51
|
Fouarge E, Monseur A, Boulanger B, Annoussamy M, Seferian AM, De Lucia S, Lilien C, Thielemans L, Paradis K, Cowling BS, Freitag C, Carlin BP, Servais L. Hierarchical Bayesian modelling of disease progression to inform clinical trial design in centronuclear myopathy. Orphanet J Rare Dis 2021; 16:3. [PMID: 33407688 PMCID: PMC7789189 DOI: 10.1186/s13023-020-01663-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Background Centronuclear myopathies are severe rare congenital diseases. The clinical variability and genetic heterogeneity of these myopathies result in major challenges in clinical trial design. Alternative strategies to large placebo-controlled trials that have been used in other rare diseases (e.g., the use of surrogate markers or of historical controls) have limitations that Bayesian statistics may address. Here we present a Bayesian model that uses each patient’s own natural history study data to predict progression in the absence of treatment. This prospective multicentre natural history evaluated 4-year follow-up data from 59 patients carrying mutations in the MTM1 or DNM2 genes. Methods Our approach focused on evaluation of forced expiratory volume in 1 s (FEV1) in 6- to 18-year-old children. A patient was defined as a responder if an improvement was observed after treatment and the predictive probability of such improvement in absence of intervention was less than 0.01. An FEV1 response was considered clinically relevant if it corresponded to an increase of more than 8%. Results The key endpoint of a clinical trial using this model is the rate of response. The power of the study is based on the posterior probability that the rate of response observed is greater than the rate of response that would be observed in the absence of treatment predicted based on the individual patient’s previous natural history. In order to appropriately control for Type 1 error, the threshold probability by which the difference in response rates exceeds zero was adapted to 91%, ensuring a 5% overall Type 1 error rate for the trial. Conclusions Bayesian statistical analysis of natural history data allowed us to reliably simulate the evolution of symptoms for individual patients over time and to probabilistically compare these simulated trajectories to actual observed post-treatment outcomes. The proposed model adequately predicted the natural evolution of patients over the duration of the study and will facilitate a sufficiently powerful trial design that can cope with the disease’s rarity. Further research and ongoing dialog with regulatory authorities are needed to allow for more applications of Bayesian statistics in orphan disease research.
Collapse
Affiliation(s)
- Eve Fouarge
- Division of Child Neurology, Centre de Référence Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital of Liège and University of Liège, Liège, Belgium
| | | | | | - Mélanie Annoussamy
- Institute I-Motion, Hôpital Armand Trousseau, Paris, France.,Sysnav, Vernon, France
| | | | | | - Charlotte Lilien
- Institute I-Motion, Hôpital Armand Trousseau, Paris, France.,MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Leen Thielemans
- Dynacure, 67400, Illkirch, France.,2 Bridge, Rodendijk 60/X, 2980, Zoersel, Belgium
| | - Khazal Paradis
- Paradis Consultancy SAS, 06570, Saint-Paul-de-Vence, France
| | | | | | | | - Laurent Servais
- Division of Child Neurology, Centre de Référence Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital of Liège and University of Liège, Liège, Belgium. .,Institute I-Motion, Hôpital Armand Trousseau, Paris, France. .,MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK. .,Department of Paediatrics, Level 2, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, Oxford, UK.
| | | |
Collapse
|
52
|
Pacheco J, Wills RC, Hammond GRV. Induced Dimerization Tools to Deplete Specific Phosphatidylinositol Phosphates. Methods Mol Biol 2021; 2251:105-120. [PMID: 33481234 DOI: 10.1007/978-1-0716-1142-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical dimerization systems have been used to drive acute depletion of polyphosphoinsitides (PPIns). They do so by inducing subcellular localization of enzymes that catabolize PPIns. By using this approach, all seven PPIns can be depleted in living cells and in real time. The rapid permeation of dimerizer agents and the specific expression of recruiter proteins confer great spatial and temporal resolution with minimal cell perturbation. In this chapter, we provide detailed instructions to monitor and induce depletion of PPIns in live cells.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Gangfuss A, Schmitt D, Roos A, Braun F, Annoussamy M, Servais L, Schara-Schmidt U. Diagnosing X-linked Myotubular Myopathy - A German 20-year Follow Up Experience. J Neuromuscul Dis 2021; 8:79-90. [PMID: 33164942 PMCID: PMC7902950 DOI: 10.3233/jnd-200539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a life-threatening rare neuromuscular disease, which is caused by pathogenic variants in the MTM1 gene. It has a large phenotypic heterogeneity, ranging from patients, who are able to walk independently to immobile patients who are only able to bring hand to mouth and depend on a respirator 24 hours a day every day. This suggests that ventilator requirements may not illustrate the full clinical picture of patients with XLMTM. At present, there is no curative therapy available, despite first promising results from ongoing gene therapy studies. In this study, we evaluated in detail the data from 13 German XLMTM patients, which was collected over a period of up to 20 years in our university hospital. We compared it to the international prospective longitudinal natural history study (NHS) data from 45 patients (containing 11 German patients). To highlight the broad phenotypic spectrum of the disease, we additionally focused on the clinical presentation of three cases at a glance. Comparing our data with the above mentioned natural history study, it appears the patients of the present German cohort seem to be more often severely affected, with higher frequency of non-ambulatory patients and patients on ventilation (and for longer time) and a higher proportion of patients needing a percutaneous endoscopic gastrostomy. Another key finding is a potential gap in time between first clinical presentation and final diagnosis, showing a need for patients to be treated in a specialized center for neuromuscular diseases.
Collapse
Affiliation(s)
- Andrea Gangfuss
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Andreas Roos
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frederik Braun
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Laurent Servais
- University of Liège, Neuromuscular Disease Reference Center, Department of Pediatrics, Liege, Belgium.,MDUK Neuromuscular Center, Department of Pediatrics, University of Oxford, Oxford, UK
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
54
|
Luo S, Li Q, Lin J, Murphy Q, Marty I, Zhang Y, Kazerounian S, Agrawal PB. SPEG binds with desmin and its deficiency causes defects in triad and focal adhesion proteins. Hum Mol Genet 2020; 29:3882-3891. [PMID: 33355670 DOI: 10.1093/hmg/ddaa276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Striated preferentially expressed gene (SPEG), a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle-specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here, we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amount of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1 and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Quinn Murphy
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Marty
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, 38000 Grenoble, France
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
55
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
56
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
57
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
58
|
Shimizu S, Sakamoto S, Fukuda A, Yanagi Y, Uchida H, Takeda M, Yamada Y, Nakano N, Yoshioka T, Kasahara M. Living-donor liver transplantation for liver hemorrhaging due to peliosis hepatis in X-linked myotubular myopathy: Two cases and a literature review. Am J Transplant 2020; 20:2606-2611. [PMID: 32372511 DOI: 10.1111/ajt.15978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 01/25/2023]
Abstract
X-linked myotubular myopathy (MTM) (OMIM 310400) is a severe neuromuscular disorder caused by mutations in the myotubularin (MTM1) gene. Liver hemorrhaging due to peliosis hepatis (PH) is a fatal complication. We herein report 2 successful cases of living-donor liver transplantation (LDLT) for MTM patients due to liver hemorrhaging caused by PH and review previous reports. A boy who was 9 years and 4 months old initially underwent left lateral segmentectomy due to massive hepatic and intraperitoneal hemorrhaging. As bleeding from the remnant liver continued after hepatectomy, this patient emergently underwent LDLT using a left lateral segment graft from his father. Another boy who was 1 year and 7 months old underwent transcatheter arterial embolization due to hepatic hemorrhaging and was referred to our hospital for LDLT using a left lateral segment graft from his father. The pathological findings in both cases showed sinusoidal dilatation with degenerative changes in reticular fiber and hematoma in the explanted liver, which were consistent with PH associated with MTM. LT should be considered as a treatment option for patients with episodes of hepatic hemorrhaging due to MTM in order to protect against fatal bleeding.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Takeda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yohei Yamada
- Department of Pediatric Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Noriyuki Nakano
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
59
|
X-linked myotubular myopathy mimics hereditary spastic paraplegia in two female manifesting carriers of pathogenic MTM1 variant. Eur J Med Genet 2020; 63:104040. [PMID: 32805447 DOI: 10.1016/j.ejmg.2020.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy caused by pathogenic variants in the myotubularin 1 (MTM1) gene. XLMTM leads to severe weakness in male infants and majority of them die in the early postnatal period due to respiratory failure. Disease manifestations in female carriers vary from asymptomatic to severe, generalized congenital weakness. The symptomatic female carriers typically have limb-girdle weakness, asymmetric muscle weakness and skeletal size, urinary incontinence, facial weakness, ptosis and ophthalmoplegia. Here we describe a Finnish family with two females with lower limb spasticity and hyperreflexia resembling spastic paraplegia, gait difficulties and asymmetric muscle weakness in the limbs. A whole exome sequencing identified a heterozygous pathogenic missense variant MTM1 c.1262G > A, p.(Arg421Gln) segregating in the family. The variant has previously been detected in male and female patients with XLMTM. Muscle biopsy of one of the females showed variation in the myofiber diameter, atrophic myofibers, central nuclei and necklace fibers consistent with a diagnosis of XLMTM. This report suggests association between spastic paraplegia and pathogenic MTM1 variants expanding the phenotypic spectrum potentially associated with XLMTM, but the possible association needs to be confirmed by additional cases.
Collapse
|
60
|
Unconventional roles for membrane traffic proteins in response to muscle membrane stress. Curr Opin Cell Biol 2020; 65:42-49. [DOI: 10.1016/j.ceb.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022]
|
61
|
Hall TE, Martel N, Ariotti N, Xiong Z, Lo HP, Ferguson C, Rae J, Lim YW, Parton RG. In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nat Commun 2020; 11:3711. [PMID: 32709891 PMCID: PMC7381618 DOI: 10.1038/s41467-020-17486-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.
Collapse
Affiliation(s)
- Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
62
|
Morales L, Gambhir Y, Bennett J, Stedman HH. Broader Implications of Progressive Liver Dysfunction and Lethal Sepsis in Two Boys following Systemic High-Dose AAV. Mol Ther 2020; 28:1753-1755. [PMID: 32710826 PMCID: PMC7363592 DOI: 10.1016/j.ymthe.2020.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leon Morales
- Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuva Gambhir
- School of Arts and Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Bennett
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hansell H Stedman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania and Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
63
|
Koch C, Buono S, Menuet A, Robé A, Djeddi S, Kretz C, Gomez-Oca R, Depla M, Monseur A, Thielemans L, Servais L, Laporte J, Cowling BS. Myostatin: a Circulating Biomarker Correlating with Disease in Myotubular Myopathy Mice and Patients. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1178-1189. [PMID: 32514412 PMCID: PMC7267729 DOI: 10.1016/j.omtm.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Myotubular myopathy, also called X-linked centronuclear myopathy (XL-CNM), is a severe congenital disease targeted for therapeutic trials. To date, biomarkers to monitor disease progression and therapy efficacy are lacking. The Mtm1 -/y mouse is a faithful model for XL-CNM, due to myotubularin 1 (MTM1) loss-of-function mutations. Using both an unbiased approach (RNA sequencing [RNA-seq]) and a directed approach (qRT-PCR and protein level), we identified decreased Mstn levels in Mtm1 -/y muscle, leading to low levels of myostatin in muscle and plasma. Myostatin (Mstn or growth differentiation factor 8 [Gdf8]) is a protein released by myocytes and inhibiting muscle growth and differentiation. Decreasing Dnm2 by genetic cross with Dnm2 +/- mice or by antisense oligonucleotides blocked or postponed disease progression and resulted in an increase in circulating myostatin. In addition, plasma myostatin levels inversely correlated with disease severity and with Dnm2 mRNA levels in muscles. Altered Mstn levels were associated with a generalized disruption of the myostatin pathway. Importantly, in two different forms of CNMs we identified reduced circulating myostatin levels in plasma from patients. This provides evidence of a blood-based biomarker that may be used to monitor disease state in XL-CNM mice and patients and supports monitoring circulating myostatin during clinical trials for myotubular myopathy.
Collapse
Affiliation(s)
| | | | - Alexia Menuet
- Dynacure, Illkirch, France.,Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | | | - Sarah Djeddi
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Christine Kretz
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Raquel Gomez-Oca
- Dynacure, Illkirch, France.,Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | | | | | | | - Laurent Servais
- Hopital Armand Trousseau, Institute I-Motion, Institute of Myology, Paris, France.,MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, 4000 Liège, Belgium
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | | |
Collapse
|
64
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Congenital muscular dystrophies and congenital myopathies are a heterogeneous group of disorders resulting in hypotonia, muscle weakness, and dystrophic or myopathic features on muscle biopsy. This article summarizes the clinical and genetic aspects of these disorders. RECENT FINDINGS Historically, diagnoses of congenital muscular dystrophy and congenital myopathy have been made by clinical features and histopathology; however, recent advances in genetics have changed diagnostic practice by relying more heavily on genetic findings. This article reviews the clinical and genetic features of the most common congenital muscular dystrophies including laminin subunit alpha 2 (LAMA2)-related (merosin deficient), collagen VI-related, and α-dystroglycan-related congenital muscular dystrophies and reviews the most common congenital myopathies including nemaline rod, core, and centronuclear myopathies. With the increasing accessibility of genetic testing, the number of genes found to be associated with these disorders has increased dramatically. A wide spectrum of severity and onset (from birth to adulthood) exist across all subtypes. Progression and other features are variable depending on the subtype and severity of the specific genetic mutation. SUMMARY Congenital muscular dystrophy and congenital myopathy are increasingly recognized disorders. A growing appreciation for the breadth of phenotypic variability and overlap between established subtypes has challenged long-standing phenotypic and histopathologic classifications of these disorders but has driven a greater understanding of pathogenesis and opened the door to the development of novel treatments.
Collapse
|
66
|
Hammond GRV, Burke JE. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 2020; 63:57-67. [PMID: 31972475 PMCID: PMC7247936 DOI: 10.1016/j.ceb.2019.12.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
Phosphoinositides (PPIns) are lipid signaling molecules that act as master regulators of cellular signaling. Recent studies have revealed novel roles of PPIns in myriad cellular processes and multiple human diseases mediated by misregulation of PPIn signaling. This review will present a timely summary of recent discoveries in PPIn biology, specifically their role in regulating unexpected signaling pathways, modification of signaling outcomes downstream of integral membrane proteins, and novel roles in lipid transport. This has revealed new roles of PPIns in regulating membrane trafficking, immunity, cell polarity, and response to extracellular signals. A specific focus will be on novel opportunities to target PPIn metabolism for treatment of human diseases, including cancer, pathogen infection, developmental disorders, and immune disorders.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
67
|
A mutation in MTM1 causes X-Linked myotubular myopathy in Boykin spaniels. Neuromuscul Disord 2020; 30:353-359. [PMID: 32417001 DOI: 10.1016/j.nmd.2020.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to report the findings of clinical and genetic evaluation of a 3-month old male Boykin spaniel (the proband) that presented with progressive weakness. The puppy underwent a physical and neurological examination, serum biochemistry and complete blood cell count, electrophysiological testing, muscle biopsy and whole genome sequencing. Clinical evaluation revealed generalized neuromuscular weakness with tetraparesis and difficulty holding the head up and a dropped jaw. There was diffuse spontaneous activity on electromyography, most severe in the cervical musculature. Nerve conduction studies were normal, the findings were interpreted as consistent with a myopathy. Skeletal muscle was grossly abnormal on biopsy and there were necklace fibers and abnormal triad structure localization on histopathology, consistent with myotubular myopathy. Whole genome sequencing revealed a premature stop codon in exon 13 of MTM1 (ChrX: 118,903,496 C > T, c.1467C>T, p.Arg512X). The puppy was humanely euthanized at 5 months of age. The puppy's dam was heterozygous for the variant, and 3 male puppies from a subsequent litter all of which died by 2 weeks of age were hemizygous for the variant. This naturally occurring mutation in Boykin spaniels causes a severe form of X-linked myotubular myopathy, comparable to the human counterpart.
Collapse
|
68
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
69
|
Doubravská L, Dostál V, Knop F, Libusová L, Macůrková M. Human myotubularin-related protein 9 regulates ER-to-Golgi trafficking and modulates WNT3A secretion. Exp Cell Res 2020; 386:111709. [PMID: 31704058 DOI: 10.1016/j.yexcr.2019.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
Abstract
Regulation of phosphatidylinositol phosphates plays a crucial role in signal transduction, membrane trafficking or autophagy. Members of the myotubularin family of lipid phosphatases contribute to phosphoinositide metabolism by counteracting the activity of phosphoinositide kinases. The mechanisms determining their subcellular localization and targeting to specific membrane compartments are still poorly understood. We show here that the inactive phosphatase MTMR9 localizes to the intermediate compartment and to the Golgi apparatus and is able to recruit its active phosphatase partners MTMR6 and MTMR8 to these locations. Furthermore, MTMR8 and MTMR9 co-localize with the small GTPase RAB1A and regulate its localization. Loss of MTMR9 expression compromises the integrity of the Golgi apparatus and results in altered distribution of RAB1A and actin nucleation-promoting factor WHAMM. Loss or overexpression of MTMR9 leads to decreased rate of protein secretion. We demonstrate that secretion of physiologically relevant cargo exemplified by the WNT3A protein is affected after perturbation of MTMR9 levels.
Collapse
Affiliation(s)
- Lenka Doubravská
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Vojtěch Dostál
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Filip Knop
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Marie Macůrková
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
70
|
Kamio K, Takahashi Y, Ishihara K, Sekiya A, Kato S, Shimanuki I, Ide M, Furuoka H. Centronuclear Myopathy with Abundant Nemaline Rods in a Japanese Black and Hereford Crossbred Calf. J Comp Pathol 2019; 174:8-12. [PMID: 31955807 DOI: 10.1016/j.jcpa.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Histopathological examination was performed on skeletal and diaphragmatic muscles from an 8-month-old male crossbred calf showing abnormal gait and tremor of the hindlimbs. There were numerous round fibres with centrally placed nuclei forming nuclear chains in longitudinal sections, associated with interstitial fibrosis or adipose tissue infiltration. On nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) staining, some muscle fibres in severe lesions showed a spoke-like appearance due to a radial arrangement of sarcoplasmic strands. Additionally, increased NADH-TR activity in the subsarcolemmal structures, appearingas ring-like or necklace-like forms, were observed. Transmission electron microscopy revealed dilated sarcoplasmic reticulum and variably shaped electron-dense inclusions consisting of myofibrillar streams. Another prominent feature was the existence of numerous nemaline rods within muscle fibres; these were stained red by Gomori's trichrome stain. Immunohistochemistry revealed that the nemaline rods showed strong immunoreactivity with α-actinin and desmin antibodies. Electron microscopically, these structures were composed of dense-homogeneous material and continuous with the Z disk. The case was diagnosed as centronuclear myopathy with increased nemaline rods.
Collapse
Affiliation(s)
- K Kamio
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Y Takahashi
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - K Ishihara
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - A Sekiya
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - S Kato
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - I Shimanuki
- Tokachi Agricultural Mutual Aid Association, Obihiro, Japan
| | - M Ide
- Tokachi Agricultural Mutual Aid Association, Obihiro, Japan
| | - H Furuoka
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan.
| |
Collapse
|
71
|
Palamiuc L, Ravi A, Emerling BM. Phosphoinositides in autophagy: current roles and future insights. FEBS J 2019; 287:222-238. [DOI: 10.1111/febs.15127] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lavinia Palamiuc
- Sanford Burnham Prebys Medical Discovery Institute Cancer Metabolism and Signaling Networks Program La JollaCA USA
| | - Archna Ravi
- Sanford Burnham Prebys Medical Discovery Institute Cancer Metabolism and Signaling Networks Program La JollaCA USA
| | - Brooke M. Emerling
- Sanford Burnham Prebys Medical Discovery Institute Cancer Metabolism and Signaling Networks Program La JollaCA USA
| |
Collapse
|
72
|
Dupont JB, Guo J, Renaud-Gabardos E, Poulard K, Latournerie V, Lawlor MW, Grange RW, Gray JT, Buj-Bello A, Childers MK, Mack DL. AAV-Mediated Gene Transfer Restores a Normal Muscle Transcriptome in a Canine Model of X-Linked Myotubular Myopathy. Mol Ther 2019; 28:382-393. [PMID: 31784415 DOI: 10.1016/j.ymthe.2019.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple clinical trials employing recombinant adeno-associated viral (rAAV) vectors have been initiated for neuromuscular disorders, including Duchenne and limb-girdle muscular dystrophies, spinal muscular atrophy, and recently X-linked myotubular myopathy (XLMTM). Our previous work on a canine model of XLMTM showed that a single rAAV8-cMTM1 systemic infusion corrected structural abnormalities within the muscle and restored contractile function, with affected dogs surviving more than 4 years post injection. This remarkable therapeutic efficacy presents a unique opportunity to identify the downstream molecular drivers of XLMTM pathology and to what extent the whole muscle transcriptome is restored to normal after gene transfer. Herein, RNA-sequencing was used to examine the transcriptomes of the Biceps femoris and Vastus lateralis in a previously described canine cohort that showed dose-dependent clinical improvements after rAAV8-cMTM1 gene transfer. Our analysis confirmed several dysregulated genes previously observed in XLMTM mice but also identified transcripts linked to XLMTM pathology. We demonstrated XLMTM transcriptome remodeling and dose-dependent normalization of gene expression after gene transfer and created metrics to pinpoint potential biomarkers of disease progression and correction.
Collapse
Affiliation(s)
- Jean-Baptiste Dupont
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jianjun Guo
- Audentes Therapeutics, San Francisco, CA 94108, USA
| | - Edith Renaud-Gabardos
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Karine Poulard
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Virginie Latournerie
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA 94108, USA
| | - Ana Buj-Bello
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Martin K Childers
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - David L Mack
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
73
|
Cowling BS, Thielemans L. Translational medicine in neuromuscular disorders: from academia to industry. Dis Model Mech 2019; 13:13/2/dmm041434. [PMID: 31658990 PMCID: PMC6906629 DOI: 10.1242/dmm.041434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Although around half of US Food and Drug Administration (FDA)-approved drugs originate from discoveries made in academic research laboratories, the US National Institutes of Health (NIH) estimates that nearly 90% of therapies developed in preclinical stages never reach clinical trials. From those in clinical trials, only 10% obtain marketing approval. Despite the recent advances in our understanding and diagnosis of neuromuscular disease, and the development of rational therapies in clinical trials, these numbers have not changed dramatically over the past two decades. This article discusses the advantages and challenges for translational research initiated from academia, and the trend towards bridging the gap between discovery and translation to the clinic. A focus is made on recent advances in therapeutic development for neuromuscular disorders. Summary: Academia-industry partnerships are important for therapeutic development. An improved understanding of the steps required for the translation of academic discoveries will be key for future clinical success in the neuromuscular field.
Collapse
Affiliation(s)
| | - Leen Thielemans
- Dynacure, Pôle API, 67400 Illkirch, France.,2 Bridge, 2980 Zoersel, Belgium
| |
Collapse
|
74
|
Tang J, Ma W, Chen Y, Jiang R, Zeng Q, Tan J, Jiang H, Li Q, Zhang VW, Wang J, Tang H, Luo L. Novel SPEG variant cause centronuclear myopathy in China. J Clin Lab Anal 2019; 34:e23054. [PMID: 31625632 PMCID: PMC7031609 DOI: 10.1002/jcla.23054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Centronuclear myopathy is a kind of disease difficult to diagnose due to its genetic diversity. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. METHODS A radiograph test, ultrasonic test, and biochemical tests were applied to clinical diagnosis of CNM. We performed trio medical exome sequencing of the family and conservation analysis to identify variants. RESULTS We report a pair of severe CNM twins with the same novel homozygous SPEG variant c. 8710A>G (p.Thr2904Ala) identified by clinical trio medical exome sequencing of the family and conservation analysis. The twins showed clinical symptoms of facial weakness, hypotonia, arthrogryposis, strephenopodia, patent ductus arteriosus, and pulmonary arterial hypertension. CONCLUSIONS Our report expands the clinical and molecular repertoire of CNM and enriches the variant spectrum of the SPEG gene in the Chinese population and helps us further understand the pathogenesis of CNM.
Collapse
Affiliation(s)
- Jia Tang
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Wei Ma
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yangran Chen
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Runze Jiang
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Jieliang Tan
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Hongqing Jiang
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Qing Li
- Medical Genetics Center, Jiangmen Maternity and Child health Care Hospital, Jiangmen, China
| | - Victor W Zhang
- AmCare Genomics Laboratory, International BioIsland, Guangzhou, China
| | - Jing Wang
- AmCare Genomics Laboratory, International BioIsland, Guangzhou, China
| | - Hui Tang
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
75
|
Tiosano D, Baris HN, Chen A, Hitzert MM, Schueler M, Gulluni F, Wiesener A, Bergua A, Mory A, Copeland B, Gleeson JG, Rump P, van Meer H, Sival DA, Haucke V, Kriwinsky J, Knaup KX, Reis A, Hauer NN, Hirsch E, Roepman R, Pfundt R, Thiel CT, Wiesener MS, Aslanyan MG, Buchner DA. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet 2019; 15:e1008088. [PMID: 31034465 PMCID: PMC6508738 DOI: 10.1371/journal.pgen.1008088] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe’s syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease. Identifying the genetic basis of rare disorders can provide insight into gene function, susceptibility to disease, guide the development of new therapeutics, improve opportunities for genetic counseling, and help clinicians evaluate and potentially treat complicated clinical presentations. However, it is estimated that the genetic basis of approximately one-half of all rare genetic disorders remains unknown. We describe one such rare disorder based on genetic and clinical evaluations of individuals from 3 unrelated consanguineous families with a similar constellation of features including short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations including stroke, among other findings. We discovered that these features were due to deficiency of the PIK3C2A enzyme. PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of the lipids phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2 that are essential for a variety of cellular processes including cilia formation and vesicle trafficking. This syndrome is the first monogenic disorder caused by mutations in a class II PI3K family member and thus sheds new light on their role in human development.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hagit N. Baris
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marrit M. Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Bergua
- Department of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Brett Copeland
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
| | - Joseph G. Gleeson
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hester van Meer
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Berlin Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josh Kriwinsky
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karl X. Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadine N. Hauer
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian T. Thiel
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Institute for Children’s Health, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
76
|
Ca 2+-induced sarcoplasmic reticulum Ca 2+ release in myotubularin-deficient muscle fibers. Cell Calcium 2019; 80:91-100. [PMID: 30999217 DOI: 10.1016/j.ceca.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
Abstract
Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca2+ release through ryanodine receptors. In the present study we aimed at further understanding how Ca2+ release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca2+ release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca2+ release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca2+ channel activity. In addition, the diseased muscle fibers at rest exhibit spontaneous elementary Ca2+ release events at a frequency 30 times greater than that of control fibers. Eighty percent of the events have spatiotemporal properties of archetypal Ca2+ sparks while the rest take either the form of lower amplitude, longer duration Ca2+ release events or of a combination thereof. The events occur at preferred locations in the fibers, indicating spatially uneven distribution of the parameters determining spontaneous ryanodine receptor 1 opening. Spatially large Ca2+ release sources were obviously involved in some of these events, suggesting that opening of ryanodine receptors in one cluster can activate opening of ryanodine receptors in a neighboring one. Overall results demonstrate that opening of Ca2+-activated ryanodine receptors is promoted both at rest and during excitation-contraction coupling in MTM1-deficient muscle fibers. Because access to this activation mode is denied to ryanodine receptors in healthy skeletal muscle, this may play an important role in the associated disease situation.
Collapse
|
77
|
Abstract
The congenital myopathies are a genetically heterogeneous and diverse group of early-onset, nondystrophic neuromuscular disorders. While the originally reported "classical" entities within this group - Central Core Disease, Multiminicore Disease, Nemaline Myopathy, and Centronuclear Myopathy - were defined by the predominant finding on muscle biopsy, "novel" forms with multiple, subtle, and unusual histopathologic features have been described more recently, reflective of an expanding phenotypical spectrum. The main disease mechanisms concern excitation-contraction coupling, intracellular calcium homeostasis, and thin/thick filament interactions. Management to date has been mainly supportive. Therapeutic strategies currently at various stages of exploration include genetic interventions aimed at direct correction of the underlying genetic defect, enzyme replacement therapy, and pharmacologic approaches, either specifically targeting the principal effect of the underlying gene mutation, or addressing its downstream consequences more generally. Clinical trial development is accelerating but will require more robust natural history data and tailored outcome measures.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom.
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
78
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
79
|
Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P, Buono S, Djerroud S, Messaddeq N, Koebel P, Prokic I, Hérault Y, Romero NB, Laporte J, Cowling BS. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci Transl Med 2019; 11:11/484/eaav1866. [DOI: 10.1126/scitranslmed.aav1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1−/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.
Collapse
|
80
|
Nishikawa A, Iida A, Hayashi S, Okubo M, Oya Y, Yamanaka G, Takahashi I, Nonaka I, Noguchi S, Nishino I. Three novel MTM1 pathogenic variants identified in Japanese patients with X-linked myotubular myopathy. Mol Genet Genomic Med 2019; 7:e621. [PMID: 30884204 PMCID: PMC6503166 DOI: 10.1002/mgg3.621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
Background X‐linked myotubular myopathy (XLMTM) is a form of the severest congenital muscle diseases characterized by marked muscle weakness, hypotonia, and feeding and breathing difficulties in male infants. It is caused by mutations in the myotubularin gene (MTM1). Methods Evaluation of clinical history and examination of muscle pathology of three patients and comprehensive genome analysis on our original targeted gene panel system for muscular diseases. Results We report three patients, each of whom presents distinct muscle pathological features. The three patients have novel hemizygous MTM1 variants, including c.527A>G (p.Gln176Arg), c.595C>G (p.Pro199Ala), or c.688T>C (p.Trp230Arg). Conclusions All variants were assessed as “Class 4 (likely pathogenic)” on the basis of the guideline of American College of Medical Genetics and Genomics. These distinct pathological features among the patients with variants in the second cluster of PTP domain in MTM1 provides an insight into microheterogeneities in disease phenotypes in XLMTM.
Collapse
Affiliation(s)
- Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Gaku Yamanaka
- Department of Pediatrics, Tokyo Medical University Hospital, Tokyo, Japan
| | - Ikuko Takahashi
- Department of Pediatrics, Akita University, Faculty of Medicine, Akita, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
81
|
Abstract
Les premiers biomédicaments conçus pour traiter des maladies neuromusculaires sont déjà sur le marché. Ils ne constituent pourtant que la partie émergée d’un iceberg considérable. Les développements en cours sont foisonnants, pour la thérapie génique comme cellulaire. L’AFM-Téléthon contribue depuis plusieurs décennies à impulser cette dynamique, qui n’est pas sans générer de nouveaux défis.
Collapse
|
82
|
Huntoon V, Widrick JJ, Sanchez C, Rosen SM, Kutchukian C, Cao S, Pierson CR, Liu X, Perrella MA, Beggs AH, Jacquemond V, Agrawal PB. SPEG-deficient skeletal muscles exhibit abnormal triad and defective calcium handling. Hum Mol Genet 2019; 27:1608-1617. [PMID: 29474540 DOI: 10.1093/hmg/ddy068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Centronuclear myopathies (CNM) are a subtype of congenital myopathies (CM) characterized by skeletal muscle weakness and an increase in the number of central myonuclei. We have previously identified three CNM probands, two with associated dilated cardiomyopathy, carrying striated preferentially expressed gene (SPEG) mutations. Currently, the role of SPEG in skeletal muscle function is unclear as constitutive SPEG-deficient mice developed severe dilated cardiomyopathy and died in utero. We have generated a conditional Speg-KO mouse model and excised Speg by crosses with striated muscle-specific cre-expressing mice (MCK-Cre). The resulting litters had a delay in Speg excision consistent with cre expression starting in early postnatal life and, therefore, an extended lifespan up to a few months. KO mice were significantly smaller and weaker than their littermate-matched controls. Histopathological skeletal muscle analysis revealed smaller myofibers, marked fiber-size variability, and poor integrity and low number of triads. Further, SPEG-deficient muscle fibers were weaker by physiological and in vitro studies and exhibited abnormal Ca2+ handling and excitation-contraction (E-C) coupling. Overall, SPEG deficiency in skeletal muscle is associated with fewer and abnormal triads, and defective calcium handling and excitation-contraction coupling, suggesting that therapies targeting calcium signaling may be beneficial in such patients.
Collapse
Affiliation(s)
- Virginia Huntoon
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Colline Sanchez
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Samantha M Rosen
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Candice Kutchukian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Siqi Cao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and Department of Pathology and Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Xiaoli Liu
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark A Perrella
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
83
|
Fongy A, Falcone S, Lainé J, Prudhon B, Martins-Bach A, Bitoun M. Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model. Sci Rep 2019; 9:1580. [PMID: 30733559 PMCID: PMC6367339 DOI: 10.1038/s41598-018-38184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamin 2 (DNM2) is a key protein of the endocytosis and intracellular membrane trafficking machinery. Mutations in the DNM2 gene cause autosomal dominant centronuclear myopathy (CNM) and a knock-in mouse model expressing the most frequent human DNM2 mutation in CNM (Knock In-Dnm2R465W/+) develops a myopathy sharing similarities with human disease. Using isolated muscle fibres from Knock In-Dnm2R465W/+ mice, we investigated number, spatial distribution and morphology of myonuclei. We showed a reduction of nuclear number from 20 weeks of age in Tibialis anterior muscle from heterozygous mice. This reduction is associated with a decrease in the satellite cell content in heterozygous muscles. The concomitant reduction of myonuclei number and cross-section area in the heterozygous fibres contributes to largely maintain myonuclear density and volume of myonuclear domain. Moreover, we identified signs of impaired spatial nuclear distribution including alteration of distance from myonuclei to their nearest neighbours and change in orientation of the nuclei. This study highlights reduction of number of myonuclei, a key regulator of the myofiber size, as a new pathomechanism underlying muscle atrophy in the dominant centronuclear myopathy. In addition, this study opens a new line of investigation which could prove particularly important on satellite cells in dominant centronuclear myopathy.
Collapse
Affiliation(s)
- Anaïs Fongy
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Bernard Prudhon
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Aurea Martins-Bach
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France.
| |
Collapse
|
84
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
85
|
Qualls AE, Donkervoort S, Herkert JC, D'gama AM, Bharucha-Goebel D, Collins J, Chao KR, Foley AR, Schoots MH, Jongbloed JDH, Bönnemann CG, Agrawal PB. Novel SPEG mutations in congenital myopathies: Genotype-phenotype correlations. Muscle Nerve 2018; 59:357-362. [PMID: 30412272 DOI: 10.1002/mus.26378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Centronuclear myopathies (CNMs) are a subtype of congenital myopathies (CMs) characterized by muscle weakness, predominant type 1 fibers, and increased central nuclei. SPEG (striated preferentially expressed protein kinase) mutations have recently been identified in 7 CM patients (6 with CNMs). We report 2 additional patients with SPEG mutations expanding the phenotype and evaluate genotype-phenotype correlations associated with SPEG mutations. METHODS Using whole exome/genome sequencing in CM families, we identified novel recessive SPEG mutations in 2 patients. RESULTS Patient 1, with severe muscle weakness requiring respiratory support, dilated cardiomyopathy, ophthalmoplegia, and findings of nonspecific CM on muscle biopsy carried a homozygous SPEG mutation (p.Val3062del). Patient 2, with milder muscle weakness, ophthalmoplegia, and CNM carried compound heterozygous mutations (p.Leu728Argfs*82) and (p.Val2997Glyfs*52). CONCLUSIONS The 2 patients add insight into genotype-phenotype correlations of SPEG-associated CMs. Clinicians should consider evaluating a CM patient for SPEG mutations even in the absence of CNM features. Muscle Nerve 59:357-362, 2019.
Collapse
Affiliation(s)
- Anita E Qualls
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Johanna C Herkert
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Alissa M D'gama
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA.,Division of Neurology, Children's National Health System, Washington, DC, USA
| | - James Collins
- Mercy Clinic Pediatric Neurology, Springfield, Missouri, USA
| | - Katherine R Chao
- Center for Mendelian Genomics at the Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirthe H Schoots
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood, National Institutes of Health, Bethesda, Maryland, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Division of Genetics and Genomics, and The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| |
Collapse
|
86
|
Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, Mavandadnejad F, Pang A, Russo G, Brudno M, Haucke V, Dirksen RT, Dowling JJ. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun 2018; 9:4849. [PMID: 30451841 PMCID: PMC6242823 DOI: 10.1038/s41467-018-07057-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Dynamin II/genetics
- Dynamin II/metabolism
- Estradiol/metabolism
- Estradiol/pharmacology
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada
| | - Kamran Rezai
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Arun Ramani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Nadine Eltayeb
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Faranak Mavandadnejad
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Andrea Pang
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Giulia Russo
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Michael Brudno
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada.
| |
Collapse
|
87
|
Lornage X, Sabouraud P, Lannes B, Gaillard D, Schneider R, Deleuze JF, Boland A, Thompson J, Böhm J, Biancalana V, Laporte J. Novel SPEG Mutations in Congenital Myopathy without Centralized Nuclei. J Neuromuscul Dis 2018; 5:257-260. [PMID: 29614691 DOI: 10.3233/jnd-170265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital myopathies are clinically and genetically heterogeneous, and are classified based on typical structural abnormalities on muscle sections. Recessive mutations in the striated muscle preferentially expressed protein kinase (SPEG) were recently reported in patients with centronuclear myopathy (CNM) associated in most cases with dilated cardiomyopathy. Here we report the identification of novel biallelic truncating SPEG mutations in a patient with moderate congenital myopathy without clinical and histological hallmarks of CNM and without cardiomyopathy. This study expands the phenotypic spectrum of SPEG-related myopathy and prompts to consider SPEG for congenital myopathies without specific histological features.
Collapse
Affiliation(s)
- Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Pascal Sabouraud
- Service de Pédiatrie A - Neurologie pédiatrique, CHU Reims, Reims, France
| | - Béatrice Lannes
- Université de Strasbourg, Strasbourg, France.,Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | | | - Raphaël Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,ICube - UMR7357, CSTB Complex Systems and Translational Bioinformatics, Faculté de Médecine, Strasbourg, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Julie Thompson
- Université de Strasbourg, Strasbourg, France.,ICube - UMR7357, CSTB Complex Systems and Translational Bioinformatics, Faculté de Médecine, Strasbourg, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Valérie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Laboratoire Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
88
|
Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc Natl Acad Sci U S A 2018; 115:11066-11071. [PMID: 30291191 DOI: 10.1073/pnas.1808170115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p.R465W mutation (Dnm2 RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation. A single intramuscular injection of adeno-associated virus-shRNA targeting Dnm2 resulted in reduction in protein levels 5 wk post injection, with a corresponding improvement in muscle mass and fiber size distribution, as well as an improvement in histopathological CNM features. To establish a systemic treatment, weekly i.p. injections of antisense oligonucleotides targeting Dnm2 were administered to Dnm2 RW/+mice for 5 wk. While muscle mass, histopathology, and muscle ultrastructure were perturbed in Dnm2 RW/+mice compared with wild-type mice, these features were indistinguishable from wild-type mice after reducing DNM2. Therefore, DNM2 knockdown via two different strategies can efficiently correct the myopathy due to DNM2 mutations, and it provides a common therapeutic strategy for several forms of centronuclear myopathy. Furthermore, we provide an example of treating a dominant disease by targeting both alleles, suggesting that this strategy may be applied to other dominant diseases.
Collapse
|
89
|
Biancalana V, Romero NB, Thuestad IJ, Ignatius J, Kataja J, Gardberg M, Héron D, Malfatti E, Oldfors A, Laporte J. Some DNM2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathol Commun 2018; 6:93. [PMID: 30208955 PMCID: PMC6134552 DOI: 10.1186/s40478-018-0593-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022] Open
|
90
|
An integrated modelling methodology for estimating the prevalence of centronuclear myopathy. Neuromuscul Disord 2018; 28:766-777. [DOI: 10.1016/j.nmd.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/24/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
|
91
|
Gonorazky HD, Bönnemann CG, Dowling JJ. The genetics of congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:549-564. [PMID: 29478600 DOI: 10.1016/b978-0-444-64076-5.00036-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congenital myopathies are a clinically and genetically heterogeneous group of conditions that most commonly present at or around the time of birth with hypotonia, muscle weakness, and (often) respiratory distress. Historically, this group of disorders has been subclassified based on muscle histopathologic characteristics. There has been an explosion of gene discovery, and there are now at least 32 different genetic causes of disease. With this increased understanding of the genetic basis of disease has come the knowledge that the mutations in congenital myopathy genes can present with a wide variety of clinical phenotypes and can result in a broad spectrum of histopathologic findings on muscle biopsy. In addition, mutations in several genes can share the same histopathologic features. The identification of new genes and interpretation of different pathomechanisms at a molecular level have helped us to understand the clinical and histopathologic similarities that this group of disorders share. In this review, we highlight the genetic understanding for each subtype, its pathogenesis, and the future key issues in congenital myopathies.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - James J Dowling
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
92
|
Penon M, Zahed H, Berger V, Su I, Shieh JT. Using exome sequencing to decipher family history in a healthy individual: Comparison of pathogenic and population MTM1 variants. Mol Genet Genomic Med 2018; 6:722-727. [PMID: 30047259 PMCID: PMC6160706 DOI: 10.1002/mgg3.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background When a family encounters the loss of a child early in life, extensive genetic testing of the affected neonate is sometimes not performed or not possible. However, the increasing availability of genomic sequencing may allow for direct application to families in cases where there is a condition inherited from parental gene(s). When neonatal testing is not possible, it is feasible to perform family testing as long as there is optimal interpretation of the genomic information. Here, we present an example of a healthy adult woman with a history of recurrent male neonatal losses due to severe respiratory distress who presented to Medical Genetics for evaluation. A family history of additional male neonatal loss was present, suggesting a potential inherited genetic etiology. Methods Although there was no DNA available from the neonates, by performing exome sequencing on the healthy adult woman, we found a missense variant in MTM1 as a potential candidate, which was deemed pathogenic based on multiple criteria including past report. Results By performing an analysis of all known MTM1‐disease associated mutations and control population variation, we can also better infer the effects of missense variations on MTM1, as not all variants are truncating. MTM1‐X‐linked myotubular myopathy is a condition that leads to male perinatal respiratory failure and a high risk for early mortality. Conclusions The application of genetic testing in the healthy population here highlights the broader utility of genomic sequencing in evaluating unexplained recurrent neonatal loss, especially when genetic testing is not available on the affected neonates.
Collapse
Affiliation(s)
- Monica Penon
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Hengameh Zahed
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Victoria Berger
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California.,Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco, California
| | - Irene Su
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Joseph T Shieh
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California.,Institute for Human Genetics, University of California San Francisco, San Francisco, California
| |
Collapse
|
93
|
Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:600-609. [PMID: 30119719 DOI: 10.1016/s2352-4642(18)30140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Inherited neuromuscular disorders encompass a broad group of genetic conditions, and the discovery of these underlying genes has expanded greatly in the past three decades. The discovery of such genes has enabled more precise diagnosis of these disorders and the development of specific therapeutic approaches that target the genetic basis and pathophysiological pathways. Such translational research has led to the approval of two genetic therapies by the US Food and Drug Administration: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy, which are both antisense oligonucleotides that modify pre-mRNA splicing. In this Review we aim to discuss new genetic therapies and ongoing clinical trials for Duchenne muscular dystrophy, spinal muscular atrophy, and other less common childhood neuromuscular disorders.
Collapse
Affiliation(s)
- Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Richard Finkel
- Division of Pediatric Neurology, Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Eugenio Mercuri
- Pediatric Neurology and Centro Nemo, IRCSS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
94
|
Aguti S, Malerba A, Zhou H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin Biol Ther 2018; 18:681-693. [DOI: 10.1080/14712598.2018.1479739] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
95
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
96
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
97
|
Danièle N, Moal C, Julien L, Marinello M, Jamet T, Martin S, Vignaud A, Lawlor MW, Buj-Bello A. Intravenous Administration of a MTMR2-Encoding AAV Vector Ameliorates the Phenotype of Myotubular Myopathy in Mice. J Neuropathol Exp Neurol 2018; 77:282-295. [PMID: 29408998 PMCID: PMC5939852 DOI: 10.1093/jnen/nly002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital disorder in male infants that leads to generalized skeletal muscle weakness and is frequently associated with fatal respiratory failure. XLMTM is caused by loss-of-function mutations in the MTM1 gene, which encodes myotubularin, the founder member of a family of 15 homologous proteins in mammals. We recently demonstrated the therapeutic efficacy of intravenous delivery of rAAV vectors expressing MTM1 in animal models of myotubular myopathy. Here, we tested whether the closest homologues of MTM1, MTMR1, and MTMR2 (the latter being implicated in Charcot-Marie-Tooth neuropathy type 4B1) are functionally redundant and could represent a therapeutic target for XLMTM. Serotype 9 recombinant AAV vectors encoding either MTM1, MTMR1, or MTMR2 were injected into the tibialis anterior muscle of Mtm1-deficient knockout mice. Two weeks after vector delivery, a therapeutic effect was observed with Mtm1 and Mtmr2, but not Mtmr1; with Mtm1 being the most efficacious transgene. Furthermore, intravenous administration of a single dose of the rAAV9-Mtmr2 vector in XLMTM mice improved the motor activity and muscle strength and prolonged survival throughout a 3-month study. These results indicate that strategies aiming at increasing MTMR2 expression levels in skeletal muscle may be beneficial in the treatment of myotubular myopathy.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Disease Models, Animal
- Escape Reaction/physiology
- HEK293 Cells
- Humans
- Locomotion/physiology
- Mice
- Muscle Contraction/drug effects
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Mutation
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Myopathies, Structural, Congenital/therapy
- PAX7 Transcription Factor/metabolism
- Phenotype
- Protein Tyrosine Phosphatases, Non-Receptor/administration & dosage
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- RNA, Messenger/metabolism
- Transduction, Genetic
- Transfection
Collapse
Affiliation(s)
- Nathalie Danièle
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Christelle Moal
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Laura Julien
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Martina Marinello
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Thibaud Jamet
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Samia Martin
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Alban Vignaud
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ana Buj-Bello
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| |
Collapse
|
98
|
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:293-308. [PMID: 27854229 PMCID: PMC5123623 DOI: 10.3233/jnd-160158] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases. Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers. The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Albert Einstein College of Medicine, Departments of Medicine- Endocrinology and Molecular Pharmacology, Bronx, NY, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
99
|
Garibaldi M, Böhm J, Fattori F, Koch C, Surace C, Ottaviani P, Laschena F, Laporte J, Bertini E, Antonini G, Romero NB. Novel Dominant Mutation in BIN1 Gene Causing Mild Centronuclear Myopathy Revealed by Myalgias and CK Elevation. J Neuromuscul Dis 2018; 3:111-114. [PMID: 27854204 DOI: 10.3233/jnd-150125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present the clinical, morphological and molecular data of an Italian family with centronuclear myopathy, carrying a novel pathogenic mutation of BIN1 gene in heterozygous state, consistent with autosomal dominant inheritance. The proband, a 56-years-old man suffered of lower limbs myalgia and slight CK elevation. Clinical examination revealed no muscle weakness, short stature, mild symmetric eyelid ptosis, scapular winging, ankle retraction and well-developed muscles. Muscle biopsy showed nuclear centralization and clustering, deep sarcolemmal invaginations and type 1 fibers hypotrophy. Muscle MRI revealed fatty infiltration of posterior legs compartments, lumbar paraspinal and serratus muscles. By sequencing BIN1, we identified a heterozygous pathogenic mutation [c.107C>A (p.A36E)], and we demonstrate that the mutation strongly impairs the membrane tubulation property of the protein. One affected sister with similar phenotype carried the same mutation. Our findings expand the clinical, morphological and genetic spectrum of the autosomal dominant CNM associated with BIN1 mutations.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| | - Johann Böhm
- Department of Translational Medicine, IGBMC, U964, UMR7104, Strasbourg University, Illkirch, France
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesú Children's Research Hospital, Rome, Italy
| | - Catherine Koch
- Department of Translational Medicine, IGBMC, U964, UMR7104, Strasbourg University, Illkirch, France
| | - Cecilia Surace
- Laboratory of Medical Genetics, Bambino Gesù Children's Research Hospital, Rome, Italy
| | | | - Francesco Laschena
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Jocelyn Laporte
- Department of Translational Medicine, IGBMC, U964, UMR7104, Strasbourg University, Illkirch, France
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesú Children's Research Hospital, Rome, Italy
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
100
|
Pierson CR. Gene therapy strategies for X-linked myotubular myopathy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1443807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Christopher R. Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Departments of Pathology and Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|