51
|
Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770-2781. [PMID: 32446288 DOI: 10.1002/1873-3468.13844] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Collapse
Affiliation(s)
- David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
52
|
Kao CH, Ryu SW, Kim MJ, Wen X, Wimalarathne O, Paull TT. Growth-Regulated Hsp70 Phosphorylation Regulates Stress Responses and Prion Maintenance. Mol Cell Biol 2020; 40:e00628-19. [PMID: 32205407 PMCID: PMC7261718 DOI: 10.1128/mcb.00628-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 11/20/2022] Open
Abstract
Maintenance of protein homeostasis in eukaryotes under normal growth and stress conditions requires the functions of Hsp70 chaperones and associated cochaperones. Here, we investigate an evolutionarily conserved serine phosphorylation that occurs at the site of communication between the nucleotide-binding and substrate-binding domains of Hsp70. Ser151 phosphorylation in yeast Hsp70 (Ssa1) is promoted by cyclin-dependent kinase (Cdk1) during normal growth. Phosphomimetic substitutions at this site (S151D) dramatically downregulate heat shock responses, a result conserved with HSC70 S153 in human cells. Phosphomimetic forms of Ssa1 also fail to relocalize in response to starvation conditions, do not associate in vivo with Hsp40 cochaperones Ydj1 and Sis1, and do not catalyze refolding of denatured proteins in vitro in cooperation with Ydj1 and Hsp104. Despite these negative effects on HSC70/HSP70 function, the S151D phosphomimetic allele promotes survival of heavy metal exposure and suppresses the Sup35-dependent [PSI+ ] prion phenotype, consistent with proposed roles for Ssa1 and Hsp104 in generating self-nucleating seeds of misfolded proteins. Taken together, these results suggest that Cdk1 can downregulate Hsp70 function through phosphorylation of this site, with potential costs to overall chaperone efficiency but also advantages with respect to reduction of metal-induced and prion-dependent protein aggregate production.
Collapse
Affiliation(s)
- Chung-Hsuan Kao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Seung W Ryu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Min J Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Oshadi Wimalarathne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
53
|
Dalphin MD, Stangl AJ, Liu Y, Cavagnero S. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone. Biochemistry 2020; 59:1946-1960. [PMID: 32326704 DOI: 10.1021/acs.biochem.0c00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-shock factor Hsp70 and other molecular chaperones play a central role in nascent protein folding. Elucidating the task performed by individual chaperones within the complex cellular milieu, however, has been challenging. One strategy for addressing this goal has been to monitor protein biogenesis in the absence and presence of inhibitors of a specific chaperone, followed by analysis of folding outcomes under both conditions. In this way, the role of the chaperone of interest can be discerned. However, development of chaperone inhibitors, including well-known proline-rich antimicrobial peptides, has been fraught with undesirable side effects, including decreased protein expression yields. Here, we introduce KLR-70, a rationally designed cationic inhibitor of the Escherichia coli Hsp70 chaperone (also known as DnaK). KLR-70 is a 14-amino acid peptide bearing naturally occurring residues and engineered to interact with the DnaK substrate-binding domain. The interaction of KLR-70 with DnaK is enantioselective and is characterized by high affinity in a buffered solution. Importantly, KLR-70 does not significantly interact with the DnaJ and GroEL/ES chaperones, and it does not alter nascent protein biosynthesis yields across a wide concentration range. Some attenuation of the anti-DnaK activity of KLR-70, however, has been observed in the complex E. coli cell-free environment. Interestingly, the d enantiomer D-KLR-70, unlike its all-L KLR-70 counterpart, does not bind the DnaK and DnaJ chaperones, yet it strongly inhibits translation. This outcome suggests that the two enantiomers (KLR-70 and D-KLR-70) may serve as orthogonal inhibitors of chaperone binding and translation. In summary, KLR-70 is a novel chaperone inhibitor with high affinity and selectivity for bacterial Hsp70 and with considerable potential to help in parsing out the role of Hsp70 in nascent protein folding.
Collapse
Affiliation(s)
- Matthew D Dalphin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew J Stangl
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
54
|
Extraction and Refolding Determinants of Chaperone-Driven Aggregated Protein Reactivation. J Mol Biol 2020; 432:3239-3250. [PMID: 32147456 DOI: 10.1016/j.jmb.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
Abstract
Reactivation of protein aggregates plays a fundamental role in numerous situations, including essential cellular processes, hematological and neurological disorders, and biotechnological applications. The molecular details of the chaperone systems involved are known to a great extent but how the overall reactivation process is achieved has remained unclear. Here, we quantified reactivation over time through a predictive mechanistic model and identified the key parameters that control the overall dynamics. We performed new targeted experiments and analyzed classical data, covering multiple types of non-ordered aggregates, chaperone combinations, and experimental conditions. We found that, irrespective of the behavior observed, the balance of surface disaggregation and refolding in solution universally determines the reactivation dynamics, which is broadly described by two characteristic times. This characterization makes it possible to use activity measurements to accurately infer the underlying loss of aggregated protein and to quantify, for the first time, the refolding rates of the soluble intermediates.
Collapse
|
55
|
Rein T. Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52. Bioessays 2020; 42:e1900250. [DOI: 10.1002/bies.201900250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Theo Rein
- Department of Translational Science in Psychiatry, MunichMax Planck Institute of Psychiatry Munich 80804 Germany
| |
Collapse
|
56
|
Baaklini I, Gonçalves CDC, Lukacs GL, Young JC. Selective Binding of HSC70 and its Co-Chaperones to Structural Hotspots on CFTR. Sci Rep 2020; 10:4176. [PMID: 32144307 PMCID: PMC7060200 DOI: 10.1038/s41598-020-61107-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel cause cystic fibrosis. Chaperones, including HSC70, DNAJA1 and DNAJA2, play key roles in both the folding and degradation of wild-type and mutant CFTR at multiple cellular locations. DNAJA1 and HSC70 promote the folding of newly synthesized CFTR at the endoplasmic reticulum (ER), but are required for the rapid turnover of misfolded channel at the plasma membrane (PM). DNAJA2 and HSC70 are also involved in the ER-associated degradation (ERAD) of misfolded CFTR, while they assist the refolding of destabilized channel at the PM. These outcomes may depend on the binding of chaperones to specific sites within CFTR, which would be exposed in non-native states. A CFTR peptide library was used to identify binding sites for HSC70, DNAJA1 and DNAJA2, validated by competition and functional assays. Each chaperone had a distinct binding pattern, and sites were distributed between the surfaces of the CFTR cytosolic domains, and domain interfaces known to be important for channel assembly. The accessibility of sites to chaperones will depend on the degree of CFTR folding or unfolding. Different folded states may be recognized by unique combinations of HSC70, DNAJA1 and DNAJA2, leading to divergent biological effects.
Collapse
Affiliation(s)
- Imad Baaklini
- McGill University, Department of Biochemistry, Montreal, H3G 1Y6, Canada
| | | | - Gergely L Lukacs
- McGill University, Department of Biochemistry, Montreal, H3G 1Y6, Canada.,McGill University, Department of Physiology, Montreal, H3G 1Y6, Canada
| | - Jason C Young
- McGill University, Department of Biochemistry, Montreal, H3G 1Y6, Canada.
| |
Collapse
|
57
|
Davis AK, Pratt WB, Lieberman AP, Osawa Y. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell Mol Life Sci 2020; 77:977-996. [PMID: 31552448 PMCID: PMC7137528 DOI: 10.1007/s00018-019-03302-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
The polyglutamine (polyQ) diseases are a group of nine fatal, adult-onset neurodegenerative disorders characterized by the misfolding and aggregation of mutant proteins containing toxic expansions of CAG/polyQ tracts. The heat shock protein 90 and 70 (Hsp90/Hsp70) chaperone machinery is a key component of cellular protein quality control, playing a role in the regulation of folding, aggregation, and degradation of polyQ proteins. The ability of Hsp70 to facilitate disaggregation and degradation of misfolded proteins makes it an attractive therapeutic target in polyQ diseases. Genetic studies have demonstrated that manipulation of Hsp70 and related co-chaperones can enhance the disaggregation and/or degradation of misfolded proteins in models of polyQ disease. Therefore, the development of small molecules that enhance Hsp70 activity is of great interest. However, it is still unclear if currently available Hsp70 modulators can selectively enhance disaggregation or degradation of misfolded proteins without perturbing other Hsp70 functions essential for cellular homeostasis. This review discusses the multifaceted role of Hsp70 in protein quality control and the opportunities and challenges Hsp70 poses as a potential therapeutic target in polyQ disease.
Collapse
Affiliation(s)
- Amanda K Davis
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
58
|
López DJ, de Blas A, Hurtado M, García-Alija M, Mentxaka J, de la Arada I, Urbaneja MA, Alonso-Mariño M, Bañuelos S. Nucleophosmin interaction with APE1: Insights into DNA repair regulation. DNA Repair (Amst) 2020; 88:102809. [PMID: 32092641 DOI: 10.1016/j.dnarep.2020.102809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ander de Blas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Hurtado
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel García-Alija
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Mentxaka
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
59
|
Imamoglu R, Balchin D, Hayer-Hartl M, Hartl FU. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat Commun 2020; 11:365. [PMID: 31953415 PMCID: PMC6969021 DOI: 10.1038/s41467-019-14245-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent Hsp70 chaperones (DnaK in E. coli) mediate protein folding in cooperation with J proteins and nucleotide exchange factors (E. coli DnaJ and GrpE, respectively). The Hsp70 system prevents protein aggregation and increases folding yields. Whether it also enhances the rate of folding remains unclear. Here we show that DnaK/DnaJ/GrpE accelerate the folding of the multi-domain protein firefly luciferase (FLuc) ~20-fold over the rate of spontaneous folding measured in the absence of aggregation. Analysis by single-pair FRET and hydrogen/deuterium exchange identified inter-domain misfolding as the cause of slow folding. DnaK binding expands the misfolded region and thereby resolves the kinetically-trapped intermediates, with folding occurring upon GrpE-mediated release. In each round of release DnaK commits a fraction of FLuc to fast folding, circumventing misfolding. We suggest that by resolving misfolding and accelerating productive folding, the bacterial Hsp70 system can maintain proteins in their native states under otherwise denaturing stress conditions.
Collapse
Affiliation(s)
- Rahmi Imamoglu
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, Martinsried, Germany
| | - David Balchin
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, Martinsried, Germany.
| | - Manajit Hayer-Hartl
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, Martinsried, Germany.
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, Martinsried, Germany.
| |
Collapse
|
60
|
Assenza S, Sassi AS, Kellner R, Schuler B, De Los Rios P, Barducci A. Efficient conversion of chemical energy into mechanical work by Hsp70 chaperones. eLife 2019; 8:e48491. [PMID: 31845888 PMCID: PMC7000219 DOI: 10.7554/elife.48491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
Hsp70 molecular chaperones are abundant ATP-dependent nanomachines that actively reshape non-native, misfolded proteins and assist a wide variety of essential cellular processes. Here, we combine complementary theoretical approaches to elucidate the structural and thermodynamic details of the chaperone-induced expansion of a substrate protein, with a particular emphasis on the critical role played by ATP hydrolysis. We first determine the conformational free-energy cost of the substrate expansion due to the binding of multiple chaperones using coarse-grained molecular simulations. We then exploit this result to implement a non-equilibrium rate model which estimates the degree of expansion as a function of the free energy provided by ATP hydrolysis. Our results are in quantitative agreement with recent single-molecule FRET experiments and highlight the stark non-equilibrium nature of the process, showing that Hsp70s are optimized to effectively convert chemical energy into mechanical work close to physiological conditions.
Collapse
Affiliation(s)
- Salvatore Assenza
- Laboratory of Food and Soft MaterialsETH ZürichZürichSwitzerland
- Departmento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
| | - Alberto Stefano Sassi
- Institute of Physics, School of Basic SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- IBM TJ Watson Research CenterYorktown HeightsNew YorkUnited States
| | - Ruth Kellner
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Benjamin Schuler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
- Department of PhysicsUniversity of ZurichZurichSwitzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS)INSERM, CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
61
|
Li H, Zhu H, Sarbeng EB, Liu Q, Tian X, Yang Y, Lyons C, Zhou L, Liu Q. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity. J Biol Chem 2019; 295:584-596. [PMID: 31806707 DOI: 10.1074/jbc.ra119.009686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins of 70 kDa (Hsp70s) are ubiquitous and highly conserved molecular chaperones. They play multiple essential roles in assisting with protein folding and maintaining protein homeostasis. Their chaperone activity has been proposed to require several rounds of binding to and release of polypeptide substrates at the substrate-binding domain (SBD) of Hsp70s. All available structures have revealed a single substrate-binding site in the SBD that binds a single segment of an extended polypeptide of 3-4 residues. However, this well-established single peptide-binding site alone has made it difficult to explain the efficient chaperone activity of Hsp70s. In this study, using purified proteins and site-directed mutagenesis, along with fluorescence polarization and luciferase-refolding assays, we report the unexpected discovery of a second peptide-binding site in Hsp70s. More importantly, the biochemical analyses suggested that this novel binding site, named here P2, is essential for Hsp70 chaperone activity. Furthermore, cross-linking and mutagenesis studies indicated that this second binding site is in the SBD adjacent to the first binding site. Taken together, our results suggest that these two essential binding sites of Hsp70s cooperate in protein folding.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Huanyu Zhu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Evans Boateng Sarbeng
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qingdai Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xueli Tian
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ying Yang
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Charles Lyons
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
62
|
Kampinga HH, Mayer MP, Mogk A. Protein quality control: from mechanism to disease : EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28 - May 03, 2019. Cell Stress Chaperones 2019; 24:1013-1026. [PMID: 31713048 PMCID: PMC6882752 DOI: 10.1007/s12192-019-01040-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
The cellular protein quality control machinery with its central constituents of chaperones and proteases is vital to maintain protein homeostasis under physiological conditions and to protect against acute stress conditions. Imbalances in protein homeostasis also are keys to a plethora of genetic and acquired, often age-related, diseases as well as aging in general. At the EMBO Workshop, speakers covered all major aspects of cellular protein quality control, from basic mechanisms at the molecular, cellular, and organismal level to medical translation. In this report, the highlights of the meeting will be summarized.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Biomedical Science of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Matthias P Mayer
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| | - Axel Mogk
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
63
|
Nair SP, Sharma RK. Heat shock proteins and their expression in primary murine cardiac cell populations during ischemia and reperfusion. Mol Cell Biochem 2019; 464:21-26. [DOI: 10.1007/s11010-019-03645-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
|
64
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
65
|
Guin D, Gelman H, Wang Y, Gruebele M. Heat shock-induced chaperoning by Hsp70 is enabled in-cell. PLoS One 2019; 14:e0222990. [PMID: 31557226 PMCID: PMC6762143 DOI: 10.1371/journal.pone.0222990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Recent work has shown that weak protein-protein interactions are susceptible to the cellular milieu. One case in point is the binding of heat shock proteins (Hsps) to substrate proteins in cells under stress. Upregulation of the Hsp70 chaperone machinery at elevated temperature was discovered in the 1960s, and more recent studies have shown that ATPase activity in one Hsp70 domain is essential for control of substrate binding by the other Hsp70 domain. Although there are several denaturant-based assays of Hsp70 activity, reports of ATP-dependent binding of Hsp70 to a globular protein substrate under heat shock are scarce. Here we show that binding of heat-inducible Hsp70 to phosphoglycerate kinase (PGK) is remarkably different in vitro compared to in-cell. We use fluorescent-labeled mHsp70 and ePGK, and begin by showing that mHsp70 passes the standard β-galactosidase assay, and that it does not self-aggregate until 50°C in presence of ATP. Yet during denaturant refolding or during in vitro heat shock, mHsp70 shows only ATP-independent non-specific sticking to ePGK, as evidenced by nearly identical results with an ATPase activity-deficient K71M mutant of Hsp70 as a control. Addition of Hsp40 (co-factor) or Ficoll (crowder) does not reduce non-specific sticking, but cell lysate does. Therefore, Hsp70 does not act as an ATP-dependent chaperone on its substrate PGK in vitro. In contrast, we observe only specific ATP-dependent binding of mHsp70 to ePGK in mammalian cells, when compared to the inactive Hsp70 K71M mutant. We hypothesize that enhanced in-cell activity is not due to an unknown co-factor, but simply to a favorable shift in binding equilibrium caused by the combination of crowding and osmolyte/macromolecular interactions present in the cell. One candidate mechanism for such a favorable shift in binding equilibrium is the proven ability of Hsp70 to bind near-native states of substrate proteins in vitro. We show evidence for early onset of binding in-cell. Our results suggest that Hsp70 binds PGK preemptively, prior to its full unfolding transition, thus stabilizing it against further unfolding. We propose a "preemptive holdase" mechanism for Hsp70-substrate binding. Given our result for PGK, more proteins than one might think based on in vitro assays may be chaperoned by Hsp70 in vivo. The cellular environment thus plays an important role in maintaining proper Hsp70 function.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hannah Gelman
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
66
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
67
|
Heat Shock Proteins and Inflammasomes. Int J Mol Sci 2019; 20:ijms20184508. [PMID: 31547225 PMCID: PMC6771073 DOI: 10.3390/ijms20184508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
Heat shock proteins (HSP) regulate inflammation in many physiological contexts. However, inflammation is a broad process, involving numerous cytokines produced by different molecular pathways with multiple functions. In this review, we focused on the particular role of HSP on the inflammasomes intracellular platforms activated by danger signals and that enable activation of inflammatory caspases, mainly caspase-1, leading to the production of the pro-inflammatory cytokine IL-1β. Interestingly, some members of the HSP family favor inflammasomes activation whereas others inhibit it, suggesting that HSP modulators for therapeutic purposes, must be carefully chosen.
Collapse
|
68
|
Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Int J Mol Sci 2019; 20:ijms20174122. [PMID: 31450862 PMCID: PMC6747476 DOI: 10.3390/ijms20174122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.
Collapse
Affiliation(s)
- Lorea Velasco
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Dublang
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Arturo Muga
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
69
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
70
|
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 2019; 20:488. [PMID: 31195958 PMCID: PMC6567507 DOI: 10.1186/s12864-019-5799-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background With rising global temperature, understanding plants’ adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. Results Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. Conclusion The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5799-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.,Present address: Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
71
|
Pobre KFR, Powers DL, Ghosh K, Gierasch LM, Powers ET. Kinetic versus thermodynamic control of mutational effects on protein homeostasis: A perspective from computational modeling and experiment. Protein Sci 2019; 28:1324-1339. [PMID: 31074892 DOI: 10.1002/pro.3639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
The effect of mutations in individual proteins on protein homeostasis, or "proteostasis," can in principle depend on the mutations' effects on the thermodynamics or kinetics of folding, or both. Here, we explore this issue using a computational model of in vivo protein folding that we call FoldEcoSlim. Our model predicts that kinetic versus thermodynamic control of mutational effects on proteostasis hinges on the relationship between how fast a protein's folding reaction reaches equilibrium and a critical time scale that characterizes the lifetime of a protein in its environment: for rapidly dividing bacteria, this time scale is that of cell division; for proteins that are produced in heterologous expression systems, this time scale is the amount of time before the protein is harvested; for proteins that are synthesized in and then exported from the eukaryotic endoplasmic reticulum, this time scale is that of protein secretion, and so forth. This prediction was validated experimentally by examining the expression yields of the wild type and several destabilized mutants of a model protein, the mouse ortholog of cellular retinoic acid-binding protein 1.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - David L Powers
- Department of Mathematics, Clarkson University, Potsdam, New York, 13699
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, 80208
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037
| |
Collapse
|
72
|
Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Sci Rep 2019; 9:7507. [PMID: 31101846 PMCID: PMC6525249 DOI: 10.1038/s41598-019-43556-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/27/2019] [Indexed: 01/30/2023] Open
Abstract
Utilizing The Cancer Genome Atlas (TCGA) and KM plotter databases we identified six heat shock proteins associated with survival of breast cancer patients. The survival curves of samples with high and low expression of heat shock genes were compared by log-rank test (Mantel-Haenszel). Interestingly, patients overexpressing two identified HSPs – HSPA2 and DNAJC20 exhibited longer survival, whereas overexpression of other four HSPs – HSP90AA1, CCT1, CCT2, CCT6A resulted in unfavorable prognosis for breast cancer patients. We explored correlations between expression level of HSPs and clinicopathological features including tumor grade, tumor size, number of lymph nodes involved and hormone receptor status. Additionally, we identified a novel signature with the potential to serve as a prognostic model for breast cancer. Using univariate Cox regression analysis followed by multivariate Cox regression analysis, we built a risk score formula comprising prognostic HSPs (HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2) and tumor stage to identify high-risk and low-risk cases. Finally, we analyzed the association of six prognostic HSP expression with survival of patients suffering from other types of cancer than breast cancer. We revealed that depending on cancer type, each of the six analyzed HSPs can act both as a positive, as well as a negative regulator of cancer development. Our study demonstrates a novel HSP signature for the outcome prediction of breast cancer patients and provides a new insight into ambiguous role of these proteins in cancer development.
Collapse
Affiliation(s)
- Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
73
|
Dahiya V, Agam G, Lawatscheck J, Rutz DA, Lamb DC, Buchner J. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries. Mol Cell 2019; 74:816-830.e7. [PMID: 31027879 DOI: 10.1016/j.molcel.2019.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
p53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction. This unfolded state of p53 is susceptible to aggregation after release induced by the nucleotide exchange factor Bag-1. However, when Hsp90 and the adaptor protein Hop are present, p53 is transferred from Hsp70 to Hsp90, allowing restoration of the native state upon ATP hydrolysis. Our results suggest that the p53 conformation is constantly remodeled by the two major chaperone machineries. This connects p53 activity to stress, and the levels of free molecular chaperones are important factors regulating p53 activity. Together, our findings reveal an intricate interplay and cooperation of Hsp70 and Hsp90 in regulating the conformation of a client.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ganesh Agam
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Daniel Andreas Rutz
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
74
|
Dickens JA, Malzer E, Chambers JE, Marciniak SJ. Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation. FEBS J 2019; 286:322-341. [PMID: 29323786 DOI: 10.1111/febs.14381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
75
|
Kampinga HH, Andreasson C, Barducci A, Cheetham ME, Cyr D, Emanuelsson C, Genevaux P, Gestwicki JE, Goloubinoff P, Huerta-Cepas J, Kirstein J, Liberek K, Mayer MP, Nagata K, Nillegoda NB, Pulido P, Ramos C, De Los Rios P, Rospert S, Rosenzweig R, Sahi C, Taipale M, Tomiczek B, Ushioda R, Young JC, Zimmermann R, Zylicz A, Zylicz M, Craig EA, Marszalek J. Function, evolution, and structure of J-domain proteins. Cell Stress Chaperones 2019; 24:7-15. [PMID: 30478692 PMCID: PMC6363617 DOI: 10.1007/s12192-018-0948-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain containing proteins (JDPs) are the largest family of Hsp70 co-chaperones and play a determining role functionally specifying and directing Hsp70 functions. Many features of JDPs are not understood; however, a number of JDP experts gathered at a recent CSSI-sponsored workshop in Gdansk (Poland) to discuss various aspects of J-domain protein function, evolution, and structure. In this report, we present the main findings and the consensus reached to help direct future developments in the field of Hsp70 research.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Claes Andreasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Alessandro Barducci
- Inserm, U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Universite de Montpellier, Montpellier, France
| | | | - Douglas Cyr
- University of North Carolina, Chapel Hill, NC, USA
| | - Cecilia Emanuelsson
- Center for Molecular Protein Sciences, CMPS, Dept. Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), CNRS-Université de Toulouse, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Janine Kirstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Australian Regenerative Medicine Institute (ARMI), Monash University, 15 Innovative Walk, Wellington Road, Clayton, VIC, 3800, Australia
| | - Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Planegg-Martinsried, 82152, Munich, Germany
| | - Carlos Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Paolo De Los Rios
- EPFL SB IPHYS LBS BSP 723 (Cubotron UNIL), Rte de la Sorge, CH-1015, Lausanne, Switzerland
| | - Sabine Rospert
- Institut fur Biochemie und Molekularbiologie, Universitat Freiburg, Freiburg, Germany
| | | | - Chandan Sahi
- Indian Institute of Science Education and Research Bhopal, Bhauri Bhopal, Madhya Pradesh, 462 066, India
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bratłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
76
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
77
|
Mayer MP, Gierasch LM. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 2018; 294:2085-2097. [PMID: 30455352 DOI: 10.1074/jbc.rev118.002810] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hsp70 chaperones are central hubs of the protein quality control network and collaborate with co-chaperones having a J-domain (an ∼70-residue-long helical hairpin with a flexible loop and a conserved His-Pro-Asp motif required for ATP hydrolysis by Hsp70s) and also with nucleotide exchange factors to facilitate many protein-folding processes that (re)establish protein homeostasis. The Hsp70s are highly dynamic nanomachines that modulate the conformation of their substrate polypeptides by transiently binding to short, mostly hydrophobic stretches. This interaction is regulated by an intricate allosteric mechanism. The J-domain co-chaperones target Hsp70 to their polypeptide substrates, and the nucleotide exchange factors regulate the lifetime of the Hsp70-substrate complexes. Significant advances in recent years are beginning to unravel the molecular mechanism of this chaperone machine and how they treat their substrate proteins.
Collapse
Affiliation(s)
- Matthias P Mayer
- From the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany and
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and.,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
78
|
Cochaperones enable Hsp70 to use ATP energy to stabilize native proteins out of the folding equilibrium. Sci Rep 2018; 8:13213. [PMID: 30181618 PMCID: PMC6123477 DOI: 10.1038/s41598-018-31641-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The heat shock protein 70 (Hsp70) chaperones, vital to the proper folding of proteins inside cells, consume ATP and require cochaperones in assisting protein folding. It is unclear whether Hsp70 can utilize the free energy from ATP hydrolysis to fold a protein into a native state that is thermodynamically unstable in the chaperone-free equilibrium. Here I present a model of Hsp70-mediated protein folding, which predicts that Hsp70, as a result of differential stimulation of ATP hydrolysis by its Hsp40 cochaperone, dissociates faster from a substrate in fold-competent conformations than from one in misfolding-prone conformations, thus elevating the native concentration above and suppressing the misfolded concentration below their respective equilibrium values. Previous models would not make or imply these predictions, which are experimentally testable. My model quantitatively reproduces experimental refolding kinetics, predicts how modulations of the Hsp70/Hsp40 chaperone system affect protein folding, and suggests new approaches to regulating cellular protein quality.
Collapse
|
79
|
Uchida T, Kanemori M. Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. J Biochem 2018; 164:153-163. [PMID: 29635480 DOI: 10.1093/jb/mvy038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70) chaperone systems consist of Hsp70, Hsp40 and a nucleotide-exchange factor and function to help unfolded proteins achieve their native conformations. Typical Hsp40s assume a homodimeric structure and have both chaperone and cochaperone activity. The dimeric structure is critical for chaperone function, whereas the relationship between the dimeric structure and cochaperone function is hardly known. Here, we examined whether two intact protomers are required for cochaperone activity of Hsp40 using an Escherichia coli Hsp70 chaperone system consisting of DnaK, DnaJ and GrpE. The expression systems were generated and two heterodimeric DnaJs that included a mutated protomer lacking cochaperone activity were purified. Normal chaperone activity was demonstrated by assessing aggregation prevention activity using urea-denatured luciferase. The heterodimeric DnaJs were investigated for cochaperone activity by measuring DnaK ATPase activity and the heat-denatured glucose-6-phosphate dehydrogenase refolding activity of the DnaK chaperone system, and they showed reduced cochaperone activity. These results indicate that two intact protomers are required for high cochaperone activity of DnaJ, suggesting that one homodimeric DnaJ molecule promotes the simultaneous binding of multiple DnaK molecules to one substrate molecule, and that this binding mode is required for the efficient folding of denatured proteins.
Collapse
Affiliation(s)
- Tomoya Uchida
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masaaki Kanemori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
80
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
81
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
82
|
Morán Luengo T, Kityk R, Mayer MP, Rüdiger SGD. Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System. Mol Cell 2018; 70:545-552.e9. [PMID: 29706537 DOI: 10.1016/j.molcel.2018.03.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/17/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roman Kityk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
83
|
Wawrzynow B, Zylicz A, Zylicz M. Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim Biophys Acta Rev Cancer 2018; 1869:161-174. [DOI: 10.1016/j.bbcan.2017.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
|
84
|
Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat Chem Biol 2018; 14:388-395. [PMID: 29507388 DOI: 10.1038/s41589-018-0013-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
During and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical modeling to show that the bacterial chaperones GroEL (Hsp60) and DnaK (Hsp70) both use part of the energy from ATP hydrolysis to restore the native state of their substrates, even under denaturing conditions in which the native state is thermodynamically unstable. Consistently with thermodynamics, upon exhaustion of ATP, the metastable native chaperone products spontaneously revert to their equilibrium non-native states. In the presence of ATPase chaperones, some proteins may thus behave as open ATP-driven, nonequilibrium systems whose fate is only partially determined by equilibrium thermodynamics.
Collapse
|
85
|
Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. eLife 2018; 7:32764. [PMID: 29460778 PMCID: PMC5819949 DOI: 10.7554/elife.32764] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiquitous and conserved Hsp70 chaperone which oversees the integrity of the cellular proteome through its ATP-dependent interaction with client proteins. We directly quantify the flux along CS and IF pathways using solution NMR spectroscopy that exploits a methyl TROSY effect and selective isotope-labeling methodologies. Our measurements establish that both bacterial and human Hsp70 chaperones interact with clients by selecting the unfolded state from a pre-existing array of interconverting structures, suggesting a conserved mode of client recognition among Hsp70s and highlighting the importance of molecular dynamics in this recognition event. Proteins are the workhorses of a cell and are involved in almost all biological processes. Newly made proteins need to ‘fold’ into precise three-dimensional shapes in order to carry out their roles. However, proteins sometimes fold incorrectly or unfold. These protein forms are not able to work effectively and in some cases may even cause diseases. Chaperone proteins help other proteins to fold correctly and are found in living organisms ranging in complexity from bacteria to humans. There are many different types of chaperones that play different roles inside cells. One, called Hsp70, binds to proteins that are incorrectly folded to help them to mature into their correct structures. However, it was not clear whether Hsp70 can also associate with the mature, correctly folded form of the proteins. A technique called Nuclear Magnetic Resonance (NMR) spectroscopy can distinguish between mature, unfolded and chaperone-bound forms of the same protein. Sekhar et al. therefore used NMR to investigate which forms of a protein Hsp70 binds to. This revealed that both the bacterial and human versions of the Hsp70 chaperone interact only with unfolded proteins. The results presented by Sekhar et al. also explain why Hsp70 does not disrupt the routine workings of the cell: because it does not bind to mature forms of proteins. These observations extend our understanding of how chaperones assist in folding proteins, and fit into a broader research theme exploring how proteins recognize one another. It will now be interesting to see whether the same mechanism holds for more complex forms of proteins, such as aggregates, or larger protein structures with regions of both folded and unfolded elements.
Collapse
Affiliation(s)
- Ashok Sekhar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Algirdas Velyvis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guy Zoltsman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Medicine, University Avenue, Toronto, Canada
| |
Collapse
|
86
|
Doron L, Goloubinoff P, Shapira M. ZnJ2 Is a Member of a Large Chaperone Family in the Chloroplast of Photosynthetic Organisms that Features a DnaJ-Like Zn-Finger Domain. Front Mol Biosci 2018; 5:2. [PMID: 29497613 PMCID: PMC5818400 DOI: 10.3389/fmolb.2018.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Photosynthesis is performed by large complexes, composed of subunits encoded by the nuclear and chloroplast genomes. Assembly is assisted by general and target-specific chaperones, but their mode of action is yet unclear. We formerly showed that ZnJ2 is an algal chaperone resembling BSD2 from land plants. In algae, it co-migrates with the rbcL transcript on chloroplast polysomes, suggesting it contributes to the de-novo synthesis of RbcL (Doron et al., 2014). ZnJ2 contains four CXXCXGXG motifs, comprising a canonical domain typical also of DnaJ-type I (DNAJA). It contributes to the binding of protein substrates to DnaK and promotes an independent oxidoreductase activity (Mattoo et al., 2014). To examine whether ZnJ2 has oxidoreductase activity, we used the RNaseA assay, which measures the oxidation-dependent reactivation of reduced-denatured RNaseA. Although ZnJ2 assisted the native refolding of reduced-denatured RNaseA, its activity was restricted to an oxidizing environment. Thus, ZnJ2 did not carry the exclusive responsibility for the formation of disulfide bridges, but contributed to the stabilization of its target polypeptides, until they reached their native state. A ZnJ2 cysteine deficient mutant maintained a similar holding chaperone activity as the wild-type and did not induce the formation of disulfide bonds. ZnJ2 is devoid of a J-domain. It thus does not belong to the J-domain co-chaperones that target protein substrates to DnaK. As expected, in vitro, its aggregation-prevention activity was not synergic to the ATP-fueled action of DnaK/DnaJ/GrpE in assisting the native refolding of denatured malate dehydrogenase, nor did it show an independent refolding activity. A phylogenetic analysis showed that ZnJ2 and BSD2 from land plants, are two different proteins belonging to a larger group containing a cysteine-rich domain, that also includes the DNAJAs. Members of this family are apparently involved in specific assembly of photosynthetic complexes in the chloroplast.
Collapse
Affiliation(s)
- Lior Doron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
87
|
Wruck F, Avellaneda MJ, Koers EJ, Minde DP, Mayer MP, Kramer G, Mashaghi A, Tans SJ. Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. J Mol Biol 2017; 430:438-449. [PMID: 28911846 DOI: 10.1016/j.jmb.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only "early" by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.
Collapse
Affiliation(s)
- Florian Wruck
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | | | - Eline J Koers
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - David P Minde
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Sander J Tans
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.
| |
Collapse
|
88
|
Jacobson T, Priya S, Sharma SK, Andersson S, Jakobsson S, Tanghe R, Ashouri A, Rauch S, Goloubinoff P, Christen P, Tamás MJ. Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast. Mol Cell Biol 2017; 37:e00490-16. [PMID: 28606932 PMCID: PMC5559669 DOI: 10.1128/mcb.00490-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/05/2016] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Cadmium is a highly poisonous metal and is classified as a human carcinogen. While its toxicity is undisputed, the underlying in vivo molecular mechanisms are not fully understood. Here, we demonstrate that cadmium induces aggregation of cytosolic proteins in living Saccharomyces cerevisiae cells. Cadmium primarily targets proteins in the process of synthesis or folding, probably by interacting with exposed thiol groups in not-yet-folded proteins. On the basis of in vitro and in vivo data, we show that cadmium-aggregated proteins form seeds that increase the misfolding of other proteins. Cells that cannot efficiently protect the proteome from cadmium-induced aggregation or clear the cytosol of protein aggregates are sensitized to cadmium. Thus, protein aggregation may contribute to cadmium toxicity. This is the first report on how cadmium causes misfolding and aggregation of cytosolic proteins in vivo The proposed mechanism might explain not only the molecular basis of the toxic effects of cadmium but also the suggested role of this poisonous metal in the pathogenesis of certain protein-folding disorders.
Collapse
Affiliation(s)
- Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sandeep K Sharma
- Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Jakobsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Robbe Tanghe
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, Lausanne, Switzerland
| | - Philipp Christen
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
89
|
Joshi V, Upadhyay A, Kumar A, Mishra A. Gp78 E3 Ubiquitin Ligase: Essential Functions and Contributions in Proteostasis. Front Cell Neurosci 2017; 11:259. [PMID: 28890687 PMCID: PMC5575403 DOI: 10.3389/fncel.2017.00259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
As per the requirement of metabolism and fitness, normal cellular functions are controlled by several proteins, and their interactive molecular and signaling events at multiple levels. Protein quality control (PQC) mechanisms ensure the correct folding and proper utilization of these proteins to avoid their misfolding and aggregation. To maintain the optimum environment of complex proteome PQC system employs various E3 ubiquitin ligases for the selective degradation of aberrant proteins. Glycoprotein 78 (Gp78) is an E3 ubiquitin ligase that prevents multifactorial deleterious accumulation of different misfolded proteins via endoplasmic reticulum-associated degradation (ERAD). However, the precise role of Gp78 under stress conditions to avoid bulk misfolded aggregation is unclear, which can act as a crucial resource to establish the dynamic nature of the proteome. Present article systematically explains the detailed molecular characterization of Gp78 and also addresses its various cellular physiological functions, which could be crucial to achieving protein homeostasis. Here, we comprehensively represent the current findings of Gp78, which shows its PQC roles in different physiological functions and diseases; and thereby propose novel opportunities to better understand the unsolved questions for therapeutic interventions linked with different protein misfolding disorders.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology IndoreIndore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
90
|
Nguyen B, Hartich D, Seifert U, Rios PDL. Thermodynamic Bounds on the Ultra- and Infra-affinity of Hsp70 for Its Substrates. Biophys J 2017; 113:362-370. [PMID: 28746847 DOI: 10.1016/j.bpj.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The 70 kDa heat shock protein Hsp70 has several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes, and driving translocation into organelles. These functions require high affinity for nonspecific amino acid sequences that are ubiquitous in proteins. It has been recently shown that this high affinity, called ultra-affinity, depends on a process driven out of equilibrium by ATP hydrolysis. Here, we establish the thermodynamic bounds for ultra-affinity, and further show that the same reaction scheme can in principle be used both to strengthen and to weaken affinities (leading in this case to infra-affinity). We show that cofactors are essential to achieve affinity beyond the equilibrium range. Finally, biological implications are discussed.
Collapse
Affiliation(s)
- Basile Nguyen
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany; Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Science and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - David Hartich
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Science and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
91
|
Scholl ZN, Yang W, Marszalek PE. Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase. Biophys J 2017; 112:1829-1840. [PMID: 28494954 DOI: 10.1016/j.bpj.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/03/2023] Open
Abstract
Proteins obtain their final functional configuration through incremental folding with many intermediate steps in the folding pathway. If known, these intermediate steps could be valuable new targets for designing therapeutics and the sequence of events could elucidate the mechanism of refolding. However, determining these intermediate steps is hardly an easy feat, and has been elusive for most proteins, especially large, multidomain proteins. Here, we effectively map part of the folding pathway for the model large multidomain protein, Luciferase, by combining single-molecule force-spectroscopy experiments and coarse-grained simulation. Single-molecule refolding experiments reveal the initial nucleation of folding while simulations corroborate these stable core structures of Luciferase, and indicate the relative propensities for each to propagate to the final folded native state. Both experimental refolding and Monte Carlo simulations of Markov state models generated from simulation reveal that Luciferase most often folds along a pathway originating from the nucleation of the N-terminal domain, and that this pathway is the least likely to form nonnative structures. We then engineer truncated variants of Luciferase whose sequences corresponded to the putative structure from simulation and we use atomic force spectroscopy to determine their unfolding and stability. These experimental results corroborate the structures predicted from the folding simulation and strongly suggest that they are intermediates along the folding pathway. Taken together, our results suggest that initial Luciferase refolding occurs along a vectorial pathway and also suggest a mechanism that chaperones may exploit to prevent misfolding.
Collapse
Affiliation(s)
- Zackary N Scholl
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
92
|
Rosenzweig R, Sekhar A, Nagesh J, Kay LE. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. eLife 2017; 6. [PMID: 28708484 PMCID: PMC5511010 DOI: 10.7554/elife.28030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023] Open
Abstract
The Hsp70 chaperone system is integrated into a myriad of biochemical processes that are critical for cellular proteostasis. Although detailed pictures of Hsp70 bound with peptides have emerged, correspondingly detailed structural information on complexes with folding-competent substrates remains lacking. Here we report a methyl-TROSY based solution NMR study showing that the Escherichia coli version of Hsp70, DnaK, binds to as many as four distinct sites on a small 53-residue client protein, hTRF1. A fraction of hTRF1 chains are also bound to two DnaK molecules simultaneously, resulting in a mixture of DnaK-substrate sub-ensembles that are structurally heterogeneous. The interactions of Hsp70 with a client protein at different sites results in a fuzzy chaperone-substrate ensemble and suggests a mechanism for Hsp70 function whereby the structural heterogeneity of released substrate molecules enables them to circumvent kinetic traps in their conformational free energy landscape and fold efficiently to the native state. DOI:http://dx.doi.org/10.7554/eLife.28030.001
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ashok Sekhar
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Jayashree Nagesh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, Canada
| |
Collapse
|
93
|
Abstract
Viruses are incapable of autonomous energy production. Although many experimental studies make it clear that viruses are parasitic entities that hijack the molecular resources of the host, a detailed estimate for the energetic cost of viral synthesis is largely lacking. To quantify the energetic cost of viruses to their hosts, we enumerated the costs associated with two very distinct but representative DNA and RNA viruses, namely, T4 and influenza. We found that, for these viruses, translation of viral proteins is the most energetically expensive process. Interestingly, the costs of building a T4 phage and a single influenza virus are nearly the same. Due to influenza's higher burst size, however, the overall cost of a T4 phage infection is only 2-3% of the cost of an influenza infection. The costs of these infections relative to their host's estimated energy budget during the infection reveal that a T4 infection consumes about a third of its host's energy budget, whereas an influenza infection consumes only ≈ 1%. Building on our estimates for T4, we show how the energetic costs of double-stranded DNA phages scale with the capsid size, revealing that the dominant cost of building a virus can switch from translation to genome replication above a critical size. Last, using our predictions for the energetic cost of viruses, we provide estimates for the strengths of selection and genetic drift acting on newly incorporated genetic elements in viral genomes, under conditions of energy limitation.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125;
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
94
|
Malinverni D, Jost Lopez A, De Los Rios P, Hummer G, Barducci A. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis. eLife 2017; 6. [PMID: 28498104 PMCID: PMC5519331 DOI: 10.7554/elife.23471] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the β-basket of the substrate binding domain. DOI:http://dx.doi.org/10.7554/eLife.23471.001
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institut für Biophysik, Johann Wolfgang Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandro Barducci
- Inserm, U1054, Montpellier, France.,Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| |
Collapse
|
95
|
Sharma SK, Priya S. Expanding role of molecular chaperones in regulating α-synuclein misfolding; implications in Parkinson's disease. Cell Mol Life Sci 2017; 74:617-629. [PMID: 27522545 PMCID: PMC11107554 DOI: 10.1007/s00018-016-2340-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.
Collapse
Affiliation(s)
- Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
96
|
Goloubinoff P. Editorial: The HSP70 Molecular Chaperone Machines. Front Mol Biosci 2017; 4:1. [PMID: 28174697 PMCID: PMC5258742 DOI: 10.3389/fmolb.2017.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
97
|
Alternative modes of client binding enable functional plasticity of Hsp70. Nature 2016; 539:448-451. [PMID: 27783598 DOI: 10.1038/nature20137] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.
Collapse
|
98
|
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354. [DOI: 10.1126/science.aac4354] [Citation(s) in RCA: 832] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most proteins must fold into unique three-dimensional structures to perform their biological functions. In the crowded cellular environment, newly synthesized proteins are at risk of misfolding and forming toxic aggregate species. To ensure efficient folding, different classes of molecular chaperones receive the nascent protein chain emerging from the ribosome and guide it along a productive folding pathway. Because proteins are structurally dynamic, constant surveillance of the proteome by an integrated network of chaperones and protein degradation machineries is required to maintain protein homeostasis (proteostasis). The capacity of this proteostasis network declines during aging, facilitating neurodegeneration and other chronic diseases associated with protein aggregation. Understanding the proteostasis network holds the promise of identifying targets for pharmacological intervention in these pathologies.
Collapse
|
99
|
Codonho BS, Costa SDS, Peloso EDF, Joazeiro PP, Gadelha FR, Giorgio S. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics. Mem Inst Oswaldo Cruz 2016; 0:0. [PMID: 27304024 PMCID: PMC4957499 DOI: 10.1590/0074-02760160087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity.
Collapse
Affiliation(s)
- Bárbara Santoni Codonho
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Solange dos Santos Costa
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Eduardo de Figueiredo Peloso
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Paulo Pinto Joazeiro
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Fernanda Ramos Gadelha
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Selma Giorgio
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
100
|
Sekhar A, Rosenzweig R, Bouvignies G, Kay LE. Hsp70 biases the folding pathways of client proteins. Proc Natl Acad Sci U S A 2016; 113:E2794-801. [PMID: 27140645 PMCID: PMC4878499 DOI: 10.1073/pnas.1601846113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 70-kDa heat shock protein (Hsp70) family of chaperones bind cognate substrates to perform a variety of different processes that are integral to cellular homeostasis. Although detailed structural information is available on the chaperone, the structural features of folding competent substrates in the bound form have not been well characterized. Here we use paramagnetic relaxation enhancement (PRE) NMR spectroscopy to probe the existence of long-range interactions in one such folding competent substrate, human telomere repeat binding factor (hTRF1), which is bound to DnaK in a globally unfolded conformation. We show that DnaK binding modifies the energy landscape of the substrate by removing long-range interactions that are otherwise present in the unbound, unfolded conformation of hTRF1. Because the unfolded state of hTRF1 is only marginally populated and transiently formed, it is inaccessible to standard NMR approaches. We therefore developed a (1)H-based CEST experiment that allows measurement of PREs in sparse states, reporting on transiently sampled conformations. Our results suggest that DnaK binding can significantly bias the folding pathway of client substrates such that secondary structure forms first, followed by the development of longer-range contacts between more distal parts of the protein.
Collapse
Affiliation(s)
- Ashok Sekhar
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Rina Rosenzweig
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guillaume Bouvignies
- Département de Chimie, École Normale Supérieure (ENS)-Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Laboratoire des Biomolécules (LBM), Sorbonnes Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, 75005 Paris, France; UMR 7203 LBM, CNRS, 75005 Paris, France
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| |
Collapse
|