51
|
Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State. Cell Rep 2017; 18:443-453. [PMID: 28076788 PMCID: PMC5263234 DOI: 10.1016/j.celrep.2016.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
One of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry, its exact role during the first steps of HIV-1 infection is not well characterized. Here, we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells. We have combined advanced light microscopy and functional cell-based assays to experimentally assess the role of dynamin-2 during these processes. Overall, our data suggest that dynamin-2, as a tetramer, might help to establish hemi-fusion and stabilizes the pore during HIV-1 fusion. DNM2 is crucial for HIV-1 fusion in T Cells and reporter cells DNM2 is not necessarily linked with endocytosis DNM2 tetramer stabilizes the HIV-1 fusion pore
Collapse
|
52
|
Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol 2017; 298:180-190. [PMID: 28923368 DOI: 10.1016/j.expneurol.2017.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Gaucher disease, the most common lysosomal storage disorder, is caused by mutations in the gene encoding the acid-β-glucosidase lysosomal hydrolase enzyme that cleaves glucocerebroside into glucose and ceramide. Reduced enzyme activity and impaired structural stability arise due to >300 known disease-causing mutations. Several of these mutations have also been associated with an increased risk of Parkinson disease (PD). Since the discovery of the acid-β-glucosidase X-ray structure, there have been major advances in our understanding of the structural properties of the protein. Analysis of specific residues has provided insight into their functional and structural importance and provided insight into the pathogenesis of Gaucher disease and the contribution to PD. Disease-causing mutations are positioned throughout the acid-β-glucosidase structure, with many located far from the active site and thus retaining some enzymatic activity however, thus far no clear relationship between mutation location and disease severity has been established. Here, we review the crystal structure of acid-β-glucosidase, while highlighting important structural aspects of the protein in detail. This review discusses the structural stability of acid-β-glucosidase, which can be altered by pH and glycosylation, and explores the relationship between known Gaucher disease and PD mutations, structural stability and disease severity.
Collapse
Affiliation(s)
- Laura Smith
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
53
|
McMillan KJ, Korswagen HC, Cullen PJ. The emerging role of retromer in neuroprotection. Curr Opin Cell Biol 2017; 47:72-82. [PMID: 28399507 PMCID: PMC5677836 DOI: 10.1016/j.ceb.2017.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Hendrick C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
54
|
Phelix CF, Bourdon AK, Villareal G, LeBaron RG. Modeling non-clinical and clinical drug tests in Gaucher disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1434-1438. [PMID: 28268595 DOI: 10.1109/embc.2016.7590978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is need for modeling biological systems to accelerate drug pipelines for treating metabolic diseases. The eliglustat treatment for Gaucher disease is approved by the FDA with a companion genomic test. The Transcriptome-To-Metabolome™ biosimulation technology was used to model, in silico, a standard non-clinical eliglustat test with an in vitro canine kidney cell system over-expressing a human gene; and a clinical test using human fibroblasts from control and Gaucher disease subjects. Protein homology modeling and docking studies were included to gather affinity parameters for the kinetic metabolic model. Pharmacodynamics and metabolomics analyses of the results replicated published findings and demonstrated that processing and transport of lysosomal proteins alone cannot explain the metabolic disorder. This technology shows promise for application to other diseases.
Collapse
|
55
|
Hsieh FL, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. The structural basis for CD36 binding by the malaria parasite. Nat Commun 2016; 7:12837. [PMID: 27667267 PMCID: PMC5052687 DOI: 10.1038/ncomms12837] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite, Plasmodium falciparum, tethering parasite-infected erythrocytes to endothelial receptors. This prevents their destruction by splenic clearance and allows increased parasitaemia. Here we describe the structure of CD36 in complex with long chain fatty acids and a CD36-binding PfEMP1 protein domain. A conserved hydrophobic pocket allows the hugely diverse PfEMP1 protein family to bind to a conserved phenylalanine residue at the membrane distal tip of CD36. This phenylalanine is also required for CD36 to interact with lipoprotein particles. By targeting a site on CD36 that is required for its physiological function, PfEMP1 proteins maintain the ability to tether to the endothelium and avoid splenic clearance. Targeting of the CD36 scavenger receptor by the malaria parasite effector PfEMP1 prevents splenic clearance of infected erythrocytes. Here, the authors propose that diverse PfEMP1 achieve this by binding to a conserved phenylalanine residue in CD36 that is also required for lipoprotein binding.
Collapse
Affiliation(s)
- Fu-Lien Hsieh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology &Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen 1017, Denmark
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks, Oxford OX1 3QZ, UK
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology &Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen 1017, Denmark
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
56
|
Kong Y, Janssen BJC, Malinauskas T, Vangoor VR, Coles CH, Kaufmann R, Ni T, Gilbert RJC, Padilla-Parra S, Pasterkamp RJ, Jones EY. Structural Basis for Plexin Activation and Regulation. Neuron 2016; 91:548-60. [PMID: 27397516 PMCID: PMC4980550 DOI: 10.1016/j.neuron.2016.06.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
Class A plexins (PlxnAs) act as semaphorin receptors and control diverse aspects of nervous system development and plasticity, ranging from axon guidance and neuron migration to synaptic organization. PlxnA signaling requires cytoplasmic domain dimerization, but extracellular regulation and activation mechanisms remain unclear. Here we present crystal structures of PlxnA (PlxnA1, PlxnA2, and PlxnA4) full ectodomains. Domains 1-9 form a ring-like conformation from which the C-terminal domain 10 points away. All our PlxnA ectodomain structures show autoinhibitory, intermolecular "head-to-stalk" (domain 1 to domain 4-5) interactions, which are confirmed by biophysical assays, live cell fluorescence microscopy, and cell-based and neuronal growth cone collapse assays. This work reveals a 2-fold role of the PlxnA ectodomains: imposing a pre-signaling autoinhibitory separation for the cytoplasmic domains via intermolecular head-to-stalk interactions and supporting dimerization-based PlxnA activation upon ligand binding. More generally, our data identify a novel molecular mechanism for preventing premature activation of axon guidance receptors.
Collapse
Affiliation(s)
- Youxin Kong
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Bert J C Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte H Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergi Padilla-Parra
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
57
|
Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 2016; 535:169-172. [PMID: 27362232 PMCID: PMC4947387 DOI: 10.1038/nature18615] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits) which is solely responsible for host cell attachment, endosomal entry and membrane fusion1–7. GP is thus a primary target for the development of antiviral drugs. Here we report the first unliganded structure of EBOV GP, and complexes with an anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered8–10. Unexpectedly both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the 3-fold axis. Protein-drug interactions, with both GP1 and GP2, are predominately hydrophobic. Residues lining the binding site are highly conserved amongst filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in protein melting temperature upon toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. The results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, therefore preventing fusion between the viral and endosome membranes. Thus these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
Collapse
|
58
|
de Marcos Lousa C, Denecke J. Lysosomal and vacuolar sorting: not so different after all! Biochem Soc Trans 2016; 44:891-7. [PMID: 27284057 PMCID: PMC5264500 DOI: 10.1042/bst20160050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/12/2022]
Abstract
Soluble hydrolases represent the main proteins of lysosomes and vacuoles and are essential to sustain the lytic properties of these organelles typical for the eukaryotic organisms. The sorting of these proteins from ER residents and secreted proteins is controlled by highly specific receptors to avoid mislocalization and subsequent cellular damage. After binding their soluble cargo in the early stage of the secretory pathway, receptors rely on their own sorting signals to reach their target organelles for ligand delivery, and to recycle back for a new round of cargo recognition. Although signals in cargo and receptor molecules have been studied in human, yeast and plant model systems, common denominators and specific examples of diversification have not been systematically explored. This review aims to fill this niche by comparing the structure and the function of lysosomal/vacuolar sorting receptors (VSRs) from these three organisms.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- School of Clinical and Applied Sciences, Faculty of Biomedical Sciences, Leeds Beckett University, Leeds LS13HE, U.K. Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| | - Jurgen Denecke
- Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| |
Collapse
|
59
|
Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 2016; 7:11866. [PMID: 27302750 PMCID: PMC4912623 DOI: 10.1038/ncomms11866] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/07/2016] [Indexed: 01/09/2023] Open
Abstract
CD36 transmembrane proteins have diverse roles in lipid uptake, cell adhesion and pathogen sensing. Despite numerous in vitro studies, how they act in native cellular contexts is poorly understood. A Drosophila CD36 homologue, sensory neuron membrane protein 1 (SNMP1), was previously shown to facilitate detection of lipid-derived pheromones by their cognate receptors in olfactory cilia. Here we investigate how SNMP1 functions in vivo. Structure-activity dissection demonstrates that SNMP1's ectodomain is essential, but intracellular and transmembrane domains dispensable, for cilia localization and pheromone-evoked responses. SNMP1 can be substituted by mammalian CD36, whose ectodomain can interact with insect pheromones. Homology modelling, using the mammalian LIMP-2 structure as template, reveals a putative tunnel in the SNMP1 ectodomain that is sufficiently large to accommodate pheromone molecules. Amino-acid substitutions predicted to block this tunnel diminish pheromone sensitivity. We propose a model in which SNMP1 funnels hydrophobic pheromones from the extracellular fluid to integral membrane receptors.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Benoîte Bargeton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Natalia Bukar
- Centre for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Quebec, Canada H3A 2K6.,Département de Chimie, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Jaime H Reina
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Tudor Bartoi
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Marion Graf
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Maximilian H Ulbrich
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.,Department of Nephrology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Jean-Francois Masson
- Centre for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Quebec, Canada H3A 2K6.,Département de Chimie, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
60
|
Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N. Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. PLoS Pathog 2016; 12:e1005669. [PMID: 27280707 PMCID: PMC4900624 DOI: 10.1371/journal.ppat.1005669] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Leishmania amastigotes manipulate the activity of macrophages to favor their own success. However, very little is known about the role of innate recognition and signaling triggered by amastigotes in this host-parasite interaction. In this work we developed a new infection model in adult Drosophila to take advantage of its superior genetic resources to identify novel host factors limiting Leishmania amazonensis infection. The model is based on the capacity of macrophage-like cells, plasmatocytes, to phagocytose and control the proliferation of parasites injected into adult flies. Using this model, we screened a collection of RNAi-expressing flies for anti-Leishmania defense factors. Notably, we found three CD36-like scavenger receptors that were important for defending against Leishmania infection. Mechanistic studies in mouse macrophages showed that CD36 accumulates specifically at sites where the parasite contacts the parasitophorous vacuole membrane. Furthermore, CD36-deficient macrophages were defective in the formation of the large parasitophorous vacuole typical of L. amazonensis infection, a phenotype caused by inefficient fusion with late endosomes and/or lysosomes. These data identify an unprecedented role for CD36 in the biogenesis of the parasitophorous vacuole and further highlight the utility of Drosophila as a model system for dissecting innate immune responses to infection.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (KO); (NS)
| | - Mei Tong
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Brian Dempsey
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kathryn J. Moore
- Department of Medicine, New York University School of Medicine, Langone Medical Center, New York, New York, United States of America
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Neal Silverman
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (KO); (NS)
| |
Collapse
|
61
|
Astudillo L, Therville N, Colacios C, Ségui B, Andrieu-Abadie N, Levade T. Glucosylceramidases and malignancies in mammals. Biochimie 2016; 125:267-80. [DOI: 10.1016/j.biochi.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
|
62
|
Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proc Natl Acad Sci U S A 2016; 113:3791-6. [PMID: 27001828 DOI: 10.1073/pnas.1514005113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2-derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.
Collapse
|
63
|
Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WDJ. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links. Mov Disord 2016; 31:791-801. [DOI: 10.1002/mds.26562] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tim Moors
- Department of Anatomy and Neurosciences; Section Quantitative Morphology, Neuroscience Campus Amsterdam, VU University Medical Center; Amsterdam the Netherlands
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences; Section of Nutrition and Food Science, University of Perugia; Perugia Italy
| | - Davide Chiasserini
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
| | - Paolo Calabresi
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
- Fondazione Santa Lucia-Istituto di Ricovero e Cura a Carattere Scientifico; Roma Italy
| | - Lucilla Parnetti
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences; Section of Nutrition and Food Science, University of Perugia; Perugia Italy
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences; Section Quantitative Morphology, Neuroscience Campus Amsterdam, VU University Medical Center; Amsterdam the Netherlands
| |
Collapse
|
64
|
Zhao Y, Ren J, Harlos K, Stuart DI. Structure of glycosylated NPC1 luminal domain C reveals insights into NPC2 and Ebola virus interactions. FEBS Lett 2016; 590:605-12. [PMID: 26846330 PMCID: PMC4819692 DOI: 10.1002/1873-3468.12089] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
Abstract
Niemann‐pick type C1 (NPC1) is an endo/lysosomal membrane protein involved in intracellular cholesterol trafficking, and its luminal domain C is an essential endosomal receptor for Ebola and Marburg viruses. We have determined the crystal structure of glycosylated NPC1 luminal domain C and find all seven possible sites are glycosylated. Mapping the disease mutations onto the glycosylated structure reveals a potential binding face for NPC2. Knowledge‐based docking of NPC1 onto Ebola viral glycoprotein and sequence analysis of filovirus susceptible and refractory species reveals four critical residues, H418, Q421, F502 and F504, some or all of which are likely responsible for the species‐specific susceptibility to the virus infection.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - Karl Harlos
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK.,Diamond Light Source Ltd, Didcot, UK
| |
Collapse
|
65
|
Barkhuizen M, Anderson DG, Grobler AF. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies. Neurochem Int 2015; 93:6-25. [PMID: 26743617 DOI: 10.1016/j.neuint.2015.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
GBA mutations are to date the most common genetic risk factor for Parkinson's disease. The GBA gene encodes the lysomal hydrolase glucocerebrosidase. Whilst bi-allelic GBA mutations cause Gaucher disease, both mono- and bi-allelic mutations confer risk for Parkinson's disease. Clinically, Parkinson's disease patients with GBA mutations resemble idiopathic Parkinson's disease patients. However, these patients have a modest reduction in age-of-onset of disease and a greater incidence of cognitive decline. In some cases, GBA mutations are also responsible for familial Parkinson's disease. The accumulation of α-synuclein into Lewy bodies is the central neuropathological hallmark of Parkinson's disease. Pathologic GBA mutations reduce enzymatic function. A reduction in glucocerebrosidase function increases α-synuclein levels and propagation, which in turn inhibits glucocerebrosidase in a feed-forward cascade. This cascade is central to the neuropathology of GBA-associated Parkinson's disease. The lysosomal integral membrane protein type-2 is necessary for normal glucocerebrosidase function. Glucocerebrosidase dysfunction also increases in the accumulation of β-amyloid and amyloid-precursor protein, oxidative stress, neuronal susceptibility to metal ions, microglial and immune activation. These factors contribute to neuronal death. The Mendelian Parkinson's disease genes, Parkin and ATP13A2, intersect with glucocerebrosidase. These factors sketch a complex circuit of GBA-associated neuropathology. To clinically interfere with this circuit, central glucocerebrosidase function must be improved. Strategies based on reducing breakdown of mutant glucocerebrosidase and increasing the fraction that reaches the lysosome has shown promise. Breakdown can be reduced by interfering with the ability of heat-shock proteins to recognize mutant glucocerebrosidase. This underlies the therapeutic efficacy of certain pharmacological chaperones and histone deacetylase inhibitors. These therapies are promising for Parkinson's disease, regardless of mutation status. Recently, there has been a boom in studies investigating the role of glucocerebrosidase in the pathology of Parkinson's disease. This merits a comprehensive review of the current cell biological processes and pathological pictures involving Parkinson's disease associated with GBA mutations.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa; Department of Paediatrics, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229, The Netherlands.
| | - David G Anderson
- Department of Neurology, Witwatersrand University Donald Gordon Medical Centre, Parktown, Johannesburg, 2193, South Africa
| | - Anne F Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
66
|
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M. Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2. Traffic 2015; 16:1127-36. [PMID: 26219725 DOI: 10.1111/tra.12313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
The lysosomal integral membrane protein type 2 (LIMP-2/SCARB2) has been described as a mannose 6-phosphate (M6P)-independent trafficking receptor for β-glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP-2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP-2 with the cation-independent M6P receptor (MPR) results in M6P-dependent targeting of LIMP-2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P-dependent delivery of LIMP-2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP-2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P-forming N-acetylglucosamine (GlcNAc)-1-phosphotransferase, LIMP-2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP-2 levels within lysosomes purified from liver of wild-type (wt) and GlcNAc-1-phosphotransferase-defective mice. Heterologous expression of the luminal domain of LIMP-2 in wild-type, LIMP-2-deficient and GlcNAc-1-phosphotransferase-defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP-2. Finally, cathepsin Z, a known GlcNAc-1-phosphotransferase substrate, but not LIMP-2, could be precipitated with M6P-specific antibodies. These data prove M6P-independent lysosomal sorting of LIMP-2 and subsequently GC in vivo.
Collapse
Affiliation(s)
- Judith Blanz
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Friederike Zunke
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Sandra Markmann
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Damme
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Thomas Braulke
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Michael Schwake
- Biochemie III/ Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
67
|
Malini E, Zampieri S, Deganuto M, Romanello M, Sechi A, Bembi B, Dardis A. Role of LIMP-2 in the intracellular trafficking of β-glucosidase in different human cellular models. FASEB J 2015; 29:3839-52. [PMID: 26018676 DOI: 10.1096/fj.15-271148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022]
Abstract
Acid β-glucosidase (GCase), the enzyme deficient in Gaucher disease (GD), is transported to lysosomes by the lysosomal integral membrane protein (LIMP)-2. In humans, LIMP-2 deficiency leads to action myoclonus-renal failure (AMRF) syndrome. GD and AMRF syndrome share some clinical features. However, they are different from clinical and biochemical points of view, suggesting that the role of LIMP-2 in the targeting of GCase would be different in different tissues. Besides, the role of LIMP-2 in the uptake and trafficking of the human recombinant (hr)GCase used in the treatment of GD is unknown. Thus, we compared GCase activity and intracellular localization in immortalized lymphocytes, fibroblasts, and a neuronal model derived from multipotent adult stem cells, from a patient with AMRF syndrome, patients with GD, and control subjects. In fibroblasts and neuronlike cells, GCase targeting to the lysosomes is completely dependent on LIMP-2, whereas in blood cells, GCase is partially targeted to lysosomes by a LIMP-2-independent mechanism. Although hrGCase cellular uptake is independent of LIMP-2, its trafficking to the lysosomes is mediated by this receptor. These data provide new insights into the mechanisms involved in the intracellular trafficking of GCase and in the pathogeneses of GD and AMRF syndrome.
Collapse
Affiliation(s)
- Erika Malini
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Marta Deganuto
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Milena Romanello
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Annalisa Sechi
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
68
|
Jones DM, Padilla-Parra S. Imaging real-time HIV-1 virion fusion with FRET-based biosensors. Sci Rep 2015; 5:13449. [PMID: 26300212 PMCID: PMC4547133 DOI: 10.1038/srep13449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 11/08/2022] Open
Abstract
We have produced a novel, simple and rapid method utilising genetically encodable FRET-based biosensors to permit the detection of HIV-1 virion fusion in living cells. These biosensors show high sensitivity both spatially and temporally, and allow the real-time recovery of HIV-1 fusion kinetics in both single cells and cell populations simultaneously.
Collapse
Affiliation(s)
- Daniel M. Jones
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
- Cellular Imaging Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
69
|
Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity. J Virol 2015; 89:10500-11. [PMID: 26269176 PMCID: PMC4580203 DOI: 10.1128/jvi.01102-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the primary causes of the epidemics of hand-foot-and-mouth disease (HFMD) that affect more than a million children in China each year and lead to hundreds of deaths. Although there has been progress with vaccines for EV71, the development of a CVA16 vaccine has proved more challenging, and the EV71 vaccine does not give useful cross-protection, despite the capsid proteins of the two viruses sharing about 80% sequence identity. The structural details of the expanded forms of the capsids, which possess nonnative antigenicity, are now well understood, but high resolution information for the native antigenic form of CVA16 has been missing. Here, we remedy this with high resolution X-ray structures of both mature and natural empty CVA16 particles and also of empty recombinant viruslike particles of CVA16 produced in insect cells, a potential vaccine antigen. All three structures are unexpanded native particles and antigenically identical. The recombinant particles have recruited a lipid moiety to stabilize the native antigenic state that is different from the one used in a natural virus infection. As expected, the mature CVA16 virus is similar to EV71; however, structural and immunogenic comparisons highlight differences that may have implications for vaccine production. IMPORTANCE Hand-foot-and-mouth disease is a serious public health threat to children in Asian-Pacific countries, resulting in millions of cases. EV71 and CVA16 are the two dominant causative agents of the disease that, while usually mild, can cause severe neurological complications, leading to hundreds of deaths. EV71 vaccines do not provide protection against CVA16. A CVA16 vaccine or bivalent EV71/CVA16 vaccine is therefore urgently needed. We report atomic structures for the mature CVA16 virus, a natural empty particle, and a recombinant CVA16 virus-like particle that does not contain the viral genome. All three particles have similar structures and identical antigenicity. The recombinant particles, produced in insect cells (a system suitable for making vaccine antigen), are stabilized by recruiting from the insect cells a small molecule that is different from that used by the virus in a normal infection. We present structural and immunogenic comparisons with EV71 to facilitate structure-based drug design and vaccine development.
Collapse
|
70
|
Chang TH, Hsieh FL, Zebisch M, Harlos K, Elegheert J, Jones EY. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. eLife 2015; 4:e06554. [PMID: 26158506 PMCID: PMC4497409 DOI: 10.7554/elife.06554] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/18/2015] [Indexed: 11/24/2022] Open
Abstract
Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8-mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Fu-Lien Hsieh
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Zebisch
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
71
|
Büssow K. Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 2015; 32:81-90. [DOI: 10.1016/j.sbi.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
72
|
Abstract
Striking therapeutic advances for lysosomal diseases have harnessed the biology of this organelle and illustrate its central rôle in the dynamic economy of the cell. Further Innovation will require improved protein-targetting or realization of therapeutic gene- and cell transfer stratagems. Rescuing function before irreversible injury, mandates a deep knowledge of clinical behaviour as well as molecular pathology – and frequently requires an understanding of neuropathology. Whether addressing primary causes, or rebalancing the effects of disordered cell function, true therapeutic innovation depends on continuing scientific exploration of the lysosome. Genuine partnerships between biotech and the patients affected by this extraordinary family of disorders continue to drive productive pharmaceutical discovery.
Collapse
Affiliation(s)
- Timothy M Cox
- Department of Medicine, University of Cambridge, UK.
| |
Collapse
|
73
|
Peters J, Rittger A, Weisner R, Knabbe J, Zunke F, Rothaug M, Damme M, Berkovic SF, Blanz J, Saftig P, Schwake M. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Biochem Biophys Res Commun 2015; 457:334-40. [PMID: 25576872 DOI: 10.1016/j.bbrc.2014.12.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/26/2014] [Indexed: 01/06/2023]
Abstract
The lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) has been identified as a receptor for enterovirus 71 uptake and mannose-6-phosphate-independent lysosomal trafficking of the acid hydrolase β-glucocerebrosidase. Here we show that LIMP-2 undergoes proteolytic cleavage mediated by lysosomal cysteine proteases. Heterologous expression and in vitro studies suggest that cathepsin-F is mainly responsible for the lysosomal processing of wild-type LIMP-2. Furthermore, examination of purified lysosomes revealed that LIMP-2 undergoes proteolysis in vivo. Mutations in the gene encoding cathepsin-F (CTSF) have recently been associated with type-B-Kufs-disease, an adult form of neuronal ceroid-lipofuscinosis. In this study we show that disease-causing cathepsin-F mutants fail to cleave LIMP-2. Our findings provide evidence that LIMP-2 represents an in vivo substrate of cathepsin-F with relevance for understanding the pathophysiology of type-B-Kufs-disease.
Collapse
Affiliation(s)
- Judith Peters
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Andrea Rittger
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Rebecca Weisner
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Johannes Knabbe
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Friederike Zunke
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Michelle Rothaug
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Judith Blanz
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Michael Schwake
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Germany.
| |
Collapse
|
74
|
Seiradake E, Zhao Y, Lu W, Aricescu AR, Jones EY. Production of cell surface and secreted glycoproteins in mammalian cells. Methods Mol Biol 2015; 1261:115-27. [PMID: 25502196 DOI: 10.1007/978-1-4939-2230-7_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mammalian protein expression systems are becoming increasingly popular for the production of eukaryotic secreted and cell surface proteins. Here we describe methods to produce recombinant proteins in adherent or suspension human embryonic kidney cell cultures, using transient transfection or stable cell lines. The protocols are easy to scale up and cost-efficient, making them suitable for protein crystallization projects and other applications that require high protein yields.
Collapse
Affiliation(s)
- Elena Seiradake
- The Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | | | | | |
Collapse
|
75
|
Liou B, Haffey WD, Greis KD, Grabowski GA. The LIMP-2/SCARB2 binding motif on acid β-glucosidase: basic and applied implications for Gaucher disease and associated neurodegenerative diseases. J Biol Chem 2014; 289:30063-74. [PMID: 25202012 PMCID: PMC4208013 DOI: 10.1074/jbc.m114.593616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
The acid β-glucosidase (glucocerbrosidase (GCase)) binding sequence to LIMP-2 (lysosomal integral membrane protein 2), the receptor for intracellular GCase trafficking to the lysosome, has been identified. Heterologous expression of deletion constructs, the available GCase crystal structures, and binding and co-localization of identified peptides or mutant GCases were used to identify and characterize a highly conserved 11-amino acid sequence, DSPIIVDITKD, within human GCase. The binding to LIMP-2 is not dependent upon a single amino acid, but the interactions of GCase with LIMP-2 are heavily influenced by Asp(399) and the di-isoleucines, Ile(402) and Ile(403). A single alanine substitution at any of these decreases GCase binding to LIMP-2 and alters its pH-dependent binding as well as diminishing the trafficking of GCase to the lysosome and significantly increasing GCase secretion. Enterovirus 71 also binds to LIMP-2 (also known as SCARB2) on the external surface of the plasma membrane. However, the LIMP-2/SCARB2 binding sequences for enterovirus 71 and GCase are not similar, indicating that LIMP-2/SCARB2 may have multiple or overlapping binding sites with differing specificities. These findings have therapeutic implications for the production of GCase and the distribution of this enzyme that is delivered to various organs.
Collapse
Affiliation(s)
- Benjamin Liou
- From the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229 and
| | - Wendy D Haffey
- the Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati Medical Center, Cincinnati, Ohio 45229
| | - Kenneth D Greis
- the Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati Medical Center, Cincinnati, Ohio 45229
| | - Gregory A Grabowski
- From the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229 and
| |
Collapse
|