51
|
Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, Lee J, Egerod KL, Rausch DM, Parmar M, Pers TH, Laurell T, Kirkeby A. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 2020; 38:1265-1273. [DOI: 10.1038/s41587-020-0525-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
|
52
|
Farkas S, Simara P, Rehakova D, Veverkova L, Koutna I. Endothelial Progenitor Cells Produced From Human Pluripotent Stem Cells by a Synergistic Combination of Cytokines, Small Compounds, and Serum-Free Medium. Front Cell Dev Biol 2020; 8:309. [PMID: 32509776 PMCID: PMC7249886 DOI: 10.3389/fcell.2020.00309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of autologous endothelial progenitor cells (EPCs) that can be used for the treatment of vascular diseases. However, this kind of treatment requires a large amount of EPCs. Therefore, a highly efficient, robust, and easily reproducible differentiation protocol is necessary. We present a novel serum-free differentiation protocol that exploits the synergy of multiple powerful differentiation effectors. Our protocol follows the proper physiological pathway by differentiating EPCs from hPSCs in three phases that mimic in vivo embryonic vascular development. Specifically, hPSCs are differentiated into (i) primitive streak, which is subsequently turned into (ii) mesoderm, which finally differentiates into (iii) EPCs. This differentiation process yields up to 15 differentiated cells per seeded hPSC in 5 days. Endothelial progenitor cells constitute up to 97% of these derived cells. The experiments were performed on the human embryonic stem cell line H9 and six human induced pluripotent stem cell lines generated in our laboratory. Therefore, robustness was verified using many hPSC lines. Two previously established protocols were also adapted and compared to our synergistic three-phase protocol. Increased efficiency and decreased variability were observed for our differentiation protocol in comparison to the other tested protocols. Furthermore, EPCs derived from hPSCs by our protocol expressed the high-proliferative-potential EPC marker CD157 on their surface in addition to the standard EPC surface markers CD31, CD144, CD34, KDR, and CXCR4. Our protocol enables efficient fully defined production of autologous endothelial progenitors for research and clinical applications.
Collapse
Affiliation(s)
- Simon Farkas
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Simara
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Daniela Rehakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lenka Veverkova
- I. Surgery Department, St. Anne's University Hospital Brno, Brno, Czechia
| | - Irena Koutna
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
53
|
Heemskerk I. Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Dev Biol 2020; 460:86-98. [DOI: 10.1016/j.ydbio.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
|
54
|
Srivastava P, Kilian KA. Micro-Engineered Models of Development Using Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2019; 7:357. [PMID: 31850326 PMCID: PMC6895561 DOI: 10.3389/fbioe.2019.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
During fetal development, embryonic cells are coaxed through a series of lineage choices which lead to the formation of the three germ layers and subsequently to all the cell types that are required to form an adult human body. Landmark cell fate decisions leading to symmetry breaking, establishment of the primitive streak and first tri-lineage differentiation happen after implantation, and therefore have been attributed to be a function of the embryo's spatiotemporal 3D environment. These mechanical and geometric cues induce a cascade of signaling pathways leading to cell differentiation and orientation. Due to the physiological, ethical, and legal limitations of accessing an intact human embryo for functional studies, multiple in-vitro models have been developed to try and recapitulate the key milestones of mammalian embryogenesis using mouse embryos, or mouse and human embryonic stem cells. More recently, the development of induced pluripotent stem cells represents a cell source which is being explored to prepare a developmental model, owing to their genetic and functional similarities to embryonic stem cells. Here we review the use of micro-engineered cell culture materials as platforms to define the physical and geometric contributions during the cell fate defining process and to study the underlying pathways. This information has applications in various biomedical contexts including tissue engineering, stem cell therapy, and organoid cultures for disease modeling.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Centre for Nanomedicine, School of Chemistry, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A. Kilian
- Australian Centre for Nanomedicine, School of Chemistry, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
55
|
Fedorova V, Vanova T, Elrefae L, Pospisil J, Petrasova M, Kolajova V, Hudacova Z, Baniariova J, Barak M, Peskova L, Barta T, Kaucka M, Killinger M, Vecera J, Bernatik O, Cajanek L, Hribkova H, Bohaciakova D. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res 2019; 40:101563. [DOI: 10.1016/j.scr.2019.101563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
|
56
|
Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS One 2019; 14:e0222946. [PMID: 31560727 PMCID: PMC6764674 DOI: 10.1371/journal.pone.0222946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived skeletal muscle progenitors (SMP)—defined as PAX7-expressing cells with myogenic potential—can provide an abundant source of donor material for muscle stem cell therapy. As in vitro myogenesis is decoupled from in vivo timing and 3D-embryo structure, it is important to characterize what stage or type of muscle is modeled in culture. Here, gene expression profiling is analyzed in hESCs over a 50 day skeletal myogenesis protocol and compared to datasets of other hESC-derived skeletal muscle and adult murine satellite cells. Furthermore, day 2 cultures differentiated with high or lower concentrations of CHIR99021, a GSK3A/GSK3B inhibitor, were contrasted. Expression profiling of the 50 day time course identified successively expressed gene subsets involved in mesoderm/paraxial mesoderm induction, somitogenesis, and skeletal muscle commitment/formation which could be regulated by a putative cascade of transcription factors. Initiating differentiation with higher CHIR99021 concentrations significantly increased expression of MSGN1 and TGFB-superfamily genes, notably NODAL, resulting in enhanced paraxial mesoderm and reduced ectoderm/neuronal gene expression. Comparison to adult satellite cells revealed that genes expressed in 50-day cultures correlated better with those expressed by quiescent or early activated satellite cells, which have the greatest therapeutic potential. Day 50 cultures were similar to other hESC-derived skeletal muscle and both expressed known and novel SMP surface proteins. Overall, a putative cascade of transcription factors has been identified which regulates four stages of myogenesis. Subsets of these factors were upregulated by high CHIR99021 or their binding sites were significantly over-represented during SMP activation, ranging from quiescent to late-activated stages. This analysis serves as a resource to further study the progression of in vitro skeletal myogenesis and could be mined to identify novel markers of pluripotent-derived SMPs or regulatory transcription/growth factors. Finally, 50-day hESC-derived SMPs appear similar to quiescent/early activated satellite cells, suggesting they possess therapeutic potential.
Collapse
|
57
|
de la Roche J, Angsutararux P, Kempf H, Janan M, Bolesani E, Thiemann S, Wojciechowski D, Coffee M, Franke A, Schwanke K, Leffler A, Luanpitpong S, Issaragrisil S, Fischer M, Zweigerdt R. Comparing human iPSC-cardiomyocytes versus HEK293T cells unveils disease-causing effects of Brugada mutation A735V of Na V1.5 sodium channels. Sci Rep 2019; 9:11173. [PMID: 31371804 PMCID: PMC6673693 DOI: 10.1038/s41598-019-47632-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.
Collapse
Affiliation(s)
- Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| | - Paweorn Angsutararux
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Henning Kempf
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Department of Stem Cell Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Emiliano Bolesani
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Stefan Thiemann
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Daniel Wojciechowski
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michelle Coffee
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Annika Franke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Kristin Schwanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
58
|
Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, de la Roche J, Polten F, Christoph Wollert K, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports 2019; 13:366-379. [PMID: 31353227 PMCID: PMC6700605 DOI: 10.1016/j.stemcr.2019.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Aiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.3 × 108 CM in 150 mL and ∼4.0 × 108 CMs in 350–500 mL process scale at >90% lineage purity. Process robustness and efficiency is ensured by uninterrupted chemical WNT pathway control at early stages of differentiation and results in the formation of almost exclusively ventricular-like CMs. Modulated WNT pathway regulation also revealed the previously unappreciated role of ROR1/CD13 as superior surrogate markers for predicting cardiac differentiation efficiency as soon as 72 h of differentiation. This monitoring strategy facilitates process upscaling and controlled mass production of hPSC derivatives. Chemically defined hPSC cardiac differentiation applicable to stirred tank reactors Protocol generates >90% purity of ventricular-like cardiomyocytes Uninterrupted WNT pathway control enables superior cardiac mesoderm formation Novel ROR1/CD13 combination as superior, predictive marker of cardiomyogenesis
Collapse
Affiliation(s)
- Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Wiebke Löbel
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Santoshi Biswanath
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Felix Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Felix Polten
- Division of Molecular and Translational Cardiology and Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Kai Christoph Wollert
- Division of Molecular and Translational Cardiology and Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
59
|
Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019; 6:E48. [PMID: 31137703 PMCID: PMC6632060 DOI: 10.3390/bioengineering6020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022] Open
Abstract
Transplantation of human pluripotent stem cell (hPSCs)-derived cardiomyocytes for the treatment of heart failure is a promising therapy. In order to implement this therapy requiring numerous cardiomyocytes, substantial production of hPSCs followed by cardiac differentiation seems practical. Conventional methods of culturing hPSCs involve using a 2D culture monolayer that hinders the expansion of hPSCs, thereby limiting their productivity. Advanced culture of hPSCs in 3D aggregates in the suspension overcomes the limitations of 2D culture and attracts immense attention. Although the hPSC production needs to be suitable for subsequent cardiac differentiation, many studies have independently focused on either expansion of hPSCs or cardiac differentiation protocols. In this review, we summarize the recent approaches to expand hPSCs in combination with cardiomyocyte differentiation. A comparison of various suspension culture methods and future prospects for dynamic culture of hPSCs are discussed in this study. Understanding hPSC characteristics in different models of dynamic culture helps to produce numerous cells that are useful for further clinical applications.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
60
|
Müller D, Hagenah D, Biswanath S, Coffee M, Kampmann A, Zweigerdt R, Heisterkamp A, Kalies SMK. Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Sci Rep 2019; 9:3625. [PMID: 30842507 PMCID: PMC6403391 DOI: 10.1038/s41598-019-40308-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/13/2019] [Indexed: 11/24/2022] Open
Abstract
A highly organized cytoskeleton architecture is the basis for continuous and controlled contraction in cardiomyocytes (CMs). Abnormalities in cytoskeletal elements, like the Z-disc, are linked to several diseases. It is challenging to reveal the mechanisms of CM failure, endogenous repair, or mechanical homeostasis on the scale of single cytoskeletal elements. Here, we used a femtosecond (fs) laser to ablate single Z-discs in human pluripotent stem cells (hPSC) -derived CMs (hPSC-CM) and neonatal rat CMs. We show, that CM viability was unaffected by the loss of a single Z-disc. Furthermore, more than 40% of neonatal rat and 68% of hPSC-CMs recovered the Z-disc loss within 24 h. Significant differences to control cells, after the Z-disc loss, in terms of cell perimeter, x- and y-expansion and calcium homeostasis were not found. Only 14 days in vitro old hPSC-CMs reacted with a significant decrease in cell area, x- and y-expansion 24 h past nanosurgery. This demonstrates that CMs can compensate the loss of a single Z-disc and recover a regular sarcomeric pattern during spontaneous contraction. It also highlights the significant potential of fs laser-based nanosurgery to physically micro manipulate CMs to investigate cytoskeletal functions and organization of single elements.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany. .,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany. .,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| | - Dorian Hagenah
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Santoshi Biswanath
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Michelle Coffee
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Clinic for Cranio-Maxillo-Facial Surgery, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan M K Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
61
|
Cell population balance of cardiovascular spheroids derived from human induced pluripotent stem cells. Sci Rep 2019; 9:1295. [PMID: 30718597 PMCID: PMC6362271 DOI: 10.1038/s41598-018-37686-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cell-derived cardiomyocytes and vascular cells can be used for a variety of applications such as studying human heart development and modelling human disease in culture. In particular, protocols based on modulation of Wnt signaling were able to produce high quality of cardiomyocytes or vascular cells from human pluripotent stem cells (hPSCs). However, the mechanism behind the development of 3D cardiovascular spheroids into either vascular or cardiac cells has not been well explored. Hippo/Yes-associated protein (YAP) signaling plays important roles in the regulation of organogenesis, but its impact on cardiovascular differentiation has been less evaluated. In this study, the effects of seeding density and a change in YAP signaling on 3D cardiovascular spheroids patterning from hPSCs were evaluated. Compared to 2D culture, 3D cardiovascular spheroids exhibited higher levels of sarcomeric striations and higher length-to-width ratios of α-actinin+ cells. The spheroids with high seeding density exhibited more α-actinin+ cells and less nuclear YAP expression. The 3D cardiovascular spheroids were also treated with different small molecules, including Rho kinase inhibitor (Y27632), Cytochalasin D, Dasatinib, and Lysophosphatidic acid to modulate YAP localization. Nuclear YAP inhibition resulted in lower expression of active β-catenin, vascular marker, and MRTF, the transcription factor mediated by RhoGTPases. Y27632 also promoted the gene expression of MMP-2/-3 (matrix remodeling) and Notch-1 (Notch signaling). These results should help our understanding of the underlying effects for the efficient patterning of cardiovascular spheroids after mesoderm formation from hPSCs.
Collapse
|
62
|
Chemically defined and xenogeneic-free differentiation of human pluripotent stem cells into definitive endoderm in 3D culture. Sci Rep 2019; 9:996. [PMID: 30700818 PMCID: PMC6353891 DOI: 10.1038/s41598-018-37650-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm (DE) represents a key step towards somatic cells of lung, liver and pancreas. For future clinical applications, mass production of differentiated cells at chemically defined conditions and free of xenogeneic substances is envisioned. In this study we adapted our previously published two-dimensional (2D) DE induction protocol to three-dimensional (3D) static suspension culture in the absence of the xenogeneic extracellular matrix Matrigel. Next, fetal calf serum and bovine serum albumin present in the standard medium were replaced by a custom-made and xeno-free B-27. This yielded in a chemically defined and xenogeneic-free 3D culture protocol for differentiation of hPSCs into DE at efficiencies similar to standard 2D conditions. This novel protocol successfully worked with different hPSC lines including hESCs and hiPSCs maintained in two different stem cell media prior to differentiation. DE cells obtained by our novel BSA-free 3D protocol could be further differentiated into PDX1- or NKX6.1-expressing pancreatic progenitor cells. Notably, upon DE differentiation, we also identified a CXCR4+/NCAM+/EpCAMlow cell population with reduced DE marker gene expression. These CXCR4+/NCAM+/EpCAMlow cells emerge as a result of Wnt/beta-catenin hyperactivation via elevated CHIR-99021 concentrations and likely represent misspecified DE.
Collapse
|
63
|
Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos T, Van Daele D, De Raedt L, Kühl M, Kestler HA. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol 2019; 2:21. [PMID: 30675519 PMCID: PMC6336720 DOI: 10.1038/s42003-018-0268-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Dynamic models analyzing gene regulation and metabolism face challenges when adapted to modeling signal transduction networks. During signal transduction, molecular reactions and mechanisms occur in different spatial and temporal frames and involve feedbacks. This impedes the straight-forward use of methods based on Boolean networks, Bayesian approaches, and differential equations. We propose a new approach, ProbRules, that combines probabilities and logical rules to represent the dynamics of a system across multiple scales. We demonstrate that ProbRules models can represent various network motifs of biological systems. As an example of a comprehensive model of signal transduction, we provide a Wnt network that shows remarkable robustness under a range of phenotypical and pathological conditions. Its simulation allows the clarification of controversially discussed molecular mechanisms of Wnt signaling by predicting wet-lab measurements. ProbRules provides an avenue in current computational modeling by enabling systems biologists to integrate vast amounts of available data on different scales.
Collapse
Affiliation(s)
- Alexander Groß
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Barbara Kracher
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Silke D. Kühlwein
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Astrid S. Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Katrin Luckert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Thomas Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Dries Van Daele
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Luc De Raedt
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
64
|
Christoffersson J, Meier F, Kempf H, Schwanke K, Coffee M, Beilmann M, Zweigerdt R, Mandenius CF. Evaluating the Effect of Drug Compounds on Cardiac Spheroids Using the Cardiac Cell Outgrowth Assay. Methods Mol Biol 2019; 1994:185-193. [PMID: 31124116 DOI: 10.1007/978-1-4939-9477-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ideal cell culture model should mimic the cell physiology and the mechanical and the chemical cues that are present in specific tissues and organs, within a convenient high-throughput format. A possible key feature for such models is to recapture the cell polarity, the interactions between cells, and the interactions between the cells and the elastic extracellular matrix (ECM) by orienting the cells in a three-dimensional (3D) matrix. A common method to create 3D cell environments is to let the cells aggregate into spheroids with a diameter of around 200 μm. A major challenge for 3D cell cultures is to perform quick and easy imaging of the dense cell population, especially noninvasively. This protocol explains how to take advantage of the number of cells growing out from cell spheroids over time as a readout of the effect of a drug. The assay is compatible with standard imaging techniques and can be performed noninvasively using light microscopy or as a complement to other fluorescent imaging assays.
Collapse
Affiliation(s)
- Jonas Christoffersson
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, Biberach, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Michelle Coffee
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, Biberach, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
| |
Collapse
|
65
|
Halloin C, Coffee M, Manstein F, Zweigerdt R. Production of Cardiomyocytes from Human Pluripotent Stem Cells by Bioreactor Technologies. Methods Mol Biol 2019; 1994:55-70. [PMID: 31124104 DOI: 10.1007/978-1-4939-9477-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs) have the ability to advance specificity of in vitro assays for drug discovery and safety pharmacology. They may also provide a superior cell source for envisioned cell therapies to repair damaged hearts. All applications will require the production of cardiomyocytes (CMs) by robust upscalable bioprocesses via industry-compliant technologies. This paper describes a detailed procedure for producing hPSC-CMs in stirred tank bioreactors in 100 ml process scale. The strategy combines both hPSC expansion in suspension culture and, directly followed by, cardiogenic differentiation using small molecule-Wnt pathway modulators. We also provide a protocol describing how to plan and expand the pluripotent stem cells to enable parallel inoculation of 4× 150 ml parallel bioreactor differentiations, potentially producing more than 240 × 106 cardiomyocytes in 22 days.
Collapse
Affiliation(s)
- Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Michelle Coffee
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
66
|
Blin G, Wisniewski D, Picart C, Thery M, Puceat M, Lowell S. Geometrical confinement controls the asymmetric patterning of brachyury in cultures of pluripotent cells. Development 2018; 145:dev166025. [PMID: 30115626 PMCID: PMC6176930 DOI: 10.1242/dev.166025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
Diffusible signals are known to orchestrate patterning during embryogenesis, yet diffusion is sensitive to noise. The fact that embryogenesis is remarkably robust suggests that additional layers of regulation reinforce patterning. Here, we demonstrate that geometrical confinement orchestrates the spatial organisation of initially randomly positioned subpopulations of spontaneously differentiating mouse embryonic stem cells. We use micropatterning in combination with pharmacological manipulations and quantitative imaging to dissociate the multiple effects of geometry. We show that the positioning of a pre-streak-like population marked by brachyury (T) is decoupled from the size of its population, and that breaking radial symmetry of patterns imposes polarised patterning. We provide evidence for a model in which the overall level of diffusible signals together with the history of the cell culture define the number of T+ cells, whereas geometrical constraints guide patterning in a multi-step process involving a differential response of the cells to multicellular spatial organisation. Our work provides a framework for investigating robustness of patterning and provides insights into how to guide symmetry-breaking events in aggregates of pluripotent cells.
Collapse
Affiliation(s)
- Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Darren Wisniewski
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Catherine Picart
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Manuel Thery
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire and Végétale, UMR5168, CytoMorpho Lab, 38054 Grenoble, France
- Univ. Paris Diderot, CEA, INSERM, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France
| | - Michel Puceat
- INSERM U1251, Université Aix-Marseille, MMG, 13885 Marseille, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
67
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
68
|
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The envisioned routine application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for therapies and industry-compliant screening approaches will require efficient and highly reproducible processes for the mass production of well-characterized CM batches.On their way toward beating CMs, hPSCs initially undergo an epithelial-to-mesenchymal transition into a primitive-streak (PS)-like population that later gives rise to all endodermal and mesodermal lineages, including cardiovascular progenies (CVPs). CVPs are multipotent and possess the capability to give rise to all major cell types of the heart, including CMs, endothelial cells, cardiac fibroblasts, and smooth muscle cells. This article provides an historical overview and describes the stepwise development of protocols that typically result in the appearance of beating CMs within 7-12 days of hPSC differentiation.We describe the development of directed and closely controlled cardiomyogenic differentiation, which now enables the induction of >90% CM purity without further lineage enrichment. Although secreted lineage specifiers (revealed from developmental biology) were initially used, we outline the advantages of chemical pathway modulators, as defined by more recent screening approaches. Subsequently, we discuss the use of defined culture media for upscaling the production of hPSC-CMs in controlled bioreactors and how this, in principle, unlimited source of human CMs can be used to progress heart regeneration and stimulate the drug discovery pipeline. Graphical Abstract.
Collapse
|
69
|
Gaspari E, Franke A, Robles-Diaz D, Zweigerdt R, Roeder I, Zerjatke T, Kempf H. Paracrine mechanisms in early differentiation of human pluripotent stem cells: Insights from a mathematical model. Stem Cell Res 2018; 32:1-7. [PMID: 30145492 DOI: 10.1016/j.scr.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023] Open
Abstract
With their capability to self-renew and differentiate into derivatives of all three germ layers, human pluripotent stem cells (hPSCs) offer a unique model to study aspects of human development in vitro. Directed differentiation towards mesendodermal lineages is a complex process, involving transition through a primitive streak (PS)-like stage. We have recently shown PS-like patterning from hPSCs into definitive endoderm, cardiac as well as presomitic mesoderm by only modulating the bulk cell density and the concentration of the GSK3 inhibitor CHIR99021, a potent activator of the WNT pathway. The patterning process is modulated by a complex paracrine network, whose identity and mechanistic consequences are poorly understood. To study the underlying dynamics, we here applied mathematical modeling based on ordinary differential equations. We compared time-course data of early hPSC differentiation to increasingly complex model structures with incremental numbers of paracrine factors. Model simulations suggest at least three paracrine factors being required to recapitulate the experimentally observed differentiation kinetics. Feedback mechanisms from both undifferentiated and differentiated cells turned out to be crucial. Evidence from double knock-down experiments and secreted protein enrichment allowed us to hypothesize on the identity of two of the three predicted factors. From a practical perspective, the mathematical model predicts optimal settings for directing lineage-specific differentiation. This opens new avenues for rational stem cell bioprocessing in more advanced culture systems, e.g. in perfusion-fed bioreactors enabling cell therapies.
Collapse
Affiliation(s)
- Erika Gaspari
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hannover Medical School, Germany
| | - Diana Robles-Diaz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hannover Medical School, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hannover Medical School, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hannover Medical School, Germany.
| |
Collapse
|
70
|
Froese N, Wang H, Zwadlo C, Wang Y, Grund A, Gigina A, Hofmann M, Kilian K, Scharf G, Korf-Klingebiel M, Melchert A, Signorini MER, Halloin C, Zweigerdt R, Martin U, Gruh I, Wollert KC, Geffers R, Bauersachs J, Heineke J. Anti-androgenic therapy with finasteride improves cardiac function, attenuates remodeling and reverts pathologic gene-expression after myocardial infarction in mice. J Mol Cell Cardiol 2018; 122:114-124. [PMID: 30118791 DOI: 10.1016/j.yjmcc.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/03/2023]
Abstract
Maladaptive cardiac remodeling after myocardial infarction (MI) is increasingly contributing to the prevalence of chronic heart failure. Women show less severe remodeling, a reduced mortality and a better systolic function after MI compared to men. Although sex hormones are being made responsible for these differences, it remains currently unknown how this could be translated into therapeutic strategies. Because we had recently demonstrated that inhibition of the conversion of testosterone to its highly active metabolite dihydrotestosterone (DHT) by finasteride effectively reduces cardiac hypertrophy and improves heart function during pressure overload, we asked here whether this strategy could be applied to post-MI remodeling. We found increased abundance of DHT and increased expression of androgen responsive genes in the mouse myocardium after experimental MI. Treatment of mice with finasteride for 21 days (starting 7 days after surgery), reduced myocardial DHT levels and markedly attenuated cardiac dysfunction as well as hypertrophic remodeling after MI. Histological and molecular analyses showed reduced MI triggered interstitial fibrosis, reduced cardiomyocyte hypertrophy and increased capillary density in the myocardium of finasteride treated mice. Mechanistically, this was associated with decreased activation of myocardial growth-signaling pathways, a comprehensive normalization of pathological myocardial gene-expression as revealed by RNA deep-sequencing and with direct effects of finasteride on cardiac fibroblasts and endothelial cells. In conclusion, we demonstrated a beneficial role of anti-androgenic treatment with finasteride in post-MI remodeling of mice. As finasteride is already approved for the treatment of benign prostate disease, it could potentially be evaluated as therapeutic strategy for heart failure after MI.
Collapse
Affiliation(s)
- Natali Froese
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Honghui Wang
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carolin Zwadlo
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Yong Wang
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Andrea Grund
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna Gigina
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Melanie Hofmann
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Katja Kilian
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Gesine Scharf
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mortimer Korf-Klingebiel
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna Melchert
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Maria Elena Ricci Signorini
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Caroline Halloin
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Ina Gruh
- Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Kai C Wollert
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Robert Geffers
- Genomanalytik, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Johann Bauersachs
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Joerg Heineke
- Klinik für Kardiologie und Angiologie, Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medizinische Hochschule Hannover, 30625 Hannover, Germany; Abteilung für Herz- und Kreislaufforschung, European Center for Angioscience (ECAS), Medizinische Fakultät Mannheim der Universität Heidelberg, 68167 Mannheim, Germany.
| |
Collapse
|
71
|
Le MNT, Takahi M, Maruyama K, Kurisaki A, Ohnuma K. Cardiac differentiation at an initial low density of human-induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2018; 54:513-522. [PMID: 29967976 DOI: 10.1007/s11626-018-0276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
A high density of human-induced pluripotent stem cells (hiPSCs) improves the efficiency of cardiac differentiation, suggesting the existence of indispensable cell-cell interaction signals. The complexity of interactions among cells at high density hinders the understanding of the roles of cell signals. In this study, we determined the minimum cell density that can initiate differentiation to facilitate cell-cell interaction studies. First, we co-induced cardiac differentiation in the presence of the glycogen synthase kinase-3β inhibitor CHIR99021 and activin A at various cell densities. At an initial low density, cells died within a few days in RPMI-based medium. We then investigated the culture conditions required to maintain cell viability. We used a basal medium excluding important components for the maintenance of hiPSC pluripotency, including activin A, basic fibroblast growth factor, and insulin. Supplementation of the basal medium with Rho-associated protein kinase inhibitor and insulin improved cell viability. Interestingly, addition of basic fibroblast growth factor enabled the expression of cardiac markers at the mRNA level but not the protein level. After further modification of the culture conditions, 10% of the cells expressed the cardiac troponin T protein, which is associated with cell contraction. The novel protocol for cardiac differentiation at an initial low cell density can also be used to evaluate high cell density conditions. The findings will facilitate the identification of cell signals required for cardiomyocyte formation.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Mika Takahi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8560, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
72
|
Quantitative Secretomics Reveals Extrinsic Signals Involved in Human Pluripotent Stem Cell Cardiomyogenesis. Proteomics 2018; 18:e1800102. [DOI: 10.1002/pmic.201800102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Indexed: 12/22/2022]
|
73
|
Gieseler GM, Ekramzadeh K, Nölle V, Malysheva S, Kempf H, Beutel S, Zweigerdt R, Martin U, Rinas U, Scheper T, Pepelanova I. Solubilization and renaturation of biologically active human bone morphogenetic protein-4 from inclusion bodies. ACTA ACUST UNITED AC 2018; 18:e00249. [PMID: 29876300 PMCID: PMC5989590 DOI: 10.1016/j.btre.2018.e00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/03/2022]
Abstract
Biologically active rhBMP-4 was produced in a prokaryotic host as inclusion bodies. Different refolding recipes were tested for optimal dimerization yield. One-step purification of dimer with cation-exchange membrane chromatography. The product induces trophoblast differentiation in induced pluripotent stem cells. Comparison between commercial rhBMP-4 from cell culture and product from E. coli.
Biologically active human bone morphogenetic protein-4 (hBMP-4) was successfully produced in a prokaryotic host. For this aim, hBMP-4 cDNA was cloned in Escherichia coli (E. coli) and the protein was produced in a non-active aggregated form. After washing and solubilization, in vitro refolding of the rhBMP-4 monomer was performed using rapid dilution. In this study, different refolding conditions were tested for the dimerization of rhBMP-4 by one-factor-at-a-time variation. The dimerization process was found to be sensitive to pH, protein concentration and the presence of aggregation suppressors. In contrast, redox conditions and ionic strength did not impact refolding as expected. The dimer was separated from the remaining monomer, aggregates and host cell contaminants in a single step using cation-exchange membrane chromatography. The rhBMP-4 dimer produced in E. coli was biologically active as demonstrated by its capability to induce trophoblast differentiation and primitive streak induction of human pluripotent stem cells (hPSCs).
Collapse
Affiliation(s)
| | - Kimia Ekramzadeh
- Institute of Technical Chemistry, Leibniz University of Hannover, Germany
| | - Volker Nölle
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Svitlana Malysheva
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Medical University Hannover, Germany
| | - Henning Kempf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Medical University Hannover, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Medical University Hannover, Germany
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Medical University Hannover, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Germany
| |
Collapse
|
74
|
Christoffersson J, Meier F, Kempf H, Schwanke K, Coffee M, Beilmann M, Zweigerdt R, Mandenius CF. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device. Bioengineering (Basel) 2018; 5:bioengineering5020036. [PMID: 29734702 PMCID: PMC6027518 DOI: 10.3390/bioengineering5020036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC)-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.
Collapse
Affiliation(s)
- Jonas Christoffersson
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany.
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Michelle Coffee
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH and Co. KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
75
|
Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S. Unraveling the Inconsistencies of Cardiac Differentiation Efficiency Induced by the GSK3β Inhibitor CHIR99021 in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:1851-1866. [PMID: 29706502 PMCID: PMC5989659 DOI: 10.1016/j.stemcr.2018.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac differentiation efficiency is hampered by inconsistencies and low reproducibility. We analyzed the differentiation process of multiple human pluripotent stem cell (hPSC) lines in response to dynamic GSK3β inhibition under varying cell culture conditions. hPSCs showed strong differences in cell-cycle profiles with varying culture confluency. hPSCs with a higher percentage of cells in the G1 phase of the cell cycle exhibited cell death and required lower doses of GSK3β inhibitors to induce cardiac differentiation. GSK3β inhibition initiated cell-cycle progression via cyclin D1 and modulated both Wnt signaling and the transcription factor (TCF) levels, resulting in accelerated or delayed mesoderm differentiation. The TCF levels were key regulators during hPSC differentiation with CHIR99021. Our results explain how differences in hPSC lines and culture conditions impact cell death and cardiac differentiation. By analyzing the cell cycle, we were able to select for highly cardiogenic hPSC lines and increase the experimental reproducibility by predicting differentiation outcomes. Lineage variety and cell culture density affect the cell cycle in hPSCs CHIR99021 is cytotoxic to hPSCs with reduced S/G2/M cell-cycle phases Cardiac differentiation reproducibility depends on cell-cycle consistency in hPSCs Cell cycle and TCF protein levels modulate CHIR99021-induced differentiation
Collapse
Affiliation(s)
- Filip Laco
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore.
| | - Tsung Liang Woo
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Qixing Zhong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Radoslaw Szmyd
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos #03-01, Singapore 138673, Singapore
| | - Sherwin Ting
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Fahima Jaleel Khan
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Christina L L Chai
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Allen Chen
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore.
| |
Collapse
|
76
|
Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, Chichkov B. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication 2018; 10:035005. [DOI: 10.1088/1758-5090/aab981] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018; 5:110. [PMID: 29740580 PMCID: PMC5928319 DOI: 10.3389/fmed.2018.00110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Recent advances in the differentiation and production of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) have stimulated development of strategies to use these cells in human cardiac regenerative therapies. A prerequisite for clinical trials and translational implementation of hPSC-derived CMs is the ability to manufacture safe and potent cells on the scale needed to replace cells lost during heart disease. Current differentiation protocols generate fetal-like CMs that exhibit proarrhythmogenic potential. Sufficient maturation of these hPSC-derived CMs has yet to be achieved to allow these cells to be used as a regenerative medicine therapy. Insights into the native cardiac environment during heart development may enable engineering of strategies that guide hPSC-derived CMs to mature. Specifically, considerations must be made in regard to developing methods to incorporate the native intercellular interactions and biomechanical cues into hPSC-derived CM production that are conducive to scale-up.
Collapse
Affiliation(s)
- Kaitlin K Dunn
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| | - Sean P Palecek
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| |
Collapse
|
78
|
Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Göhring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports 2018; 10:1657-1672. [PMID: 29681541 PMCID: PMC5995343 DOI: 10.1016/j.stemcr.2018.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. Efficient generation of hiPSC-derived ECs in scalable suspension culture High degree of chromosomal stability of hiPSC-ECs after in vitro expansion Generation of relevant numbers of hiPSC-ECs for regenerative approaches
Collapse
Affiliation(s)
- Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Muhammad Nasir Hayat Malik
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Svenja Bolten
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Scheper
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
79
|
Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Front Physiol 2018; 8:1111. [PMID: 29403388 PMCID: PMC5780405 DOI: 10.3389/fphys.2017.01111] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC) isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs) differentiated in vitro resemble those of human ventricular myofibrils (hvMFs) isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs) and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1), reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa) than for hvMFs (94 kPa). At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04) than for hvMFs (pCa50 = 5.80). At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1) than for hvMFs (0.28 s−1). During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1) than for hvMFs (0.21 s−1), while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins, explaining the functional discrepancies. The sarcomeric protein isoform pattern of hESC-CMs had features of human cardiomyocytes at an early developmental stage. The study indicates that morphological and ultrastructural maturation of βMyHC isoform-expressing hESC-CMs is not necessarily accompanied by ventricular-like expression of all sarcomeric proteins. Our data suggest that hPSC-CMs could provide useful tools for investigating inherited cardiac diseases affecting contractile function during early developmental stages.
Collapse
Affiliation(s)
- Bogdan Iorga
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Kristin Schwanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Meike Wendland
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Stephan Greten
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Ulrich Martin
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Bernhard Brenner
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
80
|
Martin U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Front Med (Lausanne) 2017; 4:229. [PMID: 29312943 PMCID: PMC5735065 DOI: 10.3389/fmed.2017.00229] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Stem-cell-based therapies are considered to be promising and innovative but complex approaches. Induced pluripotent stem cells (iPSCs) combine the advantages of adult stem cells with the hitherto unique characteristics of embryonic stem cells (ESCs). Major progress has already been achieved with regard to reprogramming technology, but also regarding targeted genome editing and scalable expansion and differentiation of iPSCs and ESCs, in some cases yielding highly enriched preparations of well-defined cell lineages at clinically required dimensions. It is noteworthy, however, that for many applications critical requirements such as the targeted specification into distinct cellular subpopulations and a proper cell maturation remain to be achieved. Moreover, current hurdles such as low survival rates and insufficient functional integration of cellular transplants remain to be overcome. Nevertheless, PSC technologies obviously have come of age and matured to a stage where various clinical applications of PSC-based cellular therapies have been initiated and are conducted.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
81
|
Sgodda M, Dai Z, Zweigerdt R, Sharma AD, Ott M, Cantz T. A Scalable Approach for the Generation of Human Pluripotent Stem Cell-Derived Hepatic Organoids with Sensitive Hepatotoxicity Features. Stem Cells Dev 2017; 26:1490-1504. [DOI: 10.1089/scd.2017.0023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Malte Sgodda
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Tobias Cantz
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
82
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
83
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
84
|
Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med 2017; 23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a practical source for the de novo generation of cardiac tissues and a unique opportunity to investigate cardiovascular lineage commitment. Numerous strategies have focused on the in vitro production of cardiomyocytes, smooth muscle, and endothelium from hPSCs. However, these differentiation protocols often yield undesired cell types. Thus, establishing a set of stage-specific markers for pure cardiac subpopulations will assist in defining the hierarchy of cardiac differentiation, aid in the development of cellular therapy, and facilitate drug screening and disease modeling. The recent characterization of many such markers is enabling the isolation of major cardiac lineages and subpopulations from differentiating hPSCs. We provide here a comprehensive review detailing the suite of biomarkers used to differentiate cardiac lineages from mixed hPSC-derived populations.
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
85
|
Abstract
Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.
Collapse
|
86
|
Haase A, Göhring G, Martin U. Generation of non-transgenic iPS cells from human cord blood CD34 + cells under animal component-free conditions. Stem Cell Res 2017; 21:71-73. [PMID: 28677540 DOI: 10.1016/j.scr.2017.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, many hurdles and limitations for production of clinically applicable iPSC derivatives have been overcome. Transgene-free iPSCs can be efficiently derived from easily accessible cell sources such as blood. Here we describe the generation of transgene-free hiPS cells from cord blood derived CD34+ cells, reprogrammed using CytoTune™ Sendai reprogramming vectors. CD34+ cell isolation, cultivation, reprogramming and establishment of resulting hiPSC lines were performed under the exclusive usage of animal-derived component-free (ADCF) materials and components.
Collapse
Affiliation(s)
- Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|