51
|
Chen P, Li Y, Liu R, Xie Y, Jin Y, Wang M, Yu Z, Wang W, Luo X. Non-small cell lung cancer-derived exosomes promote proliferation, phagocytosis, and secretion of microglia via exosomal microRNA in the metastatic microenvironment. Transl Oncol 2022; 27:101594. [PMID: 36463825 PMCID: PMC9719005 DOI: 10.1016/j.tranon.2022.101594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common tumor that metastasizes to the brain. It is now accepted that the successful colonization and growth of tumor cells are determined by the interaction between tumor cells and the tumor microenvironment (TME). Microglia, brain innate immune cells, have been reported to play a vital role in the establishment of brain metastases. As essential mediators of intercellular communications, tumor-derived exosomes have an important role in the pathogenesis and progression of cancer by transferring their cargos to specific recipient cells. The crosstalk between microglia and tumor-derived exosomes has been extensively described. However, it is still unclear whether metastatic NSCLC cells secret exosomes to microglia and regulate the microglial functions. Here, our results showed that microglia aggregated in the brain metastatic sites. Meanwhile, microglia could take up the exosomes derived from NSCLC cells, leading to alterations of microglial morphology and increased proliferation, phagocytosis, and release of inflammatory cytokines including interleukin-6, interleukin-8, and CXCL1. Further investigation indicated that miR1246 was the most enriched microRNA in NSCLC-derived exosomes and mediated the partial effects of exosomes on microglia. Notably, miR1246 was also upregulated in the plasmatic exosomes of NSCLC patients. These results offer a new insight into the impact of NSCLC-derived exosomes on microglia and provide a new potential biomarker for diagnosing NSCLC.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Correspondence author.
| |
Collapse
|
52
|
van Dalen FJ, Verdoes M. Inhibitory prodrug mechanism for cysteine cathepsin-targeted self-controlled drug release. J Enzyme Inhib Med Chem 2022; 37:2566-2573. [PMID: 36120947 PMCID: PMC9487864 DOI: 10.1080/14756366.2022.2122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tumour-associated macrophages (TAMs) support tumour development and have emerged as important regulators of therapeutic response to cytostatic agents. To target TAMs, we have developed a novel drug delivery approach which induces drug release as it inhibits cysteine cathepsin activity. This inhibitory prodrug (IPD) approach establishes a self-regulated system where drug release stops after all cysteine cathepsins are inhibited. This could improve the therapeutic window for drugs with severe side effects. We demonstrate and characterise this self-regulation concept with a fluorogenic IPD model. Next, we applied this IPD strategy to deliver cytotoxic drugs, as doxorubicin and monomethyl auristatin E, which are efficiently released and dose-dependently eliminate RAW264.7 macrophages. Lastly, by exploiting the increased cathepsin activity in TAM-like M2-polarised primary macrophages, we show that IPD-Dox selectively eliminates M2 over M1 macrophages. This demonstrates the potential of our IPD strategy for selective drug delivery and modulation of the tumour microenvironment.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumour Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumour Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
53
|
Duchnowska R, Supernat AM, Pęksa R, Łukasiewicz M, Stokowy T, Ronen R, Dutkowski J, Umińska M, Iżycka-Świeszewska E, Kowalczyk A, Och W, Rucińska M, Olszewski WP, Mandat T, Jarosz B, Bieńkowski M, Biernat W, Jassem J. Pathway-level mutation analysis in primary high-grade serous ovarian cancer and matched brain metastases. Sci Rep 2022; 12:20537. [PMID: 36446793 PMCID: PMC9708673 DOI: 10.1038/s41598-022-23788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022] Open
Abstract
Brain metastases (BMs) in ovarian cancer (OC) are a rare event. BMs occur most frequently in high-grade serous (HGS) OC. The molecular features of BMs in HGSOC are poorly understood. We performed a whole-exome sequencing analysis of ten matched pairs of formalin-fixed paraffin-embedded samples from primary HGSOC and corresponding BMs. Enrichment significance (p value; false discovery rate) was computed using the Reactome, the Kyoto Encyclopedia of Genes and Genomes pathway collections, and the Gene Ontology Biological Processes. Germline DNA damage repair variants were found in seven cases (70%) and involved the BRCA1, BRCA2, ATM, RAD50, ERCC4, RPA1, MLHI, and ATR genes. Somatic mutations of TP53 were found in nine cases (90%) and were the only stable mutations between the primary tumor and BMs. Disturbed pathways in BMs versus primary HGSOC constituted a complex network and included the cell cycle, the degradation of the extracellular matrix, cell junction organization, nucleotide metabolism, lipid metabolism, the immune system, G-protein-coupled receptors, intracellular vesicular transport, and reaction to chemical stimuli (Golgi vesicle transport and olfactory signaling). Pathway analysis approaches allow for a more intuitive interpretation of the data as compared to considering single-gene aberrations and provide an opportunity to identify clinically informative alterations in HGSOC BM.
Collapse
Affiliation(s)
- Renata Duchnowska
- grid.415641.30000 0004 0620 0839Oncology Department, Military Institute of Medicine - National Research Institute, Szaserów St. 128, 04-141 Warsaw, Poland
| | - Anna Maria Supernat
- grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Pęksa
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Łukasiewicz
- grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Stokowy
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | - Ewa Iżycka-Świeszewska
- grid.11451.300000 0001 0531 3426Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kowalczyk
- grid.11451.300000 0001 0531 3426Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Waldemar Och
- Neurosurgery Department, Regional Specialist Hospital, Olsztyn, Poland
| | - Monika Rucińska
- grid.412607.60000 0001 2149 6795Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech P. Olszewski
- grid.418165.f0000 0004 0540 2543Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Mandat
- grid.418165.f0000 0004 0540 2543Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Bożena Jarosz
- grid.411484.c0000 0001 1033 7158Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Michał Bieńkowski
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Biernat
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- grid.11451.300000 0001 0531 3426Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
54
|
Marx S, Wilken F, Miebach L, Ispirjan M, Kinnen F, Paul S, Bien-Möller S, Freund E, Baldauf J, Fleck S, Siebert N, Lode H, Stahl A, Rauch BH, Singer S, Ritter C, Schroeder HWS, Bekeschus S. Immunophenotyping of Circulating and Intratumoral Myeloid and T Cells in Glioblastoma Patients. Cancers (Basel) 2022; 14:cancers14235751. [PMID: 36497232 PMCID: PMC9739079 DOI: 10.3390/cancers14235751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy that almost inevitably recurs as therapy-refractory cancer. While the success of immune checkpoint blockade (ICB) revealed the immense potential of immune-targeted therapies in several types of cancers outside the central nervous system, it failed to show objective responses in glioblastoma patients as of now. The ability of glioblastoma cells to drive multiple modes of T cell dysfunction while exhibiting low-quality neoepitopes, low-mutational load, and poor antigen priming limits anti-tumor immunity and efficacy of antigen-unspecific immunotherapies such as ICB. An in-depth understanding of the GBM immune landscape is essential to delineate and reprogram such immunosuppressive circuits during disease progression. In this view, the present study aimed to characterize the peripheral and intratumoral immune compartments of 35 glioblastoma patients compared to age- and sex-matched healthy control probands, particularly focusing on exhaustion signatures on myeloid and T cell subsets. Compared to healthy control participants, different immune signatures were already found in the peripheral circulation, partially related to the steroid medication the patients received. Intratumoral CD4+ and CD8+ TEM cells (CD62Llow/CD45ROhigh) revealed a high expression of PD1, which was also increased on intratumoral, pro-tumorigenic macrophages/microglia. Histopathological analysis further identified high PSGL-1 expression levels of the latter, which has recently been linked to increased metastasis in melanoma and colon cancer via P-selectin-mediated platelet activation. Overall, the present study comprises immunophenotyping of a patient cohort to give implications for eligible immunotherapeutic targets in neurooncology in the future.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fabian Wilken
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department for General, Thoracic, Vascular, and Thorax Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Mikael Ispirjan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Frederik Kinnen
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pharmacology, C_DAT, Greifswald University Medical Center, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pharmacology, C_DAT, Greifswald University Medical Center, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department for General, Thoracic, Vascular, and Thorax Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Jörg Baldauf
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Steffen Fleck
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Holger Lode
- Department of Pediatric Oncology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Andreas Stahl
- Department of Ophthalmology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Bernhard H. Rauch
- Pharmacology and Toxicology, Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Stephan Singer
- Department of Pathology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pathology and Neuropathology, Tuebingen University Medical Center, Liebermeisterstr. 8, 72076 Tuebingen, Germany
| | - Christoph Ritter
- Institute of Clinical Pharmacy, Greifswald University, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
55
|
Caffarel MM, Braza MS. Microglia and metastases to the central nervous system: victim, ravager, or something else? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:327. [PMID: 36411434 PMCID: PMC9677912 DOI: 10.1186/s13046-022-02535-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) metastases are a major cause of death in patients with cancer. Tumor cells must survive during their migration and dissemination in various sites and niches. The brain is considered an immunological sanctuary site, and thus the safest place for metastasis establishment. The risk of brain metastases is highest in patients with melanoma, lung, or breast cancers. In the CNS, metastatic cancer cells exploit the activity of different non-tumoral cell types in the brain microenvironment to create a new niche and to support their proliferation and survival. Among these cells, microglia (the brain resident macrophages) display an exceptional role in immune surveillance and tumor clearance. However, upon recruitment to the metastatic site, depending on the microenvironment context and disease conditions, microglia might be turned into tumor-supportive or -unsupportive cells. Recent single-cell 'omic' analyses have contributed to clarify microglia functional and spatial heterogeneity during tumor development and metastasis formation in the CNS. This review summarizes findings on microglia heterogeneity from classical studies to the new single-cell omics. We discuss i) how microglia interact with metastatic cancer cells in the unique brain tumor microenvironment; ii) the microglia classical M1-M2 binary concept and its limitations; and iii) single-cell omic findings that help to understand human and mouse microglia heterogeneity (core sensomes) and to describe the multi-context-dependent microglia functions in metastases to the CNS. We then propose ways to exploit microglia plasticity for brain metastasis treatment depending on the microenvironment profile.
Collapse
Affiliation(s)
- Maria M. Caffarel
- grid.432380.eBiodonostia Health Research Institute, Basque Country, Spain ,grid.424810.b0000 0004 0467 2314Ikarbasque, Basque Foundation for Science, Basque Country, Spain
| | - Mounia S. Braza
- grid.432380.eBiodonostia Health Research Institute, Basque Country, Spain ,grid.424810.b0000 0004 0467 2314Ikarbasque, Basque Foundation for Science, Basque Country, Spain ,grid.59734.3c0000 0001 0670 2351Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
56
|
Croci D, Santalla Méndez R, Temme S, Soukup K, Fournier N, Zomer A, Colotti R, Wischnewski V, Flögel U, van Heeswijk RB, Joyce JA. Multispectral fluorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages. Sci Transl Med 2022; 14:eabo2952. [PMID: 36260692 DOI: 10.1126/scitranslmed.abo2952] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-grade gliomas, the most common and aggressive primary brain tumors, are characterized by a complex tumor microenvironment (TME). Among the immune cells infiltrating the glioma TME, tumor-associated microglia and macrophages (TAMs) constitute the major compartment. In patients with gliomas, increased TAM abundance is associated with more aggressive disease. Alterations in TAM phenotypes and functions have been reported in preclinical models of multiple cancers during tumor development and after therapeutic interventions, including radiotherapy and molecular targeted therapies. These findings indicate that it is crucial to evaluate TAM abundance and dynamics over time. Current techniques to quantify TAMs in patients rely mainly on histological staining of tumor biopsies. Although informative, these techniques require an invasive procedure to harvest the tissue sample and typically only result in a snapshot of a small region at a single point in time. Fluorine isotope 19 MRI (19F MRI) represents a powerful means to noninvasively and longitudinally monitor myeloid cells in pathological conditions by intravenously injecting perfluorocarbon-containing nanoparticles (PFC-NP). In this study, we demonstrated the feasibility and power of 19F MRI in preclinical models of gliomagenesis, breast-to-brain metastasis, and breast cancer and showed that the major cellular source of 19F signal consists of TAMs. Moreover, multispectral 19F MRI with two different PFC-NP allowed us to identify spatially and temporally distinct TAM niches in radiotherapy-recurrent murine gliomas. Together, we have imaged TAMs noninvasively and longitudinally with integrated cellular, spatial, and temporal resolution, thus revealing important biological insights into the critical functions of TAMs, including in disease recurrence.
Collapse
Affiliation(s)
- Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Sebastian Temme
- Department of Anesthesiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne 1011, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Institute for Molecular Cardiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| |
Collapse
|
57
|
Zhang DF, Ma H, Yang GJ, Zhang ZP, He YF, Feng MY, Shan BC, Xu XF, Ding YY, Cheng YQ. Blood–brain barrier and brain structural changes in lung cancer patients with non-brain metastases. Front Oncol 2022; 12:1015011. [PMID: 36330467 PMCID: PMC9623018 DOI: 10.3389/fonc.2022.1015011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To explore the relationship between blood-brain barrier (BBB) leakage and brain structure in non-brain metastasis lung cancer (LC) by magnetic resonance imaging (MRI) as well as to indicate the possibility of brain metastasis (BM) occurrence. Patients and methods MRI were performed in 75 LC patients and 29 counterpart healthy peoples (HCs). We used the Patlak pharmacokinetic model to calculate the average leakage in each brain region according to the automated anatomical labeling (AAL) atlas. The thickness of the cortex and the volumes of subcortical structures were calculated using the FreeSurfer base on Destrieux atlas. We compared the thickness of the cerebral cortex, the volumes of subcortical structures, and the leakage rates of BBB, and evaluated the relationships between these parameters. Results Compared with HCs, the leakage rates of seven brain regions were higher in patients with advanced LC (aLC). In contrast to patients with early LC (eLC), the cortical thickness of two regions was decreased in aLCs. The volumes of twelve regions were also reduced in aLCs. Brain regions with increased BBB penetration showed negative correlations with thinner cortices and reduced subcortical structure volumes (P<0.05, R=-0.2 to -0.50). BBB penetration was positively correlated with tumor size and with levels of the tumor marker CYFRA21-1 (P<0.05, R=0.2–0.70). Conclusion We found an increase in BBB permeability in non-BM aLCs that corresponded to a thinner cortical thickness and smaller subcortical structure volumes. With progression in LC staging, BBB shows higher permeability and may be more likely to develop into BM.
Collapse
Affiliation(s)
- Da-Fu Zhang
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Huan Ma
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang-Jun Yang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhi-Ping Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yin-Fu He
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Mao-Yang Feng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bao-Ci Shan
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Feng Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Research Center for Mental Disorders, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Xiu-Feng Xu, ; Ying-Ying Ding, ; Yu-Qi Cheng,
| | - Ying-Ying Ding
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- *Correspondence: Xiu-Feng Xu, ; Ying-Ying Ding, ; Yu-Qi Cheng,
| | - Yu-Qi Cheng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Research Center for Mental Disorders, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Xiu-Feng Xu, ; Ying-Ying Ding, ; Yu-Qi Cheng,
| |
Collapse
|
58
|
Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers (Basel) 2022; 14:cancers14194963. [PMID: 36230886 PMCID: PMC9563727 DOI: 10.3390/cancers14194963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Brain metastases are the most common brain tumor in adults and are associated with poor prognosis. The propensity of different solid tumors to metastasize varies greatly, with lung, breast, and melanoma primary tumors commonly leading to brain metastases, while other primaries such as prostate rarely metastasize to the brain. The molecular mechanisms that predispose and facilitate brain metastasis development are poorly understood. In this review, we present the current data on the genomic landscape of brain metastases that arise from various primary cancers and also outline potential molecular mechanisms that drive the formation of distant metastases in the brain. Abstract Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
Collapse
|
59
|
Li X, Li L, Zhou K, Zhang H, Maalim AA, Chen X, He X, Ding X, Xu C, Wang Y. Glioma Shapes Blood–Brain Barrier Integrity and Remodels the Tumor Microenvironment: Links with Clinical Features and Prognosis. J Clin Med 2022; 11:jcm11195863. [PMID: 36233730 PMCID: PMC9570525 DOI: 10.3390/jcm11195863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of the blood–brain barrier (BBB) uniquely distinguishes the brain from other organs, and various brain pathologies, including cancer, can disrupt or breach the BBB. The specific implications of BBB alterations in glioma have not been sufficiently clarified. Methods: In this study, statistical analysis of the TCGA pan-glioma dataset and four other validation cohorts was used to investigate the infiltration of BBB constituent cells (endothelial cells, pericytes and astrocytes) in the glioma tumor microenvironment (TME). Results: We found that the infiltration proportions of the three BBB constituent cell types were highly collinear, which implied alteration of the BBB. Hence, we developed an index, the BBB score, which is calculated based on the infiltration proportion of BBB constituent cells. Furthermore, we observed that patients with higher BBB scores were more likely to be diagnosed with more malignant entities in the TCGA database according to significant molecular features, such as IDH mutation status and 1p/19q deletion. The BBB score was also strikingly positively correlated with WHO grade in other cohorts. More importantly, a higher BBB score correlated with shorter survival time and unfavorable prognosis in glioma patients. Finally, we showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Conclusions: We showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Assessing BBB alterations may help elucidate the complex role of the glioma TME and suggest new combination treatment strategies.
Collapse
Affiliation(s)
- Xiaokai Li
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang 550008, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hanyang 3rd School, Wuhan Economic & Technological Development Zone, Wuhan 430030, China
| | - Huixiang Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ali Abdi Maalim
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Chen
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinmin Ding
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Yonghong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| |
Collapse
|
60
|
Mitochondrial Protein Cox7b Is a Metabolic Sensor Driving Brain-Specific Metastasis of Human Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14184371. [PMID: 36139533 PMCID: PMC9497206 DOI: 10.3390/cancers14184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Distant metastases are detrimental for cancer patients, but the increasingly early detection of tumors offers a chance for metastasis prevention. Importantly, cancers do not metastasize randomly: depending on the type of cancer, metastatic progenitor cells have a predilection for well-defined organs. This has been theorized by Stephen Paget, who proposed the “seed-and-soil hypothesis”, according to which metastatic colonization occurs only when the needs of a given metastatic progenitor cell (the seed) match with the resources provided by a given organ (the soil). Here, we propose to explore the seed-and-soil hypothesis in the context of cancer metabolism, thus hypothesizing that metastatic progenitor cells must be capable of detecting the availability of metabolic resources in order to home in a secondary organ. If true, it would imply the existence of metabolic sensors. Using human triple-negative MDA-MB-231 breast cancer cells and two independent brain-seeking variants as models, we report that cyclooxygenase 7b (Cox7b), a structural component of Complex IV of the mitochondrial electron transport chain, belongs to a probably larger family of proteins responsible for breast cancer brain tropism in mice. For metastasis prevention therapy, this proof-of-principle study opens a quest for the identification of therapeutically targetable metabolic sensors that drive cancer organotropism.
Collapse
|
61
|
Lorusso G, Wyss CB, Kuonen F, Vannini N, Billottet C, Duffey N, Pineau R, Lan Q, Wirapati P, Barras D, Tancredi A, Lyck R, Lehr HA, Engelhardt B, Delorenzi M, Bikfalvi A, Rüegg C. Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation. Sci Transl Med 2022; 14:eaax8933. [PMID: 36070364 DOI: 10.1126/scitranslmed.aax8933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Christof B Wyss
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - François Kuonen
- Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research (LICR), Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Epalinges 1066, Switzerland
| | | | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Raphael Pineau
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Qiang Lan
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Alessandro Tancredi
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Hans-Anton Lehr
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Andreas Bikfalvi
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
62
|
Rehman AU, Khan P, Maurya SK, Siddiqui JA, Santamaria-Barria JA, Batra SK, Nasser MW. Liquid biopsies to occult brain metastasis. Mol Cancer 2022; 21:113. [PMID: 35538484 PMCID: PMC9088117 DOI: 10.1186/s12943-022-01577-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Brain metastasis (BrM) is a major problem associated with cancer-related mortality, and currently, no specific biomarkers are available in clinical settings for early detection. Liquid biopsy is widely accepted as a non-invasive method for diagnosing cancer and other diseases. We have reviewed the evidence that shows how the molecular alterations are involved in BrM, majorly from breast cancer (BC), lung cancer (LC), and melanoma, with an inception in how they can be employed for biomarker development. We discussed genetic and epigenetic changes that influence cancer cells to breach the blood-brain barrier (BBB) and help to establish metastatic lesions in the uniquely distinct brain microenvironment. Keeping abreast with the recent breakthroughs in the context of various biomolecules detections and identifications, the circulating tumor cells (CTC), cell-free nucleotides, non-coding RNAs, secretory proteins, and metabolites can be pursued in human body fluids such as blood, serum, cerebrospinal fluid (CSF), and urine to obtain potential candidates for biomarker development. The liquid biopsy-based biomarkers can overlay with current imaging techniques to amplify the signal viable for improving the early detection and treatments of occult BrM.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
63
|
Yang L, Zeng Q, Deng Y, Qiu Y, Yao W, Liao Y. Glycosylated Cathepsin V Serves as a Prognostic Marker in Lung Cancer. Front Oncol 2022; 12:876245. [PMID: 35494076 PMCID: PMC9043764 DOI: 10.3389/fonc.2022.876245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Dysregulation of cysteine cathepsin protease activity is pivotal in tumorigenic transformation. However, the role of cathepsin protease in lung cancer remains unknown. Here, we analyzed GEO database and found that lung cancer presented high expression of cathepsin V (CTSV). We then performed immunohistochemistry assay in 73 paired lung cancer tissues and normal lung tissues and confirmed that CTSV is overexpressed in lung cancer and correlates with poor prognosis. The mass spectrometry experiment showed that the N-glycosylation locus of CTSV are N221 and N292, glycosylated CTSV (band 43 kDa) was particularly expressed in lung cancer samples and correlated with lymph node metastasis. Mechanistic studies showed that only glycosylated CTSV (43-kDa band) are secreted to extracellular matrix (ECM) and promoted the metastasis of lung cancer. Importantly, the Elisa detection in serum of 12 lung cancer patients and 12 healthy donors showed that the level of CTSV in serum distinguished lung cancer patients from healthy donors. Together, our findings reveal the clinical relevance of CTSV glycosylation and CTSV drives the metastasis of lung cancer, suggesting that the glycosylated CTSV in serum is a promising biomarker for lung cancer.
Collapse
Affiliation(s)
- Lewei Yang
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yun Deng
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yeqing Qiu
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Yao
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yifeng Liao
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
64
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
65
|
Casazza A, Van Helleputte L, Van Renterghem B, Pokreisz P, De Geest N, De Petrini M, Janssens T, Pellens M, Diricx M, Riera-Domingo C, Wozniak A, Mazzone M, Schöffski P, Defert O, Reyns G, Kindt N. PhAc-ALGP-Dox, a Novel Anticancer Prodrug with Targeted Activation and Improved Therapeutic Index. Mol Cancer Ther 2022; 21:568-581. [PMID: 35149549 PMCID: PMC9377749 DOI: 10.1158/1535-7163.mct-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
Abstract
Clinical use of doxorubicin (Dox) is limited by cumulative myelo- and cardiotoxicity. This research focuses on the detailed characterization of PhAc-ALGP-Dox, a targeted tetrapeptide prodrug with a unique dual-step activation mechanism, designed to circumvent Dox-related toxicities and is ready for upcoming clinical investigation. Coupling Dox to a phosphonoacetyl (PhAc)-capped tetrapeptide forms the cell-impermeable, inactive compound, PhAc-ALGP-Dox. After extracellular cleavage by tumor-enriched thimet oligopeptidase-1 (THOP1), a cell-permeable but still biologically inactive dipeptide-conjugate is formed (GP-Dox), which is further processed intracellularly to Dox by fibroblast activation protein-alpha (FAPα) and/or dipeptidyl peptidase-4 (DPP4). In vitro, PhAc-ALGP-Dox is effective in various 2D- and 3D-cancer models, while showing improved safety toward normal epithelium, hematopoietic progenitors, and cardiomyocytes. In vivo, these results translate into a 10-fold higher tolerability and 5-fold greater retention of Dox in the tumor microenvironment compared with the parental drug. PhAc-ALGP-Dox demonstrates 63% to 96% tumor growth inhibition in preclinical models, an 8-fold improvement in efficacy in patient-derived xenograft (PDX) models, and reduced metastatic burden in a murine model of experimental lung metastasis, improving survival by 30%. The current findings highlight the potential clinical benefit of PhAc-ALGP-Dox, a targeted drug-conjugate with broad applicability, favorable tissue biodistribution, significantly improved tolerability, and tumor growth inhibition at primary and metastatic sites in numerous solid tumor models.
Collapse
Affiliation(s)
- Andrea Casazza
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | | | - Britt Van Renterghem
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Natalie De Geest
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marzia De Petrini
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Tom Janssens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marijke Pellens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marjan Diricx
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Olivier Defert
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Geert Reyns
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Nele Kindt
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium.,Corresponding Author: Nele Kindt, CoBioRes NV, Campus Gasthuisberg, CDG, bus 913 Herestraat 49, Leuven, Flanders B-3000, Belgium. E-mail:
| |
Collapse
|
66
|
Zhu L, Retana D, García‐Gómez P, Álvaro‐Espinosa L, Priego N, Masmudi‐Martín M, Yebra N, Miarka L, Hernández‐Encinas E, Blanco‐Aparicio C, Martínez S, Sobrino C, Ajenjo N, Artiga M, Ortega‐Paino E, Torres‐Ruiz R, Rodríguez‐Perales S, Soffietti R, Bertero L, Cassoni P, Weiss T, Muñoz J, Sepúlveda JM, González‐León P, Jiménez‐Roldán L, Moreno LM, Esteban O, Pérez‐Núñez Á, Hernández‐Laín A, Toldos O, Ruano Y, Alcázar L, Blasco G, Fernández‐Alén J, Caleiras E, Lafarga M, Megías D, Graña‐Castro O, Nör C, Taylor MD, Young LS, Varešlija D, Cosgrove N, Couch FJ, Cussó L, Desco M, Mouron S, Quintela‐Fandino M, Weller M, Pastor J, Valiente M. A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Mol Med 2022; 14:e14552. [PMID: 35174975 PMCID: PMC8899920 DOI: 10.15252/emmm.202114552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.
Collapse
Affiliation(s)
- Lucía Zhu
- Brain Metastasis GroupCNIOMadridSpain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raúl Torres‐Ruiz
- Molecular Cytogenetics UnitCNIOMadridSpain,Division of Hematopoietic Innovative TherapiesCentro de Investigaciones EnergeticasMedioambientales y Tecnologicas (CIEMAT)MadridSpain
| | | | | | - Riccardo Soffietti
- Department of Neuro‐OncologyUniversity and City of Health and Science HospitalTurinItaly
| | - Luca Bertero
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Paola Cassoni
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Tobias Weiss
- Department of NeurologyClinical Neuroscience CenterUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | - Javier Muñoz
- Proteomics UnitProteoRedISCIIICNIOMadridSpain,Present address:
Cell Signaling and Clinical Proteomics GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain,Present address:
IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | | | | | - Luis Jiménez‐Roldán
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain,Department of SurgeryUniversidad Complutense de MadridMadridSpain,Neuropathology UnitInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain
| | | | - Olga Esteban
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain
| | - Ángel Pérez‐Núñez
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain,Department of SurgeryUniversidad Complutense de MadridMadridSpain,Neuro‐Oncology GroupResearch Institute Hospital 12 de Octubre (i+12)MadridSpain
| | | | - Oscar Toldos
- Neuropathology UnitInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain
| | - Yolanda Ruano
- Pathology DepartmentInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain,Universidad Francisco de VitoriaMadridSpain
| | - Lucía Alcázar
- Neurosurgery DepartmentHospital Universitario de La PrincesaMadridSpain
| | - Guillermo Blasco
- Neurosurgery DepartmentHospital Universitario de La PrincesaMadridSpain
| | | | | | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Cantabria‐IDIVALSantanderSpain
| | | | | | - Carolina Nör
- Developmental and Stem Cell Biology Program and The Arthur and Sonia Labatt Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoONCanada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program and The Arthur and Sonia Labatt Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoONCanada
| | - Leonie S Young
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Damir Varešlija
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Nicola Cosgrove
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Fergus J Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadridSpain,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain,Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadridSpain,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain,Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | | | | | - Michael Weller
- Department of NeurologyClinical Neuroscience CenterUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | | | | |
Collapse
|
67
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
68
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
69
|
ASPER-29 suppresses the metastasis of pancreatic cancer cells by dual inhibition of cathepsin-L and cathepsin-S. Chem Biol Interact 2022; 353:109811. [PMID: 35016848 DOI: 10.1016/j.cbi.2022.109811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer will be the second leading cause of cancer-related mortality worldwide due to its high rate of metastasis. Cathepsins (CATs) are effectors of invasive growth in various cancers. Currently, targeting CATs represents an attractive strategy for the treatment of highly metastatic cancers with high CATs activity, such as pancreatic cancer. To develop a stronger antimetastatic agent, ASPER-29, a novel inhibitor of CATs designed by using the asperphenamate derivative BBP as a lead compound, was synthesized, and its therapeutic potential in pancreatic cancer metastasis was investigated in this study. Molecular docking and enzyme inhibition assays proved that ASPER-29 can inhibit the activity of CAT-L and CAT-S by binding with these enzymes in classical action modes. Furthermore, ASPER-29 significantly inhibited the activity of CAT-L and CAT-S but had no effect on their expression in PANC-1 and BxPC-3 cells. The in vitro antimetastatic activities of ASPER-29 were examined by wound healing and Transwell chamber assays. We found that ASPER-29 inhibited the migration and invasion of PANC-1 and BxPC-3 cells in a concentration-dependent manner. Moreover, the in vivo antimetastatic effects of ASPER-29 were confirmed in a mouse xenotransplantation model. H&E staining and immunohistochemistry assays of Ki67 and CEACAM6 proved that ASPER-29 treatment significantly blocked the metastasis of pancreatic cancer cells to lung and liver tissues. Additionally, the activity of both CAT-L and CAT-S was markedly inhibited in the lung and liver tissues of ASPER-29-administered mice compared with the mice in the model group, suggesting that the metastasis-blocking effect of ASPER-29 should be mediated via inhibition of the activity of CAT-L and CAT-S in pancreatic cancer cells. Together, our results demonstrated that ASPER-29, as a novel inhibitor of CAT-L and CAT-S, possessed the evident ability to block the metastasis of pancreatic cancer cells.
Collapse
|
70
|
Guo F, Yan J, Ling G, Chen H, Huang Q, Mu J, Mo L. Screening and Identification of Key Biomarkers in Lower Grade Glioma via Bioinformatical Analysis. Appl Bionics Biomech 2022; 2022:6959237. [PMID: 35035531 PMCID: PMC8759910 DOI: 10.1155/2022/6959237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Lower-grade glioma (LGG) is a common type of central nervous system tumor. Due to its complicated pathogenesis, the choice and timing of adjuvant therapy after tumor treatment are controversial. This study explored and identified potential therapeutic targets for lower-grade. The bioinformatics method was employed to identify potential biomarkers and LGG molecular mechanisms. Firstly, we selected and downloaded GSE15824, GSE50161, and GSE86574 from the GEO database, which included 40 LGG tissue and 28 normal brain tissue samples. GEO and VENN software identified of 206 codifference expressed genes (DEGs). Secondly, we applied the DAVID online software to investigate the DEG biological function and KEGG pathway enrichment, as well as to build the protein interaction visualization network through Cytoscape and STRING website. Then, the MCODE plug is used in the analysis of 22 core genes. Thirdly, the 22 core genes were analyzed with UNCLA software, of which 18 genes were associated with a worse prognosis. Fourthly, GEPIA was used to analyze the 18 selected genes, and 14 genes were found to be a significantly different expression between LGGs and normal brain tumor samples. Fifthly, hierarchical gene clustering was used to examine the 14 important gene expression differences in different histologies, as well as analysis of the KEGG pathway. Five of these genes were shown to be abundant in the natural killer cell-mediated cytokines (NKCC) and phagosome pathways. The five key genes that may be affected by the immune microenvironment play a crucial role in LGG development.
Collapse
Affiliation(s)
- Fangzhou Guo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoyuan Ling
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hainan Chen
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qianrong Huang
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junbo Mu
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ligen Mo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
71
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
72
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
73
|
Mitchell D, Kwon HJ, Kubica PA, Huff WX, O’Regan R, Dey M. Brain metastases: An update on the multi-disciplinary approach of clinical management. Neurochirurgie 2022; 68:69-85. [PMID: 33864773 PMCID: PMC8514593 DOI: 10.1016/j.neuchi.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Brain metastasis (BM) is the most common malignant intracranial neoplasm in adults with over 100,000 new cases annually in the United States and outnumbering primary brain tumors 10:1. OBSERVATIONS The incidence of BM in adult cancer patients ranges from 10-40%, and is increasing with improved surveillance, effective systemic therapy, and an aging population. The overall prognosis of cancer patients is largely dependent on the presence or absence of brain metastasis, and therefore, a timely and accurate diagnosis is crucial for improving long-term outcomes, especially in the current era of significantly improved systemic therapy for many common cancers. BM should be suspected in any cancer patient who develops new neurological deficits or behavioral abnormalities. Gadolinium enhanced MRI is the preferred imaging technique and BM must be distinguished from other pathologies. Large, symptomatic lesion(s) in patients with good functional status are best treated with surgery and stereotactic radiosurgery (SRS). Due to neurocognitive side effects and improved overall survival of cancer patients, whole brain radiotherapy (WBRT) is reserved as salvage therapy for patients with multiple lesions or as palliation. Newer approaches including multi-lesion stereotactic surgery, targeted therapy, and immunotherapy are also being investigated to improve outcomes while preserving quality of life. CONCLUSION With the significant advancements in the systemic treatment for cancer patients, addressing BM effectively is critical for overall survival. In addition to patient's performance status, therapeutic approach should be based on the type of primary tumor and associated molecular profile as well as the size, number, and location of metastatic lesion(s).
Collapse
Affiliation(s)
- D Mitchell
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - HJ Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - PA Kubica
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - WX Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - R O’Regan
- Department of Medicine/Hematology Oncology, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - M Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA,Correspondence Should Be Addressed To: Mahua Dey, MD, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave, Madison, WI 53792; Tel: 317-274-2601;
| |
Collapse
|
74
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
75
|
Carney CP, Pandey N, Kapur A, Woodworth GF, Winkles JA, Kim AJ. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Deliv Transl Res 2021; 11:2344-2370. [PMID: 34716900 PMCID: PMC8568876 DOI: 10.1007/s13346-021-01039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Brain metastases (BMs) are the most common type of brain tumor, and the incidence among breast cancer (BC) patients has been steadily increasing over the past two decades. Indeed, ~ 30% of all patients with metastatic BC will develop BMs, and due to few effective treatments, many will succumb to the disease within a year. Historically, patients with BMs have been largely excluded from clinical trials investigating systemic therapies including immunotherapies (ITs) due to limited brain penetration of systemically administered drugs combined with previous assumptions that BMs are poorly immunogenic. It is now understood that the central nervous system (CNS) is an immunologically distinct site and there is increasing evidence that enhancing immune responses to BCBMs will improve patient outcomes and the efficacy of current treatment regimens. Progress in IT for BCBMs, however, has been slow due to several intrinsic limitations to drug delivery within the brain, substantial safety concerns, and few known targets for BCBM IT. Emerging studies demonstrate that nanomedicine may be a powerful approach to overcome such limitations, and has the potential to greatly improve IT strategies for BMs specifically. This review summarizes the evidence for IT as an effective strategy for BCBM treatment and focuses on the nanotherapeutic strategies currently being explored for BCBMs including targeting the blood-brain/tumor barrier (BBB/BTB), tumor cells, and tumor-supporting immune cells for concentrated drug release within BCBMs, as well as use of nanoparticles (NPs) for delivering immunomodulatory agents, for inducing immunogenic cell death, or for potentiating anti-tumor T cell responses.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery and Neurosurgery, University of Maryland School of Medicine, 800 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
- Departments of Neurosurgery, Pharmacology, and Pharmaceutical Sciences, University of Maryland School of Medicine, 655 W Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
76
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
77
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
78
|
Klemm F, Möckl A, Salamero-Boix A, Alekseeva T, Schäffer A, Schulz M, Niesel K, Maas RR, Groth M, Elie BT, Bowman RL, Hegi ME, Daniel RT, Zeiner PS, Zinke J, Harter PN, Plate KH, Joyce JA, Sevenich L. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. NATURE CANCER 2021; 2:1086-1101. [PMID: 35121879 DOI: 10.1038/s43018-021-00254-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.
Collapse
Affiliation(s)
- Florian Klemm
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Aylin Möckl
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anna Salamero-Boix
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Groth
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benelita T Elie
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monika E Hegi
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pia S Zeiner
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Zinke
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
79
|
Terceiro LEL, Edechi CA, Ikeogu NM, Nickel BE, Hombach-Klonisch S, Sharif T, Leygue E, Myal Y. The Breast Tumor Microenvironment: A Key Player in Metastatic Spread. Cancers (Basel) 2021; 13:4798. [PMID: 34638283 PMCID: PMC8507966 DOI: 10.3390/cancers13194798] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment plays a pivotal role in the tumorigenesis, progression, and metastatic spread of many cancers including breast. There is now increasing evidence to support the observations that a bidirectional interplay between breast cancer cells and stromal cells exists within the tumor and the tumor microenvironment both at the primary tumor site and at the metastatic site. This interaction occurs through direct cell to cell contact, or by the release of autocrine or paracrine factors which can activate pro-tumor signaling pathways and modulate tumor behavior. In this review, we will highlight recent advances in our current knowledge about the multiple interactions between breast cancer cells and neighboring cells (fibroblasts, endothelial cells, adipocytes, innate and adaptive immune cells) in the tumor microenvironment that coordinate to regulate metastasis. We also highlight the role of exosomes and circulating tumor cells in facilitating breast cancer metastasis. We discuss some key markers associated with stromal cells in the breast tumor environment and their potential to predict patient survival and guide treatment. Finally, we will provide some brief perspectives on how current technologies may lead to the development of more effective therapies for the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Barbara E. Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tanveer Sharif
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Yvonne Myal
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
- Senior Scientist, CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
80
|
Schulz M, Sevenich L. TAMs in Brain Metastasis: Molecular Signatures in Mouse and Man. Front Immunol 2021; 12:716504. [PMID: 34539650 PMCID: PMC8447936 DOI: 10.3389/fimmu.2021.716504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages not only represent an integral part of innate immunity but also critically contribute to tissue and organ homeostasis. Moreover, disease progression is accompanied by macrophage accumulation in many cancer types and is often associated with poor prognosis and therapy resistance. Given their critical role in modulating tumor immunity in primary and metastatic brain cancers, macrophages are emerging as promising therapeutic targets. Different types of macrophages infiltrate brain cancers, including (i) CNS resident macrophages that comprise microglia (TAM-MG) as well as border-associated macrophages and (ii) monocyte-derived macrophages (TAM-MDM) that are recruited from the periphery. Controversy remained about their disease-associated functions since classical approaches did not reliably distinguish between macrophage subpopulations. Recent conceptual and technological advances, such as large-scale omic approaches, provided new insight into molecular profiles of TAMs based on their cellular origin. In this review, we summarize insight from recent studies highlighting similarities and differences of TAM-MG and TAM-MDM at the molecular level. We will focus on data obtained from RNA sequencing and mass cytometry approaches. Together, this knowledge significantly contributes to our understanding of transcriptional and translational programs that define disease-associated TAM functions. Cross-species meta-analyses will further help to evaluate the translational significance of preclinical findings as part of the effort to identify candidates for macrophage-targeted therapy against brain metastasis.
Collapse
Affiliation(s)
- Michael Schulz
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
81
|
Tu NH, Inoue K, Chen E, Anderson BM, Sawicki CM, Scheff NN, Tran HD, Kim DH, Alemu RG, Yang L, Dolan JC, Liu CZ, Janal MN, Latorre R, Jensen DD, Bunnett NW, Edgington-Mitchell LE, Schmidt BL. Cathepsin S Evokes PAR 2-Dependent Pain in Oral Squamous Cell Carcinoma Patients and Preclinical Mouse Models. Cancers (Basel) 2021; 13:4697. [PMID: 34572924 PMCID: PMC8466361 DOI: 10.3390/cancers13184697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (SCC) pain is more prevalent and severe than pain generated by any other form of cancer. We previously showed that protease-activated receptor-2 (PAR2) contributes to oral SCC pain. Cathepsin S is a lysosomal cysteine protease released during injury and disease that can activate PAR2. We report here a role for cathepsin S in PAR2-dependent cancer pain. We report that cathepsin S was more active in human oral SCC than matched normal tissue, and in an orthotopic xenograft tongue cancer model than normal tongue. The multiplex immunolocalization of cathepsin S in human oral cancers suggests that carcinoma and macrophages generate cathepsin S in the oral cancer microenvironment. After cheek or paw injection, cathepsin S evoked nociception in wild-type mice but not in mice lacking PAR2 in Nav1.8-positive neurons (Par2Nav1.8), nor in mice treated with LY3000328 or an endogenous cathepsin S inhibitor (cystatin C). The human oral SCC cell line (HSC-3) with homozygous deletion of the gene for cathepsin S (CTSS) with CRISPR/Cas9 provoked significantly less mechanical allodynia and thermal hyperalgesia, as did those treated with LY3000328, compared to the control cancer mice. Our results indicate that cathepsin S is activated in oral SCC, and that cathepsin S contributes to cancer pain through PAR2 on neurons.
Collapse
Affiliation(s)
- Nguyen Huu Tu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Kenji Inoue
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Elyssa Chen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Bethany M. Anderson
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Caroline M. Sawicki
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Nicole N. Scheff
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Hillman Cancer Research Center, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Hung D. Tran
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Dong H. Kim
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Robel G. Alemu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Lei Yang
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - John C. Dolan
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Cheng Z. Liu
- Pathology Department, New York University (NYU) Langone Health, New York, NY 10016, USA;
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, New York University (NYU) College of Dentistry, New York, NY 10010, USA;
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Dane D. Jensen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| | - Laura E. Edgington-Mitchell
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| |
Collapse
|
82
|
Joe NS, Hodgdon C, Kraemer L, Redmond KJ, Stearns V, Gilkes DM. A common goal to CARE: Cancer Advocates, Researchers, and Clinicians Explore current treatments and clinical trials for breast cancer brain metastases. NPJ Breast Cancer 2021; 7:121. [PMID: 34521857 PMCID: PMC8440644 DOI: 10.1038/s41523-021-00326-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Approximately one-tenth of all patients with advanced breast cancer develop brain metastases resulting in an overall survival rate of fewer than 2 years. The challenges lie in developing new approaches to treat, monitor, and prevent breast cancer brain metastasis (BCBM). This review will provide an overview of BCBM from the integrated perspective of clinicians, researchers, and patient advocates. We will summarize the current management of BCBM, including diagnosis, treatment, and monitoring. We will highlight ongoing translational research for BCBM, including clinical trials and improved detection methods that can become the mainstay for BCBM treatment if they demonstrate efficacy. We will discuss preclinical BCBM research that focuses on the intrinsic properties of breast cancer cells and the influence of the brain microenvironment. Finally, we will spotlight emerging studies and future research needs to improve survival outcomes and preserve the quality of life for patients with BCBM.
Collapse
Affiliation(s)
- Natalie S Joe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine Hodgdon
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vered Stearns
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- INSPIRE (Influencing Science through Patient-Informed Research & Education) Advocacy Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
83
|
Deasy SK, Erez N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol 2021; 32:110-123. [PMID: 34479765 DOI: 10.1016/j.tcb.2021.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Modification of the extracellular matrix (ECM) is a critical aspect of developing a metastasis-supportive organ niche. Recent work investigating ECM changes that facilitate metastasis has revealed ways in which different metastatic organ niches are similar as well as the distinct characteristics that make them unique. In this review, we present recent findings regarding how ECM modifications support metastasis in four frequent metastatic sites: the lung, liver, bone, and brain. We discuss ways in which these modifications are shared between metastatic organs as well as features specific to each location. We also discuss areas of technical innovation that could be advantageous to future research and areas of inquiry that merit further investigation.
Collapse
Affiliation(s)
- Sarah K Deasy
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
84
|
Di Nunno V, Franceschi E, Tosoni A, Mura A, Minichillo S, Di Battista M, Gatto L, Maggio I, Lodi R, Bartolini S, Brandes AA. Is Molecular Tailored-Therapy Changing the Paradigm for CNS Metastases in Breast Cancer? Clin Drug Investig 2021; 41:757-773. [PMID: 34403132 DOI: 10.1007/s40261-021-01070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/28/2022]
Abstract
Breast cancer (BC) is the second most common tumour spreading to the central nervous system (CNS). The prognosis of patients with CNS metastases depends on several parameters including the molecular assessment of the disease. Although loco-regional treatment remains the best approach, systemic therapies are acquiring a role leading to remarkable long-lasting responses. The efficacy of these compounds diverges between tumours with different molecular assessments. Promising agents under investigation are drugs targeting the HER2 pathways such as tucatinib, neratinib, pyrotinib, trastuzumab deruxtecan. In addition, there are several promising agents under investigation for patients with triple-negative brain metastases (third-generation taxane, etirinotecan, sacituzumab, immune-checkpoint inhibitors) and hormone receptor-positive brain metastases (CDK 4/5, phosphoinositide-3-kinase-mammalian target of rapamycin [PI3K/mTOR] inhibitors). Also, the systemic treatment of leptomeningeal metastases, which represents a very negative prognostic site of metastases, is likely to change as several compounds are under investigation, some with interesting preliminary results. Here we performed a comprehensive review focusing on the current management of CNS metastases according to molecular subtypes, site of metastases (leptomeningeal vs brain), and systemic treatments under investigation.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Antonella Mura
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Santino Minichillo
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Monica Di Battista
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Ilaria Maggio
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139, Bologna, Italy
| | | |
Collapse
|
85
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
86
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|
87
|
Ruiz-López E, Schuhmacher AJ. Transportation of Single-Domain Antibodies through the Blood-Brain Barrier. Biomolecules 2021; 11:biom11081131. [PMID: 34439797 PMCID: PMC8394617 DOI: 10.3390/biom11081131] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Single-domain antibodies derive from the heavy-chain-only antibodies of Camelidae (camel, dromedary, llama, alpaca, vicuñas, and guananos; i.e., nanobodies) and cartilaginous fishes (i.e., VNARs). Their small size, antigen specificity, plasticity, and potential to recognize unique conformational epitopes represent a diagnostic and therapeutic opportunity for many central nervous system (CNS) pathologies. However, the blood–brain barrier (BBB) poses a challenge for their delivery into the brain parenchyma. Nevertheless, numerous neurological diseases and brain pathologies, including cancer, result in BBB leakiness favoring single-domain antibodies uptake into the CNS. Some single-domain antibodies have been reported to naturally cross the BBB. In addition, different strategies and methods to deliver both nanobodies and VNARs into the brain parenchyma can be exploited when the BBB is intact. These include device-based and physicochemical disruption of the BBB, receptor and adsorptive-mediated transcytosis, somatic gene transfer, and the use of carriers/shuttles such as cell-penetrating peptides, liposomes, extracellular vesicles, and nanoparticles. Approaches based on single-domain antibodies are reaching the clinic for other diseases. Several tailoring methods can be followed to favor the transport of nanobodies and VNARs to the CNS, avoiding the limitations imposed by the BBB to fulfill their therapeutic, diagnostic, and theragnostic promises for the benefit of patients suffering from CNS pathologies.
Collapse
Affiliation(s)
- Eduardo Ruiz-López
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 500018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
88
|
Giridharan N, Glitza Oliva IC, O'Brien BJ, Parker Kerrigan BC, Heimberger AB, Ferguson SD. Targeting the Tumor Microenvironment in Brain Metastasis. Neurosurg Clin N Am 2021; 31:641-649. [PMID: 32921358 DOI: 10.1016/j.nec.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 430, Houston, TX 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030-4009, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
| |
Collapse
|
89
|
Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies. Br J Cancer 2021; 125:1056-1067. [PMID: 34226684 DOI: 10.1038/s41416-021-01424-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Early-stage breast cancer is considered a curable disease; however, once distant metastasis occurs, the 5-year overall survival rate of patients becomes significantly reduced. There are four distinct metastatic patterns in breast cancer: bone, lung, liver and brain. Among these, breast cancer brain metastasis (BCBM) is the leading cause of death; it is highly associated with impaired quality of life and poor prognosis due to the limited permeability of the blood-brain barrier and consequent lack of effective treatments. Although the sequence of events in BCBM is universally accepted, the underlying mechanisms have not yet been fully elucidated. In this review, we outline progress surrounding the molecular mechanisms involved in BCBM as well as experimental methods and research models to better understand the process. We further discuss the challenges in the management of brain metastases, as well as providing an overview of current therapies and highlighting innovative research towards developing novel efficacious targeted therapies.
Collapse
|
90
|
Abstract
Microglia are the resident macrophages in the central nervous system (CNS), and they constitute 15-20% of the total glial populations. They have wide developmental and protective functions during brain injury, infection and tumorigenesis. Originally thought to derive from postnatal hematopoietic progenitors, it has recently been demonstrated that microglia originate from primitive myeloid progenitor cells that arise during early development from the embryonic yolk sac. Circulating monocytes infiltrate the CNS upon inflammatory conditions, such as cancer, primarily differentiating into macrophages and dendritic cells. Both resident and recruited microglia respond to environmental cues and actively participate in pathogenic processes, albeit their transcriptomic profiles contain significant differences suggesting distinctive roles. Metastatic brain tumors are the most common intracranial neoplasm in adults, with an estimate incidence 10 times higher than all primary brain neoplasms combined, and with dismal prognosis. Microglia is a major immune population associated with brain metastatic tumors in patients. They are proposed to play multiple, and sometimes opposing roles, in tumor progression. However, our ability to evaluate individual contribution of resident and recruited populations is hindered by the fact that they express overlapping sets of surface markers. Tracking and interrogating tissue-resident vs recruited microglia in the brain tumor microenvironment becomes critical to dissect their respective roles and gain a better understanding of the mechanism governing their interaction. In this chapter, we describe the utilization of genetic reporter mice to identify recruited brain microglia, offer a comparison between the genetic method and the most widely used flow cytometric approach, and discuss potential downstream applications to interrogate BMDM function in brain metastatic disease.
Collapse
|
91
|
Modulation of Cathepsin S ( CTSS) Regulates the Secretion of Progesterone and Estradiol, Proliferation, and Apoptosis of Ovarian Granulosa Cells in Rabbits. Animals (Basel) 2021; 11:ani11061770. [PMID: 34199180 PMCID: PMC8231930 DOI: 10.3390/ani11061770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary In goat and sheep, CTSS is reported to be important for the development and maturation of oocytes by regulating cell proliferation and apoptosis. The purpose of this study was to investigate the role of CTSS in regulating cell apoptosis and hormone secretion in rabbit granulosa cells. Our results suggested that the CTSS gene can promote the proliferation of granulosa cells and reduce its apoptosis in vitro, while overexpression of CTSS promoted the secretion of progesterone and estrogen in rabbit granulosa cells. Therefore, manipulation of CTSS may improve development of oocytes, and thus provide an approach for better manipulation of rabbit reproductive performance. Abstract Cathepsin S (CTSS) is a member of cysteine protease family. Although many studies have demonstrated the vital role of CTSS in many physiological and pathological processes including tumor growth, angiogenesis and metastasis, the function of CTSS in the development of rabbit granulosa cells (GCS) remains unknown. To address this question, we isolated rabbit GCS and explored the regulatory function of the CTSS gene in cell proliferation and apoptosis. CTSS overexpression significantly promoted the secretion of progesterone (P4) and estrogen (E2) by increasing the expression of STAR and CYP19A1 (p < 0.05). We also found that overexpression of CTSS increased GCS proliferation by up-regulating the expression of proliferation related gene (PCNA) and anti-apoptotic gene (BCL2). Cell apoptosis was markedly decreased by CTSS activation (p < 0.05). In contrast, CTSS knockdown significantly decreased the secretion of P4 and E2 and the proliferation of rabbit GCS, while increasing the apoptosis of rabbit GCS. Taken together, our results highlight the important role of CTSS in regulating hormone secretion, cell proliferation, and apoptosis in rabbit GCS. These results might provide a basis for better understanding the molecular mechanism of rabbit reproduction.
Collapse
|
92
|
Quintarelli C, Camera A, Ciccone R, Alessi I, Del Bufalo F, Carai A, Del Baldo G, Mastronuzzi A, De Angelis B. Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We? Front Immunol 2021; 12:634031. [PMID: 34163465 PMCID: PMC8216238 DOI: 10.3389/fimmu.2021.634031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are several immunotherapy approaches for the treatment of Central Nervous System (CNS) tumors under evaluation, currently none of these approaches have received approval from the regulatory agencies. CNS tumors, especially glioblastomas, are tumors characterized by highly immunosuppressive tumor microenvironment, limiting the possibility of effectively eliciting an immune response. Moreover, the peculiar anatomic location of these tumors poses relevant challenges in terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology consist of the use of autologous T cells redirected against tumor cells through chimeric antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on native or genetically engineered oncolytic viruses and on vaccination with tumor-associated antigen peptides are also under evaluation. Despite some sporadic complete remissions achieved in clinical trials, the outcome of patients with CNS tumors treated with different immunotherapeutic approaches remains poor. Based on the lessons learned from these unsatisfactory experiences, novel immune-therapy approaches aimed at overcoming the profound immunosuppressive microenvironment of these diseases are bringing new hope to reach the cure for CNS tumors.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Camera
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roselia Ciccone
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
93
|
Hajal C, Shin Y, Li L, Serrano JC, Jacks T, Kamm RD. The CCL2-CCR2 astrocyte-cancer cell axis in tumor extravasation at the brain. SCIENCE ADVANCES 2021; 7:eabg8139. [PMID: 34162553 PMCID: PMC8221620 DOI: 10.1126/sciadv.abg8139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Although brain metastases are common in cancer patients, little is known about the mechanisms of cancer extravasation across the blood-brain barrier (BBB), a key step in the metastatic cascade that regulates the entry of cancer cells into the brain parenchyma. Here, we show, in a three-dimensional in vitro BBB microvascular model, that astrocytes promote cancer cell transmigration via their secretion of C-C motif chemokine ligand 2 (CCL2). We found that this chemokine, produced primarily by astrocytes, promoted the chemotaxis and chemokinesis of cancer cells via their C-C chemokine receptor type 2 (CCR2), with no notable changes in vascular permeability. These findings were validated in vivo, where CCR2-deficient cancer cells exhibited significantly reduced rates of arrest and transmigration in mouse brain capillaries. Our results reveal that the CCL2-CCR2 astrocyte-cancer cell axis plays a fundamental role in extravasation and, consequently, metastasis to the brain.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean Carlos Serrano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
94
|
Characterization of Immune Cell Subsets of Tumor Infiltrating Lymphocytes in Brain Metastases. BIOLOGY 2021; 10:biology10050425. [PMID: 34064871 PMCID: PMC8150725 DOI: 10.3390/biology10050425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Brain metastases arising from breast cancers, occur in about 20% of women with a poor-survival outcome. Unfortunately, most patients survive only up to eighteen months from diagnosis. Therefore, there is an urgent need to understand how these cancers survive in the brain. It is thought that the immune cells in the brain, together with brain resident cells, may provide a favorable environment for cancer growth. However, this is not very well understood at this point. We aimed to profile the cells found in these tumors, focusing on five different cell types based on the marker expressed by them. Our results indicate that certain molecules contained within the cancer and the surrounding environment are associated with poor survival. This suggests that these molecules might be important in brain metastasis. This finding is a step towards our understanding of how some patients with brain metastasis survive longer than others. Abstract The heterogeneity of tumor infiltrating lymphocytes (TILs) is not well characterized in brain metastasis. To address this, we performed a targeted analysis of immune-cell subsets in brain metastasis tissues to test immunosuppressive routes involved in brain metastasis. We performed multiplex immunofluorescence (mIF), using commercially available validated antibodies on formalin-fixed paraffin embedded whole sections. We quantitated the subsets of immune-cells utilizing a targeted panel of proteins including PanCK, CD8, CD4, VISTA and IBA-1, and analyzed an average of 15,000 cells per sample. Classifying tumors as either high (>30%) or low (<30%) TILs, we found that increased TILs density correlated with survival. Phenotyping these TILs we found tumors with low TILs had significantly higher expression of the immune-checkpoint molecule VISTA in tumor cells (p < 0.01) as well as in their microenvironment (p < 0.001). Contrastingly, the tumors with high TILs displayed higher levels of microglia, as measured by IBA-1 expression. Low TILs-tumors displayed CD8+ T-cells that co-express VISTA (p < 0.01) significantly more compared to high TILs group, where CD8+cells significantly co-express IBA-11 (p < 0.05). These results were supported by RNA analysis of a publicly available, independent cohort. Our work contributes to a growing understanding of the immune surveillance escape routes active in brain metastasis.
Collapse
|
95
|
Kim S, Lee SI, Kim N, Joo M, Lee KH, Lee MW, Jeon HJ, Ryu H, Kim JM, Sul JY, Song GY, Kim JY, Lee HJ. Decursin inhibits cell growth and autophagic flux in gastric cancer via suppression of cathepsin C. Am J Cancer Res 2021; 11:1304-1320. [PMID: 33948359 PMCID: PMC8085838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
Autophagy plays an important role in the survival of cancer cells under stressful conditions, such as nutrient or oxygen deficiency. Therefore, autophagy inhibition is being considered as a novel therapeutic strategy for cancer. Decursin is a natural compound derived from Angelica gigas; it has been used in the treatment of various diseases, including cancer. However, the mechanism by which decursin regulates autophagy in gastric cancer and other carcinomas remains unclear. Here, we demonstrated that decursin reduced the growth and induced cell cycle arrest in gastric cancer cells in vitro. Decursin blocked autophagic flux by reducing the expression of lysosomal protein cathepsin C (CTSC) and attenuating its activity, thereby causing autophagic dysregulation (i.e., accumulation of LC3 and SQSTM1). Decursin also inhibited cell proliferation and cell cycle progression by inhibiting CTSC and E2F3, both of which were linked to gastric cancer aggressiveness. The antitumor effects of decursin were confirmed in vivo. We established spheroid and patient-derived organoid models and found that decursin decreased the growth of spheroids and patient-derived gastric organoids, as well as modulated the expression of CTSC and autophagy-related proteins. Hence, our findings uncovered a previously unknown mechanism by which decursin regulates cell growth and autophagy and suggests that decursin may act as a potential therapeutic agent that simultaneously inhibits cell growth and autophagy.
Collapse
Affiliation(s)
- Solbi Kim
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Mina Joo
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Kyung-Ha Lee
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Myung-Won Lee
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Heung Jin Jeon
- Department of Infection Control Convergence Research Center, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Hyewon Ryu
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Ji-Young Sul
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National UniversityDaejeon, Republic of Korea
| | - Ji-Yeon Kim
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
- Department of Infection Control Convergence Research Center, Chungnam National University College of MedicineDaejeon, Republic of Korea
| |
Collapse
|
96
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
97
|
Niesel K, Schulz M, Anthes J, Alekseeva T, Macas J, Salamero-Boix A, Möckl A, Oberwahrenbrock T, Lolies M, Stein S, Plate KH, Reiss Y, Rödel F, Sevenich L. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis. EMBO Mol Med 2021; 13:e13412. [PMID: 33755340 PMCID: PMC8103101 DOI: 10.15252/emmm.202013412] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment in brain metastases is characterized by high myeloid cell content associated with immune suppressive and cancer-permissive functions. Moreover, brain metastases induce the recruitment of lymphocytes. Despite their presence, T-cell-directed therapies fail to elicit effective anti-tumor immune responses. Here, we seek to evaluate the applicability of radio-immunotherapy to modulate tumor immunity and overcome inhibitory effects that diminish anti-cancer activity. Radiotherapy-induced immune modulation resulted in an increase in cytotoxic T-cell numbers and prevented the induction of lymphocyte-mediated immune suppression. Radio-immunotherapy led to significantly improved tumor control with prolonged median survival in experimental breast-to-brain metastasis. However, long-term efficacy was not observed. Recurrent brain metastases showed accumulation of blood-borne PD-L1+ myeloid cells after radio-immunotherapy indicating the establishment of an immune suppressive environment to counteract re-activated T-cell responses. This finding was further supported by transcriptional analyses indicating a crucial role for monocyte-derived macrophages in mediating immune suppression and regulating T-cell function. Therefore, selective targeting of immune suppressive functions of myeloid cells is expected to be critical for improved therapeutic efficacy of radio-immunotherapy in brain metastases.
Collapse
Affiliation(s)
- Katja Niesel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Michael Schulz
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julian Anthes
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna Salamero-Boix
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Aylin Möckl
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Timm Oberwahrenbrock
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Marco Lolies
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Stefan Stein
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
98
|
Brown R, Small DM, Doherty DF, Holsinger L, Booth R, Williams R, Ingram RJ, Elborn JS, Mall MA, Taggart CC, Weldon S. Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators Inflamm 2021; 2021:6682657. [PMID: 33828414 PMCID: PMC8004367 DOI: 10.1155/2021/6682657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult βENaC-Tg mice with established disease. METHODS βENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- βENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS At 6 weeks of age, βENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- βENaC-Tg mice and βENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- βENaC-Tg mice, therapeutic inhibition of CatS in βENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Donna M. Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Declan F. Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J. Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
99
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
100
|
van Dalen FJ, Bakkum T, van Leeuwen T, Groenewold M, Deu E, Koster AJ, van Kasteren SI, Verdoes M. Application of a Highly Selective Cathepsin S Two-step Activity-Based Probe in Multicolor Bio-Orthogonal Correlative Light-Electron Microscopy. Front Chem 2021; 8:628433. [PMID: 33644004 PMCID: PMC7903248 DOI: 10.3389/fchem.2020.628433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumor Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thomas Bakkum
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Mirjam Groenewold
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|