phase in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2205-16. [PMID: 25877870 PMCID: PMC4462939 DOI: 10.1091/mbc.e14-09-1400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Janet L Burton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Mark J Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| |
Collapse
|
61
|
Zhou B, Shu B, Xi T, Su N, Liu J. Dub3 expression correlates with tumor progression and poor prognosis in human epithelial ovarian cancer. Biomed Pharmacother 2015; 70:84-9. [PMID: 25776484 DOI: 10.1016/j.biopha.2015.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/04/2015] [Indexed: 12/11/2022] Open
Abstract
Dub3 is a deubiquitinating enzyme. It is highly expressed in tumor-derived cell lines and has an established role in tumor proliferation. However, the role of Dub3 in human ovarian cancer remains unclear. Expression of Dub3 was evaluated in ovarian cancer tissues and cell lines by immunohistochemistry and Western blot analysis. The relationship between Dub3 expression and clinicopathological characteristics was analyzed. Using RNA interference, the effects of Dub3 on cell proliferation and apoptosis were investigated in ovarian cancer cell line. All normal ovary tissues exhibited very little or no Dub3 immunoreactivity. High levels of Dub3 expression were examined by immunohistochemical analysis in 13.3% of cystadenomas, in 30.0% of borderline tumors, and in 58.9% of ovarian carcinomas, respectively. Dub3 expression was significantly associated with lymph node metastasis and clinical staging (P<0.05). Multivariate survival analysis indicated that Dub3 expression was an independent prognostic indicator of the survival of patients with ovarian cancer. Furthermore, the expression of Cdc25A was closely correlated with that of Dub3 in cancer cells and tissues. Knockdown of Dub3 could inhibit the proliferation of ovarian cancer cells and increase cell apoptosis. These data indicate that the Dub3 might be a valuable biomarker for the prediction of ovarian cancer prognosis and Dub3 inhibition might be a potential strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Bo Zhou
- Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, 210009 Nanjing, China
| | - Bin Shu
- Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, 210009 Nanjing, China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China
| | - Ning Su
- Department of Pathology, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Jing Liu
- Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, 210009 Nanjing, China.
| |
Collapse
|
62
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 838] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
63
|
Jaworski J, de la Vega M, Fletcher SJ, McFarlane C, Greene MK, Smyth AW, Van Schaeybroeck S, Johnston JA, Scott CJ, Rappoport JZ, Burrows JF. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor. Oncotarget 2014; 5:6964-75. [PMID: 25026282 PMCID: PMC4196176 DOI: 10.18632/oncotarget.2165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 01/06/2023] Open
Abstract
Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of 'CaaX' motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis.
Collapse
Affiliation(s)
- Jakub Jaworski
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Michelle de la Vega
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
| | - Sarah J. Fletcher
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cheryl McFarlane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
| | | | | | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - James A. Johnston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
- Current address, Inflammation Research, Amgen Inc., Thousand Oaks, CA
| | | | | | | |
Collapse
|
64
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
65
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
66
|
van der Laan S, Golfetto E, Vanacker JM, Maiorano D. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs) in mouse embryonic stem cells. PLoS One 2014; 9:e93663. [PMID: 24695638 PMCID: PMC3973558 DOI: 10.1371/journal.pone.0093663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/08/2014] [Indexed: 01/29/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.
Collapse
Affiliation(s)
- Siem van der Laan
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Eleonora Golfetto
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Jean-Marc Vanacker
- Physiopathology of orphan nuclear receptors, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domenico Maiorano
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| |
Collapse
|
67
|
Delgado-Díaz MR, Martín Y, Berg A, Freire R, Smits VAJ. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol 2014; 8:884-93. [PMID: 24704006 DOI: 10.1016/j.molonc.2014.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 11/17/2022] Open
Abstract
A crucial event in the DNA damage response is the phosphorylation and subsequent ubiquitination of H2AX, required for the recruitment of proteins involved in DNA repair. Here we identify a novel regulator of this process, the ubiquitin hydrolase Dub3. Overexpression of wild type, but not catalytic inactive, Dub3 decreases the DNA damage-induced mono-ubiquitination of H2A(X) whereas downregulation of Dub3 has the opposite effect. Dub3 overexpression abrogates focus formation of 53BP1 and BRCA1 in response to genotoxic stress. However, focus formation of MDC1 and γH2AX, earlier events in this response, are unaffected by Dub3 overexpression. We show that Dub3 counteracts H2AX E3 ligases RNF8 and RNF168. Moreover, Dub3 and H2AX interact and Dub3 deubiquitinates H2AX in vitro. Importantly, overexpression of Dub3 delays H2AX dephosphorylation and recovery of MDC1 focus formation at later time points after DNA damage, whereas H2AX dephosphorylation at later time points is faster after Dub3 depletion. Altogether these results show that Dub3 regulates a correct DNA damage response by controlling H2AX ubiquitination.
Collapse
Affiliation(s)
- M Rocío Delgado-Díaz
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Yusé Martín
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Anna Berg
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n La Cuesta, La Laguna 38320, Tenerife, Spain.
| |
Collapse
|
68
|
A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochem J 2014; 457:289-300. [PMID: 24134311 DOI: 10.1042/bj20131213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Collapse
|
69
|
Forte S, Pagliuca A, Maniscalchi ET, Gulino R, Calabrese G, Ricci-Vitiani L, Pallini R, Signore M, Parenti R, De Maria R, Gulisano M. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model. PLoS One 2013; 8:e81432. [PMID: 24349068 PMCID: PMC3861258 DOI: 10.1371/journal.pone.0081432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022] Open
Abstract
The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.
Collapse
Affiliation(s)
| | - Alfredo Pagliuca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rosalba Parenti
- Department of Biomedical Sciences, University of Catania, Italy
| | | | | |
Collapse
|
70
|
Strauss AS, Peters S, Boland W, Burse A. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2013; 2:e01096. [PMID: 24302568 PMCID: PMC3843118 DOI: 10.7554/elife.01096] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plant-herbivore interactions dominate the planet’s terrestrial ecology. When it comes to host–plant specialization, insects are among the most versatile evolutionary innovators, able to disarm multiple chemical plant defenses. Sequestration is a widespread strategy to detoxify noxious metabolites, frequently for the insect’s own benefit against predation. In this study, we describe the broad-spectrum ATP-binding cassette transporter CpMRP of the poplar leaf beetle, Chrysomela populi as the first candidate involved in the sequestration of phytochemicals in insects. CpMRP acts in the defensive glands of the larvae as a pacemaker for the irreversible shuttling of pre-selected metabolites from the hemolymph into defensive secretions. Silencing CpMRP in vivo creates a defenseless phenotype, indicating its role in the secretion process is crucial. In the defensive glands of related leaf beetle species, we identified sequences similar to CpMRP and assume therefore that exocrine gland-based defensive strategies, evolved by these insects to repel their enemies, rely on ABC transporters as a key element. DOI:http://dx.doi.org/10.7554/eLife.01096.001 For millions of years, plant feeding insects have been locked in an arms race with the plants they consume. Plants have evolved defensive strategies such as the ability to produce noxious chemicals that deter insects, while many insects have evolved the means to thwart this defense and even turn it to their own advantage. The larvae of the poplar leaf beetle, Chrysomela populi, sequester toxic plant compounds in specialized glands on their backs and use these compounds to defend themselves against predators. The glands are lined with chemically inert chitin, the substance that makes up the insect exoskeleton, and the deterrent chemicals are released whenever the insect is threatened. Now, Strauss et al. have identified a key transport protein used by the larvae to move toxic plant compounds to these glands. This transport protein belongs to a family of membrane proteins called ABC transporters, which help to shuttle substances out of cells or into cell organelles using energy produced by the hydrolysis of ATP molecules. The gene for this transporter is expressed in the glands of the leaf beetles at levels 7,000 times higher than elsewhere in the larvae. Larvae that lack a functional version of the transporter gene continue to grow, but are unable to defend themselves against predators. Similar genes are found in other species of leaf beetle, suggesting that this type of transporter has been retained throughout evolution. Moreover, the transporter is not specific to a particular plant toxin; this enables leaf beetles to eat many different types of plants and boosts their chances of survival should a previous food source disappear. DOI:http://dx.doi.org/10.7554/eLife.01096.002
Collapse
Affiliation(s)
- Anja S Strauss
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
71
|
van der Laan S, Tsanov N, Crozet C, Maiorano D. High Dub3 Expression in Mouse ESCs Couples the G1/S Checkpoint to Pluripotency. Mol Cell 2013; 52:366-79. [DOI: 10.1016/j.molcel.2013.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/01/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023]
|
72
|
Lim KH, Ramakrishna S, Baek KH. Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. Cytokine Growth Factor Rev 2013; 24:427-31. [PMID: 23773437 DOI: 10.1016/j.cytogfr.2013.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
Deubiquitinating enzymes (DUBs), a class of cysteine proteases which counteract the action of protein ubiquitination, hydrolyze ubiquitin from its specific targeted proteins. Approximately, 100 DUBs have been found from yeast to human, and they can be classified into at least 5 families based on their structures and functions. Most DUBs are involved in regulation of intracellular processes including cell cycle progression, apoptosis, immunity, reproduction, and target gene transcription. Recently, much progress has been made in understanding the physiological functions of cytokine-inducible DUBs such as DUB-1, DUB-2, and DUB-3/USP17, in regulation of cell proliferation and apoptosis in lymphocytes. Here, we have summarized the structure and functions of cytokine-inducible DUBs and their biological functions in regulating several interleukin-associated signaling pathways. Finally, we emphasize the importance of small molecules for cytokine-inducible DUBs for developing promising drug therapeutics for immune-related disorders.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea
| | | | | |
Collapse
|
73
|
Das CM, Taylor P, Gireud M, Singh A, Lee D, Fuller G, Ji L, Fangusaro J, Rajaram V, Goldman S, Eberhart C, Gopalakrishnan V. The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 2013; 32:1691-701. [PMID: 22665064 PMCID: PMC3435483 DOI: 10.1038/onc.2012.182] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/05/2012] [Accepted: 04/06/2012] [Indexed: 12/16/2022]
Abstract
The RE1 silencing transcription factor (REST) is a repressor of neuronal differentiation and its elevated expression in neural cells blocks neuronal differentiation. In this study, we demonstrate a role for REST in the control of proliferation of medulloblastoma cells. REST expression decreased the levels of cyclin-dependent kinase (CDK)NIB/p27, a CDK inhibitor and a brake of cell proliferation in these cells. The reciprocal relationship between REST and p27 was validated in human tumor samples. REST knockdown in medulloblastoma cells derepessed a novel REST target gene encoding the deubiquitylase ubiquitin (Ub)-specific peptidase 37 (USP37). Ectopically expressed wild-type USP37 formed a complex with p27, promoted its deubiquitination and stabilization and blocked cell proliferation. Knockdown of REST and USP37 prevented p27 stabilization and blocked the diminution in proliferative potential that normally accompanied REST loss. Unexpectedly, wild-type USP37 expression also induced the expression of REST-target neuronal differentiation genes even though REST levels were unaffected. In contrast, a mutant of USP37 carrying a site-directed change in a conserved cysteine failed to rescue REST-mediated p27 destabilization, maintenance of cell proliferation and blockade to neuronal differentiation. Consistent with these findings, a significant correlation between USP37 and p27 was observed in patient tumors. Collectively, these findings provide a novel connection between REST and the proteasomal machinery in the control of p27 and cell proliferation in medulloblastoma cells.
Collapse
Affiliation(s)
- Chandra M. Das
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Pete Taylor
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Monica Gireud
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Akanksha Singh
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Dean Lee
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Greg Fuller
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Lingyun Ji
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Veena Rajaram
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Stewart Goldman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Brain Tumor Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Centers for Cancer Epigenetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Stem Cells and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
74
|
Goncharov T, Niessen K, de Almagro MC, Izrael-Tomasevic A, Fedorova AV, Varfolomeev E, Arnott D, Deshayes K, Kirkpatrick DS, Vucic D. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 2013; 32:1103-14. [PMID: 23524849 DOI: 10.1038/emboj.2013.62] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability.
Collapse
Affiliation(s)
- Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Dvořáková M, Karafiát V, Pajer P, Kluzáková E, Jarkovská K, Peková S, Krutílková L, Dvořák M. DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment. Oncogene 2012; 32:5201-9. [PMID: 23222712 DOI: 10.1038/onc.2012.553] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/22/2022]
Abstract
Reciprocal interactions between a tumor and its microenvironment control expansion of tumor cells. Here we show a specific type of interaction in which blasts of experimental leukemia destroy the bone marrow (BM) structures and kill stromal cells. The in vitro experiments showed that the cytotoxic agent released by leukemic cells is the fragmented DNA derived from their genome and occurring in nucleosome-like complexes. This DNA entered nuclei of BM or other cells and induced H2A.X phosphorylation at serine 139, similar to double-strand break-inducing agents. There was a correlation between large amounts of acquired DNA and death of recipient cells. Moreover, the DNA integrated into chromosomal DNA of recipient cells. Primary human acute myeloid leukemia cells also released fragmented DNA that penetrated the nuclei of other cells both in vitro and in vivo. We suggest that DNA fragments released from leukemic and also perhaps other types of tumor cells can activate DNA repair mechanisms or death in recipient cells of a tumor microenvironment, depending on the amount of the acquired DNA. This can impair DNA stability and viability of tumor stromal cells, undermine homeostatic capacity of tumor microenvironment and facilitate tumor progression.
Collapse
Affiliation(s)
- M Dvořáková
- Institute of Molecular Genetics, AS CR, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012; 511:1-6. [PMID: 22981713 DOI: 10.1016/j.gene.2012.08.038] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.
Collapse
|
77
|
Fulda S, Rajalingam K, Dikic I. Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications. EMBO Mol Med 2012; 4:545-56. [PMID: 22730341 PMCID: PMC3407942 DOI: 10.1002/emmm.201100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 01/01/2023] Open
Abstract
Conjugation of ubiquitin to proteins (ubiquitylation) has emerged to be one of the most crucial post-translational modifications controlling virtually all cellular processes. What was once regarded as a mere signal for protein degradation has turned out to be a major regulator of molecular signalling networks. Deregulation of ubiquitin signalling is closely associated with various human pathologies. Here, we summarize the current knowledge of ubiquitin signalling in immune deficiencies and cancer as well as the available therapeutic strategies targeting the ubiquitin system in combating these pathogenic conditions.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | | | | |
Collapse
|
78
|
Liu T, Yu X, Li G, Yuan R, Wang Q, Tang P, Wu L, Liu X, Peng X, Shao J. Rock2 regulates Cdc25A through ubiquitin proteasome system in hepatocellular carcinoma cells. Exp Cell Res 2012; 318:1994-2003. [PMID: 22705122 DOI: 10.1016/j.yexcr.2012.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/31/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
Rho-associated coiled-coil containing protein kinase 2 (Rock2) belongs to a family of serine/threonine kinases which are actived via interaction with Rho GTPases. Recently, overexpression of Rock2 has been demonstrated in human hepatocellular carcinoma (HCC), but the potential role of Rock2 in tumorigenesis remains unclear. Cdc25A acts as a key checkpoint during the G1/S phase and has also been found to be overexpressed in HCC. Here, we report that Rock2 regulates cell cycle progression via ubiquitination of Cdc25A in HCC. In HCC tissues, Rock2 and Cdc25A were aberrantly upregulated and revealed a significantly positive correlation. Knockdown of Rock2 inhibited HCC cell growth and promoted cell-cycle arrest at the G1/S phase via regulation of Cdc25A. When cells were exposed to DNA damage, Rock2 increased cell survival by regulating Cdc25A. Co-immunoprecipitation and immunofluorescence analyses indicated that Rock2 regulated Cdc25A via direct binding. Furthermore, knockdown of Rock2 activated Cdc25A ubiquitination and promoted its degradation. Our results defined a role for Rock2 in modulation of Cdc25A ubiquitination, indicating a novel mechanism of Cdc25A regulation and a potential function for Rock2 in the development of HCC.
Collapse
Affiliation(s)
- Tiande Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Shen T, Huang S. The Role of Cdc25A in the Regulation of Cell Proliferation and Apoptosis. Anticancer Agents Med Chem 2012; 12:631-9. [DOI: 10.2174/187152012800617678] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022]
|
80
|
Xu L, Qu Z. Roles of protein ubiquitination and degradation kinetics in biological oscillations. PLoS One 2012; 7:e34616. [PMID: 22506034 PMCID: PMC3323547 DOI: 10.1371/journal.pone.0034616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/02/2012] [Indexed: 12/31/2022] Open
Abstract
Protein ubiquitination and degradation play important roles in many biological functions and are associated with many human diseases. It is well known that for biochemical oscillations to occur, proper degradation rates of the participating proteins are needed. In most mathematical models of biochemical reactions, linear degradation kinetics has been used. However, the degradation kinetics in real systems may be nonlinear, and how nonlinear degradation kinetics affects biological oscillations are not well understood. In this study, we first develop a biochemical reaction model of protein ubiquitination and degradation and calculate the degradation rate against the concentration of the free substrate. We show that the protein degradation kinetics mainly follows the Michaelis-Menten formulation with a time delay caused by ubiquitination and deubiquitination. We then study analytically how the Michaelis-Menten degradation kinetics affects the instabilities that lead to oscillations using three generic oscillation models: 1) a positive feedback mediated oscillator; 2) a positive-plus-negative feedback mediated oscillator; and 3) a negative feedback mediated oscillator. In all three cases, nonlinear degradation kinetics promotes oscillations, especially for the negative feedback mediated oscillator, resulting in much larger oscillation amplitudes and slower frequencies than those observed with linear kinetics. However, the time delay due to protein ubiquitination and deubiquitination generally suppresses oscillations, reducing the amplitude and increasing the frequency of the oscillations. These theoretical analyses provide mechanistic insights into the effects of specific proteins in the ubiquitination-proteasome system on biological oscillations.
Collapse
Affiliation(s)
- Lida Xu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Systems Science, Beijing Normal University, Beijing, People's Republic of China
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
81
|
Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KGS, Konietzny R, Fischer R, Kogan E, Mackeen MM, McGouran J, Khoronenkova SV, Parsons JL, Dianov GL, Nicholson B, Kessler BM. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. ACTA ACUST UNITED AC 2012; 18:1401-12. [PMID: 22118674 DOI: 10.1016/j.chembiol.2011.08.018] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022]
Abstract
Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair.
Collapse
Affiliation(s)
- Mikael Altun
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7DQ
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, Palmieri C, Cleator S, Walker RA, Coombes RC. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 2012; 22:220-31. [PMID: 21990379 PMCID: PMC3266030 DOI: 10.1101/gr.123497.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
Abstract
Biomarkers in breast cancer to monitor minimal residual disease have remained elusive. We hypothesized that genomic analysis of circulating free DNA (cfDNA) isolated from plasma may form the basis for a means of detecting and monitoring breast cancer. We profiled 251 genomes using Affymetrix SNP 6.0 arrays to determine copy number variations (CNVs) and loss of heterozygosity (LOH), comparing 138 cfDNA samples with matched primary tumor and normal leukocyte DNA in 65 breast cancer patients and eight healthy female controls. Concordance of SNP genotype calls in paired cfDNA and leukocyte DNA samples distinguished between breast cancer patients and healthy female controls (P < 0.0001) and between preoperative patients and patients on follow-up who had surgery and treatment (P = 0.0016). Principal component analyses of cfDNA SNP/copy number results also separated presurgical breast cancer patients from the healthy controls, suggesting specific CNVs in cfDNA have clinical significance. We identified focal high-level DNA amplification in paired tumor and cfDNA clustered in a number of chromosome arms, some of which harbor genes with oncogenic potential, including USP17L2 (DUB3), BRF1, MTA1, and JAG2. Remarkably, in 50 patients on follow-up, specific CNVs were detected in cfDNA, mirroring the primary tumor, up to 12 yr after diagnosis despite no other evidence of disease. These data demonstrate the potential of SNP/CNV analysis of cfDNA to distinguish between patients with breast cancer and healthy controls during routine follow-up. The genomic profiles of cfDNA infer dormancy/minimal residual disease in the majority of patients on follow-up.
Collapse
Affiliation(s)
- Jacqueline A Shaw
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Wang G, Gao Y, Li L, Jin G, Cai Z, Chao JI, Lin HK. K63-linked ubiquitination in kinase activation and cancer. Front Oncol 2012; 2:5. [PMID: 22649774 PMCID: PMC3355940 DOI: 10.3389/fonc.2012.00005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and well-characterized, the critical non-proteolytic functions of ubiquitination, such as protein trafficking and kinase activation, involved in cell survival and cancer development, just start to emerge, In this review, we will summarize recent progresses in elucidating the non-proteolytic function of ubiquitination signaling in protein kinase activation and its implications in human cancers. The advancement in the understanding of the novel functions of ubiquitination in signal transduction pathways downstream of growth factor receptors may provide novel paradigms for the treatment of human cancers.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Younis RH, Cao W, Lin R, Xia R, Liu Z, Edelman MJ, Mei Y, Mao L, Ren H. CDC25A(Q110del): a novel cell division cycle 25A isoform aberrantly expressed in non-small cell lung cancer. PLoS One 2012; 7:e46464. [PMID: 23071577 PMCID: PMC3465328 DOI: 10.1371/journal.pone.0046464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/30/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Lung cancer remains number one cause of cancer related deaths worldwide. Cell cycle deregulation plays a major role in the pathogenesis of Non-Small Cell Lung Cancer (NSCLC). CDC25A represents a critical cell cycle regulator that enhances cell cycle progression. In this study we aimed to investigate the role of a novel CDC25A transcriptional variant, CDC25A(Q110del), on the regulation of the CDC25A protein, and its impact on prognosis of NSCLC patients. METHODOLOGY/PRINCIPAL FINDINGS Here we report a novel CDC25A transcript variant with codon 110 (Glutamine) deletion, that we termed CDC25A(Q110del) in NSCLC cells. In 9 (75%) of the 12 NSCLC cell lines, CDC25A(Q110del) expression accounted for more than 20% of the CDC25A transcripts. Biological effects of CDC25A(Q110del) were investigated in H1299 and HEK-293F cells using UV radiation, flowcytometry, cyclohexamide treatment, and confocal microscopy. Compared to CDC25A(wt), CDC25A(Q110del) protein had longer half-life; cells expressing CDC25A(Q110del) were more resistant to UV irradiation and showed more mitotic activity. Taqman-PCR was used to quantify CDC25A(Q110del) expression levels in 88 primary NSCLC tumor/normal tissue pairs. In patients with NSCLC, Kaplan Meier curves showed tumors expressing higher levels of CDC25A(Q110del) relative to the adjacent lung tissues to have significantly inferior overall survival (P = .0018). SIGNIFICANCE Here we identified CDC25A(Q110del) as a novel transcriptional variant of CDC25A in NSCLC. The sequence-specific nature of the abnormality could be a prognostic indicator in NSCLC patients as well as a candidate target for future therapeutic strategies.
Collapse
Affiliation(s)
- Rania H. Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Jiao Tong University School of Stomatology, Shanghai, China
| | - Ruxian Lin
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Ronghui Xia
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- Department of Oral Pathology, 9th People Hospital, Shanghai Jiao Tong University, School of Medicine, Key Laboratory of Stomatology, Shanghai, China
| | - Zhenqiu Liu
- Department of Epidemiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Martin J. Edelman
- University of Maryland Greenebaum Cancer Center, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Yuping Mei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
85
|
Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, Levine DA, Dimitrova N, Zhang MQ, Lucito R. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One 2011; 6:e28503. [PMID: 22174824 PMCID: PMC3234280 DOI: 10.1371/journal.pone.0028503] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022] Open
Abstract
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.
Collapse
Affiliation(s)
- Kazimierz O Wrzeszczynski
- Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zeestraten ECM, Maak M, Shibayama M, Schuster T, Nitsche U, Matsushima T, Nakayama S, Gohda K, Friess H, van de Velde CJH, Ishihara H, Rosenberg R, Kuppen PJK, Janssen KP. Specific activity of cyclin-dependent kinase I is a new potential predictor of tumour recurrence in stage II colon cancer. Br J Cancer 2011; 106:133-40. [PMID: 22108518 PMCID: PMC3251853 DOI: 10.1038/bjc.2011.504] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: There are no established biomarkers to identify tumour recurrence in stage II colon cancer. As shown previously, the enzymatic activity of the cyclin-dependent kinases 1 and 2 (CDK1 and CDK2) predicts outcome in breast cancer. Therefore, we investigated whether CDK activity identifies tumour recurrence in colon cancer. Methods: In all, 254 patients with completely resected (R0) UICC stage II colon cancer were analysed retrospectively from two independent cohorts from Munich (Germany) and Leiden (Netherlands). None of the patients received adjuvant treatment. Development of distant metastasis was observed in 27 patients (median follow-up: 86 months). Protein expression and activity of CDKs were measured on fresh-frozen tumour samples. Results: Specific activity (SA) of CDK1 (CDK1SA), but not CDK2, significantly predicted distant metastasis (concordance index=0.69, 95% confidence interval (CI): 0.55–0.79, P=0.036). Cutoff derivation by maximum log-rank statistics yielded a threshold of CDK1SA at 11 (SA units, P=0.029). Accordingly, 59% of patients were classified as high-risk (CDK1SA ⩾11). Cox proportional hazard analysis revealed CDK1SA as independent prognostic variable (hazard ratio=6.2, 95% CI: 1.44–26.9, P=0.012). Moreover, CKD1SA was significantly elevated in microsatellite-stable tumours. Conclusion: Specific activity of CDK1 is a promising biomarker for metastasis risk in stage II colon cancer.
Collapse
Affiliation(s)
- E C M Zeestraten
- Department of Surgery, Leiden University Medical Center, 2300 Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Edelmann MJ, Nicholson B, Kessler BM. Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Expert Rev Mol Med 2011; 13:e35. [PMID: 22088887 PMCID: PMC3219211 DOI: 10.1017/s1462399411002031] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the development and discovery of pharmacological interventions within the ubiquitin-proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection.
Collapse
Affiliation(s)
- Mariola J. Edelmann
- Institute of Genomics, Biocomputing and Biotechnology,
Mississippi Agricultural and Forestry Experimental Station, Mississippi State University,
Mississippi State, MS 39762, USA
| | | | - Benedikt M. Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield
Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
88
|
Abstract
The JAK2(V617F) mutation is present in the majority of patients with polycythemia vera and one-half of those with essential thrombocythemia and primary myelofibrosis. JAK2(V617F) is a gain-of-function mutation resulting in constitutive JAK2 signaling involved in the pathogenesis of these diseases. JAK2(V617F) has been shown to promote S-phase entry. Here, we demonstrate that the CDC25A phosphatase, a key regulator of the G1/S cell-cycle transition, is constitutively overexpressed in JAK2(V617F)-positive cell lines, JAK2-mutated patient CD36(+) progenitors, and in vitro-differentiated proerythroblasts. Accordingly, CDC25A is overexpressed in BM and spleen of Jak2(V617F) knock-in mice compared with wild-type littermates. By using murine FDC-P1-EPOR and human HEL and SET-2 cell lines, we found that JAK2(V617F)-induced CDC25A up-regulation was caused neither by increased CDC25A transcription or stability nor by the involvement of its upstream regulators Akt and MAPK. Instead, our results suggest that CDC25A is regulated at the translational level through STAT5 and the translational initiation factor eIF2α. CDC25A inhibition reduces the clonogenic and proliferative potential of JAK2(V617F)-expressing cell lines and erythroid progenitors while moderately affecting normal erythroid differentiation. These results suggest that CDC25A deregulation may be involved in hematopoietic cells expansion in JAK2(V617F) patients, making this protein an attracting potential therapeutic target.
Collapse
|
89
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
90
|
Zhang C, Elkahloun AG, Robertson M, Gills JJ, Tsurutani J, Shih JH, Fukuoka J, Hollander MC, Harris CC, Travis WD, Jen J, Dennis PA. Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One 2011; 6:e23849. [PMID: 21887332 PMCID: PMC3161069 DOI: 10.1371/journal.pone.0023849] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/26/2011] [Indexed: 01/15/2023] Open
Abstract
The dismal lethality of lung cancer is due to late stage at diagnosis and inherent therapeutic resistance. The incorporation of targeted therapies has modestly improved clinical outcomes, but the identification of new targets could further improve clinical outcomes by guiding stratification of poor-risk early stage patients and individualizing therapeutic choices. We hypothesized that a sequential, combined microarray approach would be valuable to identify and validate new targets in lung cancer. We profiled gene expression signatures during lung epithelial cell immortalization and transformation, and showed that genes involved in mitosis were progressively enhanced in carcinogenesis. 28 genes were validated by immunoblotting and 4 genes were further evaluated in non-small cell lung cancer tissue microarrays. Although CDK1 was highly expressed in tumor tissues, its loss from the cytoplasm unexpectedly predicted poor survival and conferred resistance to chemotherapy in multiple cell lines, especially microtubule-directed agents. An analysis of expression of CDK1 and CDK1-associated genes in the NCI60 cell line database confirmed the broad association of these genes with chemotherapeutic responsiveness. These results have implications for personalizing lung cancer therapy and highlight the potential of combined approaches for biomarker discovery.
Collapse
Affiliation(s)
- Chunyu Zhang
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew Robertson
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joell J. Gills
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junji Tsurutani
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Oncology Department, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Joanna H. Shih
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junya Fukuoka
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Surgical Pathology, Toyama University Hospital, Toyama, Japan
| | - M. Christine Hollander
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William D. Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jin Jen
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
91
|
Pervin S, Tran A, Tran L, Urman R, Braga M, Chaudhuri G, Singh R. Reduced association of anti-apoptotic protein Mcl-1 with E3 ligase Mule increases the stability of Mcl-1 in breast cancer cells. Br J Cancer 2011; 105:428-37. [PMID: 21730980 PMCID: PMC3172901 DOI: 10.1038/bjc.2011.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Mechanisms that increase resistance to apoptosis help promote cellular transformation. Cancer cells have deregulated apoptotic pathways, where increased expression and stability of anti-apoptotic proteins Mcl-1 and Bcl-2 increases resistance to apoptosis. Pathways that increase the stability of proteins in cancer cells remain poorly understood. Methods: Using human mammary epithelial and established breast cancer cell lines, we assessed the mechanisms that increase the stability of anti-apoptotic proteins in breast cancer cells by caspase assay, western blot, small-inhibitory RNA treatment and immunoprecipitation. Results: While breast cancer cells were resistant to de novo inhibition of protein synthesis, a rapid proteosome-mediated degradation of Mcl-1 and Bcl-2 induced apoptosis in mammary epithelial cells. Although Mule, an E3 ligase that targets Mcl-1 for degradation was expressed in mammary epithelial and breast cancer cell lines, rapid increase of polyubiquitinated Mcl-1 and Bcl-2 was detected only in mammary epithelial cells. Only transient formation of the Mule–Mcl-1 complex was detected in breast cancer cells. Downregulation of pERK1/2 in breast cancer cells reduced Mcl-1 levels and increased Mcl-1/Mule complex. Conclusion: Our findings suggest that reduced Mule/Mcl-1 complex has a significant role in increasing the stability of Mcl-1 in breast cancer cells and increased resistance to apoptosis.
Collapse
Affiliation(s)
- S Pervin
- Department of Internal Medicine, Charles Drew University of Medicine and Science, 3084 Hawkins Building, 1731 East 120th Street, Los Angeles, CA 90059, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Posttranslational modifications of histone proteins play important roles in the modulation of gene expression. The Saccharomyces cerevisiae (yeast) 2-MDa SAGA (Spt-Ada-Gcn5) complex, a well-studied multisubunit histone modifier, regulates gene expression through Gcn5-mediated histone acetylation and Ubp8-mediated histone deubiquitination. Using a proteomics approach, we determined that the SAGA complex also deubiquitinates nonhistone proteins, including Snf1, an AMP-activated kinase. Ubp8-mediated deubiquitination of Snf1 affects the stability and phosphorylation state of Snf1, thereby affecting Snf1 kinase activity. Others have reported that Gal83 is phosphorylated by Snf1, and we found that deletion of UBP8 causes decreased phosphorylation of Gal83, which is consistent with the effects of Ubp8 loss on Snf1 kinase functions. Overall, our data indicate that SAGA modulates the posttranslational modifications of Snf1 in order to fine-tune gene expression levels.
Collapse
|
93
|
Sippl W, Collura V, Colland F. Ubiquitin-specific proteases as cancer drug targets. Future Oncol 2011; 7:619-32. [DOI: 10.2217/fon.11.39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin-specific proteases are deubiquitinating enzymes involved in the removal of ubiquitin from specific protein substrates resulting in protein salvage from proteasome degradation, regulation of protein localization or activation. DNA alteration and overexpression in different cancer types, as well as involvement in many cancer-associated pathways, make ubiquitin-specific proteases attractive for the cancer drug discovery purposes. Their proteolytic function associated to available structural biology data reinforce their potential for pharmacological interference. Here, we review this class of enzymes as cancer drug targets in terms of validation and druggability.
Collapse
Affiliation(s)
- Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
94
|
Young LM, Pagano M. Cdc25 phosphatases: differential regulation by ubiquitin-mediated proteolysis. Cell Cycle 2011; 9:4613-4. [PMID: 21260951 DOI: 10.4161/cc.9.23.13934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
95
|
Musgrove EA, Sutherland RL. RB in breast cancer: differential effects in estrogen receptor-positive and estrogen receptor-negative disease. Cell Cycle 2011; 9:4607. [PMID: 21260944 DOI: 10.4161/cc.9.23.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
96
|
The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat Commun 2011; 2:259. [PMID: 21448158 PMCID: PMC3072070 DOI: 10.1038/ncomms1243] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/16/2011] [Indexed: 12/21/2022] Open
Abstract
Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease. Deubiquitinating enzymes are involved in multiple cellular processes, including cell viability. The authors reveal a role for the deubiquitinating enzyme, USP17, in the migration of cells in response to chemokines and show that USP17 is required for the relocalization of GTPases involved in cell motility.
Collapse
|
97
|
Ramakrishna S, Suresh B, Baek KH. The role of deubiquitinating enzymes in apoptosis. Cell Mol Life Sci 2011; 68:15-26. [PMID: 20730552 PMCID: PMC11115095 DOI: 10.1007/s00018-010-0504-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/13/2010] [Accepted: 08/09/2010] [Indexed: 01/09/2023]
Abstract
It has become apparent that ubiquitination plays a critical role in cell survival and cell death. In addition, deubiquitinating enzymes (DUBs) have been determined to be highly important regulators of these processes. Cells can be subjected to various stresses and respond in a variety of different ways ranging from activation of survival pathways to the promotion of cell death, which eventually eliminates damaged cells. The regulatory mechanisms of apoptosis depend on the balanced action between ubiquitination and deubiquitination systems. There is a growing recognition that DUBs play essential roles in regulating several binding partners to modulate the process of apoptosis. Thus, the interplay between the timing of DUB activity and the specificity of ubiquitin attachment and removal from its substrates during apoptosis is important to ensure cellular homeostasis. This review discusses the role of a few ubiquitin-specific DUBs that are involved in either promoting or suppressing the process of apoptosis.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA General Hospital, CHA University, 606-16 Yeoksam 1-Dong, Gangnam-Gu, Seoul, 135-081 Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA General Hospital, CHA University, 606-16 Yeoksam 1-Dong, Gangnam-Gu, Seoul, 135-081 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA General Hospital, CHA University, 606-16 Yeoksam 1-Dong, Gangnam-Gu, Seoul, 135-081 Republic of Korea
| |
Collapse
|
98
|
Abstract
The crucial role of ubiquitin signalling in genome-integrity maintenance was first recognized in 1987 by Stefan Jentsch and Alex Varshavsky, who showed that Rad6-the repair protein involved in DNA damage tolerance-is a ubiquitin-conjugating enzyme. Although this discovery inspired extensive research and led to the discovery of genome surveillance pathways that are fuelled by proteolytic and regulatory ubiquitylation and SUMOylation, it took more than two decades for these fields to meet at a dedicated interdisciplinary conference. This was rectified at an EMBO workshop held between 1 and 5 September on Red Island, Rovinj, Croatia.
Collapse
Affiliation(s)
- Jiri Lukas
- Centre for Genotoxic Stress Research at the Institute of Cancer Biology, Copenhagen, Denmark.
| |
Collapse
|
99
|
Abstract
The deubiquitylating enzyme Dub3 is found to have oncogenic potential by stabilizing the Cdc25A protein phosphatase, a crucial regulator of cell-cycle progression.
Collapse
|
100
|
The DUB/USP17 deubiquitinating enzymes: a gene family within a tandemly repeated sequence, is also embedded within the copy number variable beta-defensin cluster. BMC Genomics 2010; 11:250. [PMID: 20403174 PMCID: PMC2874809 DOI: 10.1186/1471-2164-11-250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/19/2010] [Indexed: 11/21/2022] Open
Abstract
Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Collapse
|