51
|
BOERKOEL CF, INOUE K, REITER LT, WARNER LE, LUPSKI JR. Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Ann N Y Acad Sci 2006; 883:22-35. [DOI: 10.1111/j.1749-6632.1999.tb08563.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Affiliation(s)
- Philip F Chance
- Division of Genetics and Congenital Defects, Department of Pediatrics, Box 356320, University of Washington School of Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
53
|
Lin KP, Chou CH, Lee HY, Soong BW. Allele-specific all-or-none PCR product diagnostic strategy for Charcot-Marie-Tooth 1A and hereditary neuropathy with liability to pressure palsies. J Chin Med Assoc 2006; 69:68-73. [PMID: 16570573 DOI: 10.1016/s1726-4901(09)70116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We designed allele-specific primers to amplify genomic DNA of patients with Charcot-Marie-Tooth 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). METHODS Genomic DNA analysis was performed on 40 unrelated CMT1A duplication patients, 25 unrelated HNPP deletion patients, and 50 unaffected control individuals. The CMT1A and HNPP patients had previously been identified with microsatellite mapping. RESULTS Amplification products came to 3.6 kb in length from the normal proximal CMT1A repeated segment on chromosome 17p11.2 (proximal CMT1A-REP), 3.57 kb from the normal distal CMT1A repeated segment on chromosome 17p11.2 (distal CMT1A-REP), 3.6 kb from HNPP patients, and 3.58 kb from CMT1A patients. We could identify the mutations by means of agarose gel electrophoresis after polymerase chain reaction (PCR) amplification without restriction enzyme digestion from 33 of the 40 CMT1A and 19 of the 25 HNPP samples. CONCLUSION Stringently specific primers were used to overcome the problem of nonspecific amplification and provide a rapid, all-or-none PCR product and efficient screening test for CMT1A and HNPP.
Collapse
Affiliation(s)
- Kon-Ping Lin
- The Neurological Institute, Taipei Veterans General Hospital, Taiwan, ROC.
| | | | | | | |
Collapse
|
54
|
Portera G, Venturin M, Patrizi A, Martinoli E, Riva P, Dalprà L. Characterisation of a non-recurrent familial translocation t(7;9)(q11.23;p24.3) points to a recurrent involvement of the Williams-Beuren syndrome region in chromosomal rearrangements. J Hum Genet 2005; 51:68-75. [PMID: 16328081 DOI: 10.1007/s10038-005-0326-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 10/06/2005] [Indexed: 11/30/2022]
Abstract
Recurrent and non-recurrent chromosomal rearrangements seem to reflect susceptibility to DNA rearrangements due to the presence of recombinogenic motifs in at least one partner chromosomal region. While specific genomic motifs such as AT-rich repeats, fragile sites and Alu repeats are often found in recurrent translocations, the molecular mechanisms underlying non-recurrent chromosomal rearrangements remain largely unknown. Here, we map the breakpoint region of a non-recurrent translocation, t(7;9)(q11.23;p24.3), present in a healthy woman who inherited the apparently balanced translocation from her mother and transmitted the same rearrangement to two sons-respectively healthy and aborted. Characterisation by a two-step FISH analysis, first with BAC clones and then with small locus-specific probes, restricted the breakpoint intervals to 8-10 kb. Both regions contained specific Alu sequences, which, together with the flanking low copy repeat block Ac in 7q11.23, might stimulate the translocation. We noted that, although the translocation is non-recurrent, 7q11.23 is recurrently involved in different chromosomal rearrangements, supporting the hypothesis that the 7q11.23 genomic structure is prone to recombination events.
Collapse
Affiliation(s)
- Giorgio Portera
- Department of Biology and Genetics, Medical Faculty, University of Milan, Milan, Italy
| | - Marco Venturin
- Department of Biology and Genetics, Medical Faculty, University of Milan, Milan, Italy
| | - Antonella Patrizi
- Department of Biology and Genetics, Medical Faculty, University of Milan, Milan, Italy
| | - Emanuela Martinoli
- Department of Biology and Genetics, Medical Faculty, University of Milan, Milan, Italy
| | - Paola Riva
- Department of Biology and Genetics, Medical Faculty, University of Milan, Milan, Italy
| | - Leda Dalprà
- Department of Neurosciences and Biomedical Technologies, University of Milano Bicocca, Via Cadore 48, 20 052, Monza, Italy.
| |
Collapse
|
55
|
Hancock JM. Gene factories, microfunctionalization and the evolution of gene families. Trends Genet 2005; 21:591-5. [PMID: 16153739 DOI: 10.1016/j.tig.2005.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/18/2005] [Accepted: 08/17/2005] [Indexed: 11/17/2022]
Abstract
Gene duplication has long been considered an important force in genome evolution. In this article, I consider families of tandemly duplicated genes that show 'microfunctionalization' - genes encoding similar proteins with subtly different functions, such as olfactory receptors. I discuss the genomic processes giving rise to such microfunctionalized gene families and suggest that, like sites of chromosomal rearrangement and breakage, they are associated with relatively high concentrations of repetitive elements. I suggest that microfunctionalized gene families arise within gene factories: genomic regions rich in repetitive elements that undergo increased levels of unequal crossing-over.
Collapse
Affiliation(s)
- John M Hancock
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, UK, OX11 0RD.
| |
Collapse
|
56
|
Cogan JD, Vnencak-Jones CL, Phillips JA, Lane KB, Wheeler LA, Robbins IM, Garrison G, Hedges LK, Loyd JE. Gross BMPR2 gene rearrangements constitute a new cause for primary pulmonary hypertension. Genet Med 2005; 7:169-74. [PMID: 15775752 DOI: 10.1097/01.gim.0000156525.09595.e9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Approximately 50% of patients with familial primary pulmonary hypertension (FPPH) have been reported to have mutations within the bone morphogenic protein receptor type 2 (BMPR2) gene. The vast majority of these mutations were identified by PCR amplification and sequencing of individual exons. The aim of our study was to determine if additional BMPR2 mutations not found by exon sequencing alone could account for a significant portion of these negative cases. METHODS We examined DNA samples from 12 families, previously found to be negative for BMPR2 mutations, to identify any large BMPR2 gene rearrangements. RESULTS Southern blot analysis found large gene rearrangements in four (33%) unrelated kindreds. Further analysis by reverse transcriptase PCR (RT-PCR) of BMPR2 transcripts from two of these kindreds found one to be heterozygous for a exon 10 duplication and the second to be heterozygous for a deletion of exons 4 to 5. Nonhomologous recombination is believed to be the cause of these large insertions/deletions. CONCLUSION Our results demonstrate the inherent problems associated with exon-by-exon sequencing and the importance of other screening methods such as Southern blot and RT-PCR in the identification of BMPR2 mutations.
Collapse
Affiliation(s)
- Joy D Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2578, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Marques W, Freitas MR, Nascimento OJM, Oliveira AB, Calia L, Melo A, Lucena R, Rocha V, Barreira AA. 17p duplicated Charcot-Marie-Tooth 1A: characteristics of a new population. J Neurol 2005; 252:972-9. [PMID: 15765265 DOI: 10.1007/s00415-005-0797-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 01/24/2023]
Abstract
The most frequent type of Charcot-Marie-Tooth (CMT) neuropathy is that associated with the 17p11.2-p12 chromosome duplication, whose characteristics have been well described in European and North American populations. In this study, we analyzed a Brazilian population exhibiting the mutation, found in 57 patients from 42 families (79%) of a cohort of 53 families with demyelinating CMT. Almost 20% of the duplicated cases were sporadic. In 77% of the duplicated families the mutation event occurred in the hot spot area of the CMT1A-Rep region. Forty-five percent of patients were females, 84% were Caucasians and 13% of African descent. Distal limb weakness was the most frequent abnormality, appearing in 84% of patients, although uncommon manifestations such as severe proximal weakness, floppy baby syndrome, diaphragmatic weakness and severe scoliosis were also observed. One patient was wheelchair-bound, and three suffered severe hand weakness. Sensory abnormalities were detected in 84% of the cases, but 80% were unaware of this impairment. Twelve patients complained of positive sensory manifestations such as pain and paresthesias. Progression was reported by 40%. Motor conduction velocities in the upper limbs were always less than 35 m/s, and less than 30.4 m/s in the peroneal nerve. The findings of this study expand the clinical spectrum of the disease.
Collapse
Affiliation(s)
- Wilson Marques
- School of Medicine of Ribeirão Preto, University of São Paulo, Department of Neurology, 3900 Ribeirão Preto, São Paulo, Brazil CEP 14048-900.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tipney HJ, Hinsley TA, Brass A, Metcalfe K, Donnai D, Tassabehji M. Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams-Beuren syndrome. Eur J Hum Genet 2005; 12:551-60. [PMID: 15100712 DOI: 10.1038/sj.ejhg.5201174] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a developmental disorder with characteristic physical, cognitive and behavioural traits caused by a microdeletion of approximately 1.5 Mb on chromosome 7q11.23. In total, 24 genes have been described within the deleted region to date. We have isolated and characterised a novel human gene, GTF2IRD2, mapping to the WBS critical region thought to harbour genes important for the cognitive aspects of the disorder. GTF2IRD2 is the third member of the novel TFII-I family of genes clustered on 7q11.23. The GTF2IRD2 protein contains two putative helix-loop-helix regions (I-repeats) and an unusual C-terminal CHARLIE8 transposon-like domain, thought to have arisen as a consequence of the random insertion of a transposable element generating a functional fusion gene. The retention of a number of conserved transposase-associated motifs within the protein suggests that the CHARLIE8-like region may still have some degree of transposase functionality that could influence the stability of the region in a mechanism similar to that proposed for Charcot-Marie-Tooth neuropathy type 1A. GTF2IRD2 is highly conserved in mammals and the mouse ortholgue (Gtf2ird2) has also been isolated and maps to the syntenic WBS region on mouse chromosome 5G. Deletion mapping studies using somatic cell hybrids show that some WBS patients are hemizygous for this gene, suggesting that it could play a role in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Hannah J Tipney
- University of Manchester, Academic Unit of Medical Genetics and Regional Genetic Service, St Mary's Hospital, Manchester, UK
| | | | | | | | | | | |
Collapse
|
59
|
Tadin-Strapps M, Warburton D, Baumeister FAM, Fischer SG, Yonan J, Gilliam TC, Christiano AM. Cloning of the breakpoints of a de novo inversion of chromosome 8, inv (8)(p11.2q23.1) in a patient with Ambras syndrome. Cytogenet Genome Res 2005; 107:68-76. [PMID: 15305058 DOI: 10.1159/000079573] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 11/19/2022] Open
Abstract
Ambras syndrome (AMS) is a unique form of universal congenital hypertrichosis. In patients with this syndrome, the whole body is covered with fine long hair, except for areas where normally no hair grows. There is accompanying facial dysmorphism and teeth abnormalities, including retarded first and second dentition and absence of teeth. In 1993, Baumeister et al. reported an isolated case of Ambras syndrome in association with a pericentric inversion of chromosome 8. Subsequently, another patient with congenital hypertrichosis and rearrangement of chromosome 8 was reported by Balducci et al. (1998). Both of these patients have a breakpoint in 8q22 in common suggesting that this region of chromosome 8 contains a gene involved in regulation of hair growth. In order to precisely determine the nature of the rearrangement in the case of Ambras syndrome, we have used fluorescent in situ hybridization (FISH) analysis. We have cloned the inversion breakpoints in this patient and generated a detailed physical map of the inversion breakpoint interval. Analysis of the transcripts that map in the vicinity of the breakpoints revealed that the inversion does not disrupt a gene, and suggests that the phenotype is caused by a position effect.
Collapse
Affiliation(s)
- M Tadin-Strapps
- Department ofDermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Kurotaki N, Stankiewicz P, Wakui K, Niikawa N, Lupski JR. Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats. Hum Mol Genet 2005; 14:535-42. [PMID: 15640245 DOI: 10.1093/hmg/ddi050] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sotos syndrome (Sos) is an overgrowth disorder also characterized clinically by mental retardation, specific craniofacial features and advanced bone age. As NSD1 haploinsufficiency was determined in 2002 to be the major cause of Sos, many intragenic mutations and chromosomal microdeletions involving the entire NSD1 gene have been described. In the Japanese population, half of the cases analyzed appear to have a common microdeletion; however, in the European population, deletion cases account for only 9%. Blast analysis of the Sos genomic region on 5q35 revealed two complex mosaic low-copy repeats (LCRs) that are centromeric and telomeric to NSD1. We termed these proximal Sos-REP (Sos-PREP, approximately 390 kb) and distal Sos-REP (Sos-DREP, approximately 429 kb), respectively. On the basis of the analysis of DNA sequence, we determined the size, structure, orientation and extent of sequence identity of these LCRs. We found that Sos-PREP and Sos-DREP are composed of six subunits termed A-F. Each of the homologous subunits, with the exception of one, is located in an inverted orientation and the order of subunits is different between the two Sos-REPs. Only the subunit C' in Sos-DREP is oriented directly with respect to the subunit C in Sos-PREP. These latter C' and C subunits are greater than 99% identical. Using pulsed-field gel electrophoresis analysis in eight Sos patients with a common deletion, we detected an approximately 550 kb junction fragment that we predicted according to the non-allelic homologous recombination (NAHR) mechanism using directly oriented Sos-PREP C and Sos-DREP C' subunits as substrates. This patient specific junction fragment was not present in 51 Japanese and non-Japanese controls. Subsequently, using long-range PCR with restriction enzyme digestion and DNA sequencing, we identified a 2.5 kb unequal crossover hotspot region in six out of nine analyzed Sos patients with the common deletion. Our data are consistent with an NAHR mechanism for generation of the Sos common deletion.
Collapse
Affiliation(s)
- Naohiro Kurotaki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
The finding, during the last decade, that several common, clinically delineated syndromes are caused by submicroscopic deletions or, more rarely, by duplications, has provided a powerful tool in the annotation of the human genome. Since most microdeletion/microduplication syndromes are defined by a common deleted/duplicated region, abnormal dosage of genes located within these regions can explain the phenotypic similarities among individuals with a specific syndrome. As such, they provide a unique resource towards the genetic dissection of complex phenotypes such as congenital heart defects, mental and growth retardation and abnormal behaviour. In addition, the study of phenotypic differences in individuals with the same microdeletion syndrome may also become a treasury for the identification of modifying factors for complex phenotypes. The molecular analysis of these chromosomal anomalies has led to a growing understanding of their mechanisms of origin. Novel tools to uncover additional submicroscopic chromosomal anomalies at a higher resolution and higher speed, as well as the novel tools at hand for deciphering the modifying factors and epistatic interactors, are 'on the doorstep' and will, besides their obvious diagnostic role, play a pivotal role in the genetic dissection of complex phenotypes.
Collapse
Affiliation(s)
- Koen Devriendt
- Center for Human Genetics, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
62
|
Visser R, Shimokawa O, Harada N, Kinoshita A, Ohta T, Niikawa N, Matsumoto N. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet 2005; 76:52-67. [PMID: 15580547 PMCID: PMC1196433 DOI: 10.1086/426950] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/20/2004] [Indexed: 11/03/2022] Open
Abstract
Sotos syndrome (SoS) is a congenital dysmorphic disorder characterized by overgrowth in childhood, distinctive craniofacial features, and mental retardation. Haploinsufficiency of the NSD1 gene owing to either intragenic mutations or microdeletions is known to be the major cause of SoS. The common approximately 2.2-Mb microdeletion encompasses the whole NSD1 gene and neighboring genes and is flanked by low-copy repeats (LCRs). Here, we report the identification of a 3.0-kb major recombination hotspot within these LCRs, in which we mapped deletion breakpoints in 78.7% (37/47) of patients with SoS who carry the common microdeletion. The deletion size was subsequently refined to 1.9 Mb. Sequencing of breakpoint fragments from all 37 patients revealed junctions between a segment of the proximal LCR (PLCR-B) and the corresponding region of the distal LCR (DLCR-2B). PLCR-B and DLCR-2B are the only directly oriented regions, whereas the remaining regions of the PLCR and DLCR are in inverted orientation. The PLCR, with a size of 394.0 kb, and the DLCR, with a size of of 429.8 kb, showed high overall homology (approximately 98.5%), with an increased sequence similarity (approximately 99.4%) within the 3.0-kb breakpoint cluster. Several recombination-associated motifs were identified in the hotspot and/or its vicinity. Interestingly, a 10-fold average increase of a translin motif, as compared with the normal distribution within the LCRs, was recognized. Furthermore, a heterozygous inversion of the interval between the LCRs was detected in all fathers of the children carrying a deletion in the paternally derived chromosome. The functional significance of these findings remains to be elucidated. Segmental duplications of the primate genome play a major role in chromosomal evolution. Evolutionary study showed that the duplication of the SoS LCRs occurred 23.3-47.6 million years ago, before the divergence of Old World monkeys.
Collapse
Affiliation(s)
- Remco Visser
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Osamu Shimokawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naoki Harada
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Tohru Ohta
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| |
Collapse
|
63
|
Tonk VS, Wilson GN, Yatsenko SA, Stankiewicz P, Lupski JR, Schutt RC, Northup JK, Velagaleti GVN. Molecular cytogenetic characterization of a familial der(1)del(1)(p36.33)dup(1)(p36.33p36.22) with variable phenotype. Am J Med Genet A 2005; 139A:136-40. [PMID: 16278888 DOI: 10.1002/ajmg.a.30958] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chromosome deletions involving 1p36 are the most common known terminal rearrangements occurring at a frequency of approximately 1 in 5,000 live births. In contrast, duplications of the same region have been reported rarely. We describe a familial rearrangement der(1)del(1)(p36.33)dup(1)(p36.33p36.22) identified in a mother, daughter, and son. These individuals help define a syndrome with variable mental disability, attention deficit-hyperactivity disorder, and a distinctive facial appearance with wide palpebral fissures, broad nasal root, macrostomia, ear malformations, and prominent incisors. Based on our results we suggest that the complex rearrangement seen in our family could be the result of the breakage-fusion-bridge (BFB) cycles model of formation.
Collapse
Affiliation(s)
- Vijay S Tonk
- Department of Pediatrics, Texas Tech University, Lubbock, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Stankiewicz P, Inoue K, Bi W, Walz K, Park SS, Kurotaki N, Shaw CJ, Fonseca P, Yan J, Lee JA, Khajavi M, Lupski JR. Genomic disorders: genome architecture results in susceptibility to DNA rearrangements causing common human traits. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:445-54. [PMID: 15338647 DOI: 10.1101/sqb.2003.68.445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- P Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:115-24. [PMID: 15338609 DOI: 10.1101/sqb.2003.68.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
66
|
Lupski JR. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol 2004; 5:242. [PMID: 15461806 PMCID: PMC545587 DOI: 10.1186/gb-2004-5-10-242] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies of homologous recombination hotspots show that they do not share common sequence motifs, but they do have other features in common. Homologous recombination between alleles or non-allelic paralogous sequences does not occur uniformly but is concentrated in 'hotspots' with high recombination rates. Recent studies of these hotspots show that they do not share common sequence motifs, but they do have other features in common.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
67
|
Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K, Krammer U, Peyrl A, Jenne DE, Hansmann I, Mautner VF. High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum Genet 2004; 75:410-23. [PMID: 15257518 PMCID: PMC1182020 DOI: 10.1086/423624] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/21/2004] [Indexed: 11/03/2022] Open
Abstract
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.
Collapse
|
68
|
Forbes SH, Dorschner MO, Le R, Stephens K. Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion. Genes Chromosomes Cancer 2004; 41:12-25. [PMID: 15236313 DOI: 10.1002/gcc.20065] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recombination between paralogs that flank the NF1 gene at 17q11.2 typically results in a 1.5-Mb microdeletion that includes NF1 and at least 13 other genes. We show that the principal sequences responsible are two 51-kb blocks with 97.5% sequence identity (NF1REP-P1-51 and NF1REP-M-51). These blocks belong to a complex group of paralogs with three components on 17q11.2 and another on 19p13.13. Breakpoint sequencing of deleted chromosomes from multiple patients revealed two paralogous recombination hot spots within the 51-kb blocks. Lack of sequence similarity between these sites failed to suggest or corroborate any putative cis-acting recombinogenic motifs. However, the NF1 REPs showed relatively high alignment mismatch between recombining paralogs, and we note that the NF1REP hot spots were regions of good alignment bordered by relatively large alignment gaps. Statistical tests for gene conversion detected a single significant tract of perfect match between the NF1REPs that was 700 bp long and coincided with PRS2, the predominant recombination hot spot. Tracts of perfect match occurring by chance may contribute to breakpoint localization, but our result suggests that perfect tracts at recombination hot spots may be a result of gene conversion at sites at which preferential pairing occurs for other, as-yet-unknown reasons.
Collapse
Affiliation(s)
- Stephen H Forbes
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
69
|
Hurles ME, Willey D, Matthews L, Hussain SS. Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots. Genome Biol 2004; 5:R55. [PMID: 15287977 PMCID: PMC507880 DOI: 10.1186/gb-2004-5-8-r55] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/02/2004] [Accepted: 06/07/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility. RESULTS These recombination hotspots are characterized by signatures of concerted evolution, which indicate that gene conversion between paralogs has been predominant in shaping their recent evolution. By contrast, the paralogous sequences that surround the hotspots exhibit little evidence of gene conversion. A second feature of these rearrangement hotspots is the extreme interspecific sequence divergence (around 2.5%) that places them among the most divergent orthologous sequences between humans and chimpanzees. CONCLUSIONS Several hominid-specific gene conversion events have rendered these hotspots better substrates for chromosomal rearrangements in humans than in chimpanzees or gorillas. Monte Carlo simulations of sequence evolution suggest that extreme sequence divergence is a direct consequence of gene conversion between paralogs. We propose that the coincidence of signatures of concerted evolution and recurrent breakpoints of chromosomal rearrangement (mapped at the sequence level) may enable the identification of putative rearrangement hotspots from analysis of comparative sequences from great apes.
Collapse
Affiliation(s)
- Matthew E Hurles
- Molecular Genetics Laboratory, McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David Willey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lucy Matthews
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Syed Sufyan Hussain
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
70
|
Shaw CJ, Withers MA, Lupski JR. Uncommon deletions of the Smith-Magenis syndrome region can be recurrent when alternate low-copy repeats act as homologous recombination substrates. Am J Hum Genet 2004; 75:75-81. [PMID: 15148657 PMCID: PMC1182010 DOI: 10.1086/422016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/07/2004] [Indexed: 11/03/2022] Open
Abstract
Several homologous recombination "hotspots," or sites of positional preference for strand exchanges, associated with recurrent deletions and duplications have been reported within large low-copy repeats (LCRs). Recently, such a hotspot was identified in patients with the Smith-Magenis syndrome (SMS) common deletion of approximately 4 Mb or a reciprocal duplication within the KER gene cluster of the SMS-REP LCRs, in which 50% of analyzed strand exchanges resulting in deletion and 23% of those resulting in duplication occurred. Here, we report an additional recombination hotspot within LCR17pA and LCR17pD, which serve as alternative substrates for nonallelic homologous recombination that results in large (approximately 5 Mb) deletions of 17p11.2, which include the SMS region. Using polymerase-chain-reaction mapping of somatic cell hybrid lines, we refined the breakpoints of six deletions within these LCRs. Sequence analysis of the recombinant junctions revealed that all six strand exchanges occurred within a 524-bp interval, and four of them occurred within an AluSq/x element. This interval represents only 0.5% of the 124-kb stretch of 98.6% sequence identity between LCR17pA and LCR17pD. A search for potentially stimulating sequence motifs revealed short AT-rich segments flanking the recombination hotspot. Our findings indicate that alternative LCRs can mediate rearrangements, resulting in haploinsufficiency of the SMS critical region, and reimplicate homologous recombination as a major mechanism for genomic disorders.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
71
|
Nishant KT, Ravishankar H, Rao MRS. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 2004; 24:5620-34. [PMID: 15169920 PMCID: PMC419864 DOI: 10.1128/mcb.24.12.5620-5634.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge of recombination hot spot activity in mammalian systems implicates a role for both the primary DNA sequence and the nature of the chromatin domain around it. In mice, the only recombination hot spots mapped to date have been confined to a cluster within the major histocompatibility complex (MHC) region. We present a high resolution analysis of a new recombination hot spot in the mouse genome which maps to mouse chromosome 8 C-D. Haplotype diversity analysis across 40 different strains of mice has enabled us to map recombination breakpoints to a 1-kb interval. This hot spot has a recombination intensity that is 10- to 100-fold above the genome average and has a mean gene conversion tract length of 371 bp. This meiotically active locus happens to be flanked by a transcribed region encoding a non-protein-coding RNA polymerase II transcript and the previously characterized repair site. Many of the primary DNA sequence features that have been reported for the mouse MHC hot spots are also shared by this hot spot locus and in addition, along with three other MHC hot spot loci, we show a new parallel feature of association of the crossover sites with the nuclear matrix.
Collapse
Affiliation(s)
- K T Nishant
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
72
|
Buchner DA, Trudeau M, George AL, Sprunger LK, Meisler MH. High-resolution mapping of the sodium channel modifier Scnm1 on mouse chromosome 3 and identification of a 1.3-kb recombination hot spot. Genomics 2004; 82:452-9. [PMID: 13679025 DOI: 10.1016/s0888-7543(03)00152-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Variation between inbred strains of mice can be used to identify modifier genes affecting the susceptibility to inherited disease. The medJ allele of the sodium channel Scn8a contains a splice site mutation that results in sodium channel deficiency. The severity of the neurological disorder is determined by the modifier locus Scnm1. The wild-type allele of the modifier results in correct splicing of 10% of Scn8amedJ pre-mRNA and a dystonic phenotype. The susceptible allele of the modifier in strain C57BL/6J results in 5% correctly spliced transcripts and a lethal phenotype. A mapping cross with C3H using 26 new markers and 2304 affected F2 animals localized the modifier gene to a 950-kb interval on mouse chromosome 3. Fine mapping of recombination breakpoints revealed a recombination hot spot of 1.3 kb. The ratio of genetic to physical distance in the hot spot is 85 cM/Mb, two orders of magnitude higher than the mouse genome average of 0.5 cM/Mb. The role of the modifier in other disorders in human and mouse can be tested with linked markers described here.
Collapse
Affiliation(s)
- David A Buchner
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | |
Collapse
|
73
|
Carrington M, Cullen M. Justified chauvinism: advances in defining meiotic recombination through sperm typing. Trends Genet 2004; 20:196-205. [PMID: 15041174 DOI: 10.1016/j.tig.2004.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sperm typing offers an efficient means of studying the quantitative and qualitative aspects of meiotic recombination that are virtually unapproachable by pedigree analysis. Since the initial development of the technique >10 years ago, several salient findings based on empirically derived recombination data have been described. The precise rates and distributions of recombination have been reported for specific regions of the genome, serving as the prototype for high-resolution genome-wide recombination patterns. Identification and characterization of molecular genetic events, such as unequal crossing over, gene conversion and crossover asymmetry, are under close inspection for the first time as a result of this technology. The influence of these phenomena on the evolution of the genome is of primary interest from a scientific and medical perspective. In this article, we review the novel discoveries in mammalian meiotic recombination that have been revealed through sperm typing.
Collapse
Affiliation(s)
- Mary Carrington
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, SAIC-Frederick, MD 21702, USA.
| | | |
Collapse
|
74
|
Handler AM. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:121-130. [PMID: 14871608 DOI: 10.1016/j.ibmb.2003.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/19/2003] [Accepted: 08/07/2003] [Indexed: 05/24/2023]
Abstract
Genetically transformed insect pests provide significant opportunities to create strains for improved sterile insect technique and new strategies based on conditional lethality. A major concern for programs that rely on the release of transgenic insects is the stability of the transgene, and maintenance of consistent expression of genes of interest within the transgene. Transgene instability would influence the integrity of the transformant strain upon which the effectiveness of the biological control program depends. Loss or intra-genomic transgene movement would result in strain attributes important to the program being lost or diminished, and the mass-release of such insects could significantly exacerbate the insect pest problem. Instability resulting in intra-genomic movement may also be a prelude to inter-genomic transgene movement between species resulting in ecological risks. This is less of a concern for short-term releases, where transgenic insects are not expected to survive in the environment beyond two or three generations. Transgene movement may occur, however, into infectious agents during mass-rearing, and the potential for movement after release is a possibility for programs using many millions of insects. The primary methods of addressing potential transgene instability relate to an understanding of the vector system used for gene transfer, the potential for its mobilization by the same or a related vector system, and methods required to identify transformants and determine if unexpected transgene movement has occurred. Methods also exist for preventing transposon-mediated mobilization, by deleting or rearranging vector sequences required for transposition using recombination systems. Stability of transgene expression is also a critical concern, especially in terms of potential epigenetic interactions with host genomes resulting in gene silencing that have been observed in plants and fungi, and it must be determined if this or related phenomena can occur in insects.
Collapse
Affiliation(s)
- Alfred M Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 S.W. 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
75
|
Walz K, Fonseca P, Lupski JR. Animal models for human contiguous gene syndromes and other genomic disorders. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000300001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - James R. Lupski
- Baylor College of Medicine, USA; Baylor College of Medicine, USA; Texas Children's Hospital, USA
| |
Collapse
|
76
|
Yant SR, Kay MA. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 2003; 23:8505-18. [PMID: 14612396 PMCID: PMC262663 DOI: 10.1128/mcb.23.23.8505-8518.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herein, we report that the DNA-dependent protein kinase (DNA-PK) regulates the DNA damage introduced during Sleeping Beauty (SB) element excision and reinsertion in mammalian cells. Using both plasmid- and chromosome-based mobility assays, we analyzed the repair of transposase-induced double-stranded DNA breaks in cells deficient in either the DNA-binding subunit of DNA-PK (Ku) or its catalytic subunit (DNA-PKcs). We found that the free 3' overhangs left after SB element excision were efficiently and accurately processed by the major Ku-dependent nonhomologous-end-joining pathway. Rejoining of broken DNA molecules in the absence of Ku resulted in extensive end degradation at the donor site and greatly increased the frequency of recombination with ectopic templates. Therefore, the major DNA-PK-dependent DNA damage response predominates over more-error-prone repair pathways and thereby facilitates high-fidelity DNA repair during transposon mobilization in mammalian cells. Although transposable elements were not found to be efficiently circularized after transposase-mediated excision, DNA-PK deficiency supported more-frequent transposase-mediated element insertion than was found in wild-type controls. We conclude that, based on its ability to regulate excision site junctional diversity and transposon insertion frequency, DNA-PK serves an important protective role during transpositional recombination in mammals.
Collapse
Affiliation(s)
- Stephen R Yant
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California 94305-5208, USA
| | | |
Collapse
|
77
|
Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003; 73:1302-15. [PMID: 14639526 PMCID: PMC1180396 DOI: 10.1086/379979] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/16/2003] [Indexed: 01/15/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is caused by an approximately 4-Mb heterozygous interstitial deletion on chromosome 17p11.2 in approximately 80%-90% of affected patients. Three large ( approximately 200 kb), complex, and highly homologous ( approximately 98%) low-copy repeats (LCRs) are located inside or flanking the SMS common deletion. These repeats, also known as "SMS-REPs," are termed "distal," "middle," and "proximal." The directly oriented distal and proximal copies act as substrates for nonallelic homologous recombination resulting in both the deletion associated with SMS and the reciprocal duplication: dup(17)(p11.2p11.2). Using restriction enzyme cis-morphism analyses and direct sequencing, we mapped the regions of strand exchange in 16 somatic-cell hybrids that harbor only the recombinant SMS-REP. Our studies showed that the sites of crossovers were distributed throughout the region of homology between the distal and proximal SMS-REPs. However, despite approximately 170 kb of high homology, 50% of the recombinant junctions occurred in a 12.0-kb region within the KER gene clusters. DNA sequencing of this hotspot (positional preference for strand exchange) in seven recombinant SMS-REPs narrowed the crossovers to an approximately 8-kb interval. Four of them occurred in a 1,655-bp region rich in polymorphic nucleotides that could potentially reflect frequent gene conversion. For further evaluation of the strand exchange frequency in patients with SMS, novel junction fragments from the recombinant SMS-REPs were identified. As predicted by the reciprocal-recombination model, junction fragments were also identified from this hotspot region in patients with dup(17)(p11.2p11.2), documenting reciprocity of the positional preference for strand exchange. Several potential cis-acting recombination-promoting sequences were identified within the hotspot. It is interesting that we found 2.1-kb AT-rich inverted repeats flanking the proximal and middle KER gene clusters but not the distal one. The role of any or all of these in stimulating double-strand breaks around this positional recombination hotspot remains to be explored.
Collapse
Affiliation(s)
- Weimin Bi
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Sung-Sup Park
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Christine J. Shaw
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Pragna I. Patel
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
78
|
Mucha M, Król J, Goc A, Filipski J. Mapping candidate hotspots of meiotic recombination in segments of human DNA cloned in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2003; 270:165-72. [PMID: 12942369 DOI: 10.1007/s00438-003-0915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2003] [Accepted: 08/01/2003] [Indexed: 11/24/2022]
Abstract
The hotspots of meiotic recombination in the human genome can be localized by genetic techniques. The resolution of these techniques is in the range of kilobases and depends on the density of the physical markers identifying allelic variants of the chromosomal loci. We thought it would be interesting to localize these sites with higher resolution. Assuming that some human chromosomal sites conserve their propensity for recombination when cloned in yeast, we localized the hotspots of recombination in several yeast artificial chromosomes (YACs) carrying human DNA. A number of potential recombination hotspots could be identified in the clones studied. Among them there are two classes of sites that are particularly recombination prone also in human meiotic cells: sites associated with CpG islands and sites located in the vicinity of long minisatellite sequences.
Collapse
Affiliation(s)
- M Mucha
- Laboratoire de Biochimie de la Chromatine, Institut J. Monod, Université Paris VI et Paris VII, 2, Place Jussieu Tour 43, 75251, Paris, France
| | | | | | | |
Collapse
|
79
|
Beçak ML, Beçak W, Pereira A. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae). AN ACAD BRAS CIENC 2003; 75:285-300. [PMID: 12947479 DOI: 10.1590/s0001-37652003000300004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The positioning of macrochromosomes of Bothrops jararaca and Bothrops insularis (Viperidae) was studied in undistorted radial metaphases of uncultured cells (spermatogonia and oogonia) not subjected to spindle inhibitors. Colchicinized metaphases from uncultured (spleen and intestine) and cultured tissues (blood) were also analyzed. We report two antagonic non-random chromosome arrangements in untreated premeiotic cells: the parallel configuration with homologue chromosomes associated side by side in the metaphase plate and the antiparallel configuration having homologue chromosomes with antipolar distribution in the metaphase ring. The antiparallel aspect also appeared in colchicinized cells. The spatial chromosome arrangement in both configurations is groupal size-dependent and maintained through meiosis. We also describe, in untreated gonia cells, endomitosis followed by reductional mitosis which restores the diploid number. In B. jararaca males we observed that some gonad regions present changes in the meiotic mechanism. In this case, endoreduplicated cells segregate the diplochromosomes to opposite poles forming directly endoreduplicated second metaphases of meiosis with the suppression of first meiosis. By a successive division, these cells form nuclei with one set of chromosomes. Chromosome doubling in oogonia is known in hybrid species and in parthenogenetic salamanders and lizards. This species also presented chromosome rearrangements leading to aneuploidies in mitosis and meiosis. It is suggested that somatic pairing, endomitosis, meiotic alterations, and chromosomal aberrations can be correlated processes. Similar aspects of nuclei configurations, endomitosis and reductional mitosis were found in other Viperidae and Colubridae species.
Collapse
Affiliation(s)
- Maria Luiza Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, 05503-900, Brasil.
| | | | | |
Collapse
|
80
|
Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22:229-44. [PMID: 12938088 DOI: 10.1002/humu.10254] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
81
|
NUZHDIN SERGEYV, PETROV DMITRIA. Transposable elements in clonal lineages: lethal hangover from sex. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00188.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Stankiewicz P, Shaw CJ, Dapper JD, Wakui K, Shaffer LG, Withers M, Elizondo L, Park SS, Lupski JR. Genome architecture catalyzes nonrecurrent chromosomal rearrangements. Am J Hum Genet 2003; 72:1101-16. [PMID: 12649807 PMCID: PMC1180264 DOI: 10.1086/374385] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 01/16/2003] [Indexed: 11/03/2022] Open
Abstract
To investigate the potential involvement of genome architecture in nonrecurrent chromosome rearrangements, we analyzed the breakpoints of eight translocations and 18 unusual-sized deletions involving human proximal 17p. Surprisingly, we found that many deletion breakpoints occurred in low-copy repeats (LCRs); 13 were associated with novel large LCR17p structures, and 2 mapped within an LCR sequence (middle SMS-REP) within the Smith-Magenis syndrome (SMS) common deletion. Three translocation breakpoints involving 17p11 were found to be located within the centromeric alpha-satellite sequence D17Z1, three within a pericentromeric segment, and one at the distal SMS-REP. Remarkably, our analysis reveals that LCRs constitute >23% of the analyzed genome sequence in proximal 17p--an experimental observation two- to fourfold higher than predictions based on virtual analysis of the genome. Our data demonstrate that higher-order genomic architecture involving LCRs plays a significant role not only in recurrent chromosome rearrangements but also in translocations and unusual-sized deletions involving 17p.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Jason D. Dapper
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Keiko Wakui
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Lisa G. Shaffer
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Marjorie Withers
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Leah Elizondo
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Sung-Sup Park
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics and Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, and Texas Children's Hospital, Houston
| |
Collapse
|
83
|
Lupski JR. 2002 Curt Stern Award Address. Genomic disorders recombination-based disease resulting from genomic architecture. Am J Hum Genet 2003; 72:246-52. [PMID: 12596790 PMCID: PMC379220 DOI: 10.1086/346217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, 77030, USA.
| |
Collapse
|
84
|
Cheung J, Estivill X, Khaja R, MacDonald JR, Lau K, Tsui LC, Scherer SW. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 2003; 4:R25. [PMID: 12702206 PMCID: PMC154576 DOI: 10.1186/gb-2003-4-4-r25] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Revised: 01/22/2003] [Accepted: 02/21/2003] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5% of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies. RESULTS Our analysis of the June 2002 public human genome assembly revealed that 107.4 of 3,043.1 megabases (Mb) (3.53%) of sequence contained segmental duplications, each with size equal or more than 5 kb and 90% identity. We have also detected that 38.9 Mb (1.28%) of sequence within this assembly is likely to be involved in sequence misassignment errors. Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6%) of single-nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential paralogous sequence variants. CONCLUSION Using two distinct computational approaches, we have identified most of the sequences in the human genome that have undergone recent segmental duplications. Near-identical segmental duplications present a major challenge to the completion of the human genome sequence. Potential sequence misassignments detected in this study would require additional efforts to resolve.
Collapse
Affiliation(s)
- Joseph Cheung
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Xavier Estivill
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Genes and Disease Program, Genomic Regulation Center, and Facultat Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra, E-08003 Barcelona, Catalonia, Spain
| | - Razi Khaja
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Jeffrey R MacDonald
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Ken Lau
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Lap-Chee Tsui
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
- Current address: The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Stephen W Scherer
- Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
85
|
Abstract
Genomic rearrangements play a major role in the pathogenesis of human genetic diseases. Nonallelic homologous recombination (NAHR) between low-copy repeats (LCRs) that flank unique genomic segments results in changes of genome organization and can cause a loss or gain of genomic segments. These LCRs appear to have arisen recently during primate speciation via paralogous segmental duplication, thus making the human species particularly susceptible to genomic rearrangements. Genomic disorders are defined as a group of diseases that result from genomic rearrangements, mostly mediated by NAHR. Molecular investigations of genomic disorders have revealed genome architectural features associated with susceptibility to rearrangements and the recombination mechanisms responsible for such rearrangements. The human genome sequence project reveals that LCRs may account for 5% of the genome, suggesting that many novel genomic disorders might still remain to be recognized.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
86
|
Shaw CJ, Bi W, Lupski JR. Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p11.2. Am J Hum Genet 2002; 71:1072-81. [PMID: 12375235 PMCID: PMC420000 DOI: 10.1086/344346] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 08/14/2002] [Indexed: 12/11/2022] Open
Abstract
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Weimin Bi
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| |
Collapse
|
87
|
A Novel Endogenous Retrovirus-Related Element in the Human Genome Resembles a DNA Transposon: Evidence for an Evolutionary Link? Genomics 2002. [DOI: 10.1006/geno.2002.6856] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
88
|
Investigating the Mechanism of Chromosomal Deletion: Characterization of 39 Deletion Breakpoints in Introns 47 and 48 of the Human Dystrophin Gene. Genomics 2002. [DOI: 10.1006/geno.2002.6861] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
89
|
Cullen M, Perfetto SP, Klitz W, Nelson G, Carrington M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet 2002; 71:759-76. [PMID: 12297984 PMCID: PMC378534 DOI: 10.1086/342973] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 06/27/2002] [Indexed: 11/03/2022] Open
Abstract
Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall.
Collapse
Affiliation(s)
- Michael Cullen
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Stephen P. Perfetto
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - William Klitz
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - George Nelson
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Mary Carrington
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| |
Collapse
|
90
|
Capriglione T, Odierna G, Caputo V, Canapa A, Olmo E. Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus. Gene 2002; 295:193-8. [PMID: 12354653 DOI: 10.1016/s0378-1119(02)00729-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report the presence of Tc1 transposon-like sequences in the Antarctic ice-fish Chionodraco hamatus, belonging to the Notothenioidei. The complete DNA sequence of these transposon-like elements is reduced in length compared to other Tc1 transposons, but it appears to share significant structural similarities with them. It contains a degenerate open reading frame, whose inferred 264 amino acid sequence shares sequence similarity with the 'aspartic acid, aspartic acid (35) glutamic acid' family of transposases, particularly those from Caenorhabditis species (sp.) and Drosophila sp. Southern blot analysis and polymerase chain reaction amplification indicate that Tc1 transposon-like sequences are present in other notothenioid species, though their amount can vary in the different lineages.
Collapse
Affiliation(s)
- Teresa Capriglione
- Dipartimento di Biologia Evolutiva e Comparata, Università di Napoli 'Federico II', Via Mezzocannone, 8, 80134, Napoli, Italy.
| | | | | | | | | |
Collapse
|
91
|
Tonini MMO, Passos-Bueno MR, Cerqueira A, Pavanello R, Vainzof M, Dubowitz V, Zatz M. Facioscapulohumeral (FSHD1) and other forms of muscular dystrophy in the same family: is there more in muscular dystrophy than meets the eye? Neuromuscul Disord 2002; 12:554-7. [PMID: 12117479 DOI: 10.1016/s0960-8966(02)00014-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report on two unrelated Brazilian families with members affected by two different forms of muscular dystrophy. In the first one, the 35-year-old male proband has limb-girdle muscular dystrophy with proximal weakness, elevated creatine kinase and a myopathic muscle biopsy. All the proteins known to be associated with limb-girdle muscular dystrophy were normal. Two of his sisters also complained of muscle weakness. The oldest sister showed clinical signs consistent with facioscapulohumeral muscular dystrophy, confirmed through molecular analysis. She presented a 30 kb EcoRI/BlnI fragment which was found in another six relatives, but surprisingly not in the affected proband or the other sister. In the second family, a 57-year-old male with a typical facioscapulohumeral muscular dystrophy phenotype has a 17 kb EcoRI/BlnI fragment, which was also present in other affected relatives. However in a 14-year-old severely affected male cousin, confined to a wheelchair since age 12, but without facial weakness, the small fragment was absent. These families illustrate the importance of testing all affected individuals in a family.
Collapse
Affiliation(s)
- M M O Tonini
- Center for the study of Human Genome, Department of Biology, University of São Paulo, Rua do Matão, 277, CEP 05508-900, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Molecular studies of unstable regions in the human genome have identified region-specific low-copy repeats (LCRs). Unlike highly repetitive sequences (e.g. Alus and LINEs), LCRs are usually of 10-400 kb in size and exhibit > or = 95-97% similarity. According to computer analyses of available sequencing data, LCRs may constitute >5% of the human genome. Through the process of non-allelic homologous recombination using paralogous genomic segments as substrates, LCRs have been shown to facilitate meiotic DNA rearrangements associated with disease traits, referred to as genomic disorders. In addition, this LCR-based complex genome architecture appears to play a major role in both primate karyotype evolution and human tumorigenesis.
Collapse
Affiliation(s)
- Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Room 604B, One Baylor Plaza, and Texas Children Hospital, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
93
|
McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002; 70:1077-88. [PMID: 11925570 PMCID: PMC447586 DOI: 10.1086/340363] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 02/18/2002] [Indexed: 11/03/2022] Open
Abstract
The 22q11 region is involved in chromosomal rearrangements that lead to altered gene dosage, resulting in genomic disorders that are characterized by mental retardation and/or congenital malformations. Three such disorders-cat-eye syndrome (CES), der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS)-are associated with four, three, and one dose, respectively, of parts of 22q11. The critical region for CES lies centromeric to the deletion region of VCFS/DGS, although, in some cases, the extra material in CES extends across the VCFS/DGS region. The der(22) syndrome region overlaps both the CES region and the VCFS/DGS region. Molecular approaches have revealed a set of common chromosome breakpoints that are shared between the three disorders, implicating specific mechanisms that cause these rearrangements. Most VCFS/DGS and CES rearrangements are likely to occur by homologous recombination events between blocks of low-copy repeats (e.g., LCR22), whereas nonhomologous recombination mechanisms lead to the constitutional t(11;22) translocation. Meiotic nondisjunction events in carriers of the t(11;22) translocation can then lead to offspring with der(22) syndrome. The molecular basis of the clinical phenotype of these genomic disorders has also begun to be addressed. Analysis of both the genomic sequence for the 22q11 interval and the orthologous regions in the mouse has identified >24 genes that are shared between VCFS/DGS and der(22) syndrome and has identified 14 putative genes that are shared between CES and der(22) syndrome. The ability to manipulate the mouse genome aids in the identification of candidate genes in these three syndromes. Research on genomic disorders on 22q11 will continue to expand our knowledge of the mechanisms of chromosomal rearrangements and the molecular basis of their phenotypic consequences.
Collapse
Affiliation(s)
- Heather E. McDermid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta; and Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Bernice E. Morrow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta; and Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
94
|
Abstract
Mutations in human gene pathology and evolution represent two sides of the same coin in that the same mechanisms that have frequently been implicated in disease-associated mutagenesis appear also to have been involved in potentiating evolutionary change. Indeed, the mutational spectra of germline mutations responsible for inherited disease, somatic mutations underlying tumorigenesis, polymorphisms (either neutral or functionally significant) and differences between orthologous gene sequences exhibit remarkable similarities, implying that they may have causal mechanisms in common. Since these different categories of mutation share multiple unifying characteristics, they should no longer be viewed as distinct entities but rather as portions of a continuum of genetic change that links population genetics and molecular medicine with molecular evolution.
Collapse
Affiliation(s)
- D N Cooper
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK.
| |
Collapse
|
95
|
Bernard R, Boyer A, Nègre P, Malzac P, Latour P, Vandenberghe A, Philip N, Lévy N. Prenatal detection of the 17p11.2 duplication in Charcot-Marie-Tooth disease type 1A: necessity of a multidisciplinary approach for heterogeneous disorders. Eur J Hum Genet 2002; 10:297-302. [PMID: 12082504 DOI: 10.1038/sj.ejhg.5200804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 03/14/2002] [Accepted: 03/19/2002] [Indexed: 11/09/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a typical example of a clinically and genetically heterogeneous disorder and, in most cases, is dominantly inherited and caused by a 1.5 megabase duplication on chromosome 17p11.2 containing the PMP22 gene. This is a non-lethal disease with a wide spectrum of severity, from asymptomatism to severe motor and sensory disability. Unpredictable degree of disability is usually the reason why prenatal diagnosis is required and must be addressed. Molecular procedures such as the use of polymorphic non microsatellite STRs, allowing very fast and reliable results even when requiring a gene dosage interpretation are now available and have been recently validated in post-natal diagnosis. Our results indicate that this approach is also the best-adapted method in case of prenatal diagnosis. Nevertheless, ethical considerations raised by prenatal diagnosis in CMT and more generally in non-lethal disorders remain to be actively considered. Here, we present our experience in genetic counselling, and address the psychological issues for 7 CMT at risk pregnancies. In five cases, a CMT1A duplication was evidenced; pregnancy was terminated in four of these cases and the parents from one affected foetus decided to pursue the pregnancy.
Collapse
Affiliation(s)
- Rafaëlle Bernard
- Département de Génétique Médicale, Hôpital d'enfants de la Timone, 13385 Marseille Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Puget N, Gad S, Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S. Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 2002; 70:858-65. [PMID: 11880951 PMCID: PMC379114 DOI: 10.1086/339434] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 01/02/2002] [Indexed: 11/03/2022] Open
Abstract
The 5' end of the breast and ovarian cancer-susceptibility gene BRCA1 has previously been shown to lie within a duplicated region of chromosome band 17q21. The duplicated region contains BRCA1 exons 1A, 1B, and 2 and their surrounding introns; as a result, a BRCA1 pseudogene (PsiBRCA1) lies upstream of BRCA1. However, the sequence of this segment remained essentially unknown. We needed this information to investigate at the nucleotide level the germline deletions comprising BRCA1 exons 1A, 1B, and 2, which we had previously identified in two families with breast and ovarian cancer. We have analyzed the recently deposited nucleotide sequence of the 1.0-Mb region upstream of BRCA1. We found that 14 blocks of homology between the tandemly repeated copies (cumulative length = 11.5 kb) show similarity of 77%-92%. Gaps between blocks result from insertion or deletion, usually of repetitive elements. BRCA1 exon 1A and PsiBRCA1 exon 1A are 44.5 kb apart. In the two families with breast and ovarian cancer mentioned above, distinct homologous recombination events occurred between intron 2 of BRCA1 and intron 2 of PsiBRCA1, leading to 37-kb deletions. Breakpoint junctions were found to be located at close but distinct sites within segments that are 98% identical. The mutant alleles lack the BRCA1 promoter and harbor a chimeric gene consisting of PsiBRCA1 exons 1A, 1B, and 2, which lacks the initiation codon, fused to BRCA1 exons 3-24. Thus, we report a new mutational mechanism for the BRCA1 gene. The presence of a large region homologous to BRCA1 on the same chromosome appears to constitute a hot spot for recombination.
Collapse
Affiliation(s)
- Nadine Puget
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Sophie Gad
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Laure Perrin-Vidoz
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Olga M. Sinilnikova
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Dominique Stoppa-Lyonnet
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Gilbert M. Lenoir
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| | - Sylvie Mazoyer
- Laboratoire de Génétique, Unité Mixte de Recherche 5641 CNRS, Université Claude Bernard, and International Agency for Research on Cancer, Lyon, France; and Service de Génétique Oncologique, Institut Curie, Paris
| |
Collapse
|
97
|
Martin CL, Wong A, Gross A, Chung J, Fantes JA, Ledbetter DH. The evolutionary origin of human subtelomeric homologies--or where the ends begin. Am J Hum Genet 2002; 70:972-84. [PMID: 11875757 PMCID: PMC379127 DOI: 10.1086/339768] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Accepted: 01/17/2002] [Indexed: 11/04/2022] Open
Abstract
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.
Collapse
Affiliation(s)
- Christa Lese Martin
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Andrew Wong
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Alyssa Gross
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - June Chung
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Judy A. Fantes
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - David H. Ledbetter
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| |
Collapse
|
98
|
Zamurović N, Milić V, Dacković J, Zamurović D, Culjković B, Parlović S, Apostolski S, Romac S. [Analysis of mutations in the chromosome 17p11.2 region in patients with Charcot-Marie-Tooth type 1 disease and in patients with tomaculous neuropathy]. SRP ARK CELOK LEK 2002; 130:59-63. [PMID: 12154515 DOI: 10.2298/sarh0204059z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Charcot-Marie-Tooth type 1A disease (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are common inherited disorders of the peripheral nervous system associated with duplication and deletion, respectively, of the 17p11.2 segment including the gene of peripheral myelin protein 22. We studied 48 subjects belonging to 29 families with clinical and electrophysiological signs of definite CMT1, 20 patients with suspected CMT phenotype, and 17 patients and healthy members of their families with HNPP. Blood sampling and DNA isolation, PCR, restriction analysis, southern blotting were performed using standard procedures. Of 48 patients with diagnosis of definite CMT1 in 25 (52%) we found a 1.5 Mb tandem duplication in chromosome 17p11.2. These duplications were not found in any of 20 sporadic cases with the clinical phenotype of CMT but without reliable electrophysiological data. Only 13 (44.8%) of 29 unrelated CMT1 patients from the first group had 17p11.2 duplications. Three of 4 sporadic cases (75%) with definite CMT1 had 17p11.2 duplications. Of 17 patients from 6 families with HNPP deletion of 17p11.2 segment was found in 15 (88.2%), as well as in 5 (83.3%) of six unrelated cases. Detection of CMT1A/HNPP recombination hotspot is a simple and reliable DNA diagnostic method, which is useful only for the patients with clinically already verified CMT1, and HNPP for further genetic counselling of patients and members of their families.
Collapse
|
99
|
Abstract
An increasing number of human diseases are recognized to result from recurrent DNA rearrangements involving unstable genomic regions. These are termed genomic disorders, in which the clinical phenotype is a consequence of abnormal dosage of gene(s) located within the rearranged genomic fragments. Both inter- and intrachromosomal rearrangements are facilitated by the presence of region-specific low-copy repeats (LCRs) and result from nonallelic homologous recombination (NAHR) between paralogous genomic segments. LCRs usually span approximately 10-400 kb of genomic DNA, share >or= 97% sequence identity, and provide the substrates for homologous recombination, thus predisposing the region to rearrangements. Moreover, it has been suggested that higher order genomic architecture involving LCRs plays a significant role in karyotypic evolution accompanying primate speciation.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Dept Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | |
Collapse
|
100
|
Abstract
Aberrant products of mariner excision that have an impaired ability to be mobilized often include internal deletions that do not encroach on either of the inverted repeats. Analysis of 13 such deletions, as well as 7 additional internal deletions obtained by various methods, has revealed at least three internal regions whose integrity is necessary for efficient mariner mobilization. Within the 1286-bp element, the essential regions are contained in the intervals bounded by coordinates 229-586, 735-765, and 939-1066, numbering in base pairs from the extreme 5' end of the element. These regions may contain sequences that are necessary for transposase binding or that are needed to maintain proper spacing between binding sites. The isolation of excision-defective elements with point mutations at nucleotide positions 993 and 161/179 supports the hypothesis of sequence requirements, but the reduced mobility of transformation vectors with insertions into the SacI site at position 790 supports the hypothesis of spacing requirements. The finding of multiple internal regions that are essential for efficient mariner mobilization in vivo contrasts with reports that mini-elements with as little as 43 bp of DNA between the inverted repeats can transpose efficiently in vitro.
Collapse
Affiliation(s)
- Allan R Lohe
- CSIRO Plant Industry, Canberra ACT 2601, Australia
| | | |
Collapse
|