51
|
Park ES, Uchida K, Nakayama H. Comprehensive Immunohistochemical Studies on Canine Necrotizing Meningoencephalitis (NME), Necrotizing Leukoencephalitis (NLE), and Granulomatous Meningoencephalomyelitis (GME). Vet Pathol 2012; 49:682-92. [DOI: 10.1177/0300985811429311] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In dogs, there are several idiopathic meningoencephalitides, such as necrotizing meningoencephalitis (NME), necrotizing leukoencephalitis (NLE), and granulomatous meningoencephalomyelitis (GME). Although they are often assumed to be immune mediated, the etiology of these diseases remains elusive. In this study, the histopathology of the lesions caused by these conditions and the inflammatory cell populations produced in response to them were examined among dogs affected with GME, NME, or NLE to understand their pathogeneses. The brain tissues of dogs with NME (n = 25), NLE (n = 5), or GME (n = 9) were used. The inflammatory cells were identified by immunohistochemistry using antibodies against CD3, IgG, CD20, CD79acy, and CD163. In NME and NLE, malacic changes were located in the cerebral cortex, as well as the cerebral white matter and thalamus, respectively. The distribution of the brain lesions in NME and NLE was breed specific. In GME, granulomatous lesions that were mostly composed of epithelioid macrophages were observed in the cerebral white matter, cerebellum, and brainstem. Although the proportions of IgG-, CD20-, and CD79acy-positive cells (B cells) were not significantly different among the GME, NME, and NLE lesions, that of CD3-positive cells (T cells) was increased in GME. In NME and NLE, CD163-positive cells (macrophages) had diffusely infiltrated the cerebral cortex and white matter, respectively. However, in GME, CD163-positive cells accumulated around the blood vessels in the cerebral and cerebellar white matter. The distributions of these lesions were quite different among GME, NME, and NLE, whereas there were no marked differences in the proportions of inflammatory cells.
Collapse
Affiliation(s)
- E. S. Park
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
| |
Collapse
|
52
|
Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonnière L, Poirier J, Duquette P, Talbot PJ, Arbour N, Prat A. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on α4 integrin. Brain 2011; 134:3560-77. [PMID: 22058139 PMCID: PMC7110084 DOI: 10.1093/brain/awr268] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clonally expanded CD8+ T lymphocytes are present in multiple sclerosis lesions, as well as in the cerebrospinal fluid of patients with multiple sclerosis. In experimental autoimmune encephalomyelitis, CD8+ T lymphocytes are found in spinal cord and brainstem lesions. However, the exact phenotype of central nervous system-infiltrating CD8+ T lymphocytes and the mechanism by which these cells cross the blood–brain barrier remain largely unknown. Using cerebrospinal fluid from patients with multiple sclerosis, spinal cord from experimental autoimmune encephalomyelitis and coronavirus-induced encephalitis, we demonstrate that central nervous system-infiltrating CD8+ T lymphocytes are mostly of the effector memory phenotype (CD62L− CCR7− granzymeBhi). We further show that purified human effector memory CD8+ T lymphocytes transmigrate more readily across blood-brain barrier-endothelial cells than non-effector memory CD8+ T lymphocytes, and that blood-brain barrier endothelium promotes the selective recruitment of effector memory CD8+ T lymphocytes. Furthermore, we provide evidence for the recruitment of interferon-γ- and interleukin-17-secreting CD8+ T lymphocytes by human and mouse blood-brain barrier endothelium. Finally, we show that in vitro migration of CD8+ T lymphocytes across blood-brain barrier-endothelial cells is dependent on α4 integrin, but independent of intercellular adhesion molecule-1/leucocyte function-associated antigen-1, activated leucocyte cell adhesion molecule/CD6 and the chemokine monocyte chemotactic protein-1/CCL2. We also demonstrate that in vivo neutralization of very late antigen-4 restricts central nervous system infiltration of CD8+ T lymphocytes in active immunization and adoptive transfer experimental autoimmune encephalomyelitis, and in coronavirus-induced encephalitis. Our study thus demonstrates an active role of the blood-brain barrier in the recruitment of effector memory CD8+ T lymphocytes to the CNS compartment and defines α4 integrin as a major contributor of CD8+ T lymphocyte entry into the brain.
Collapse
Affiliation(s)
- Igal Ifergan
- Neuroimmunology Research Unit, Centre for Excellence in Neuromics, CRCHUM-Notre-Dame Hospital, Université de Montréal, Montréal, QC, H2L 4M1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Munegowda MA, Deng Y, Chibbar R, Xu Q, Freywald A, Mulligan SJ, van Drunen Littel-van den Hurk S, Sun D, Xiong S, Xiang J. A distinct role of CD4+ Th17- and Th17-stimulated CD8+ CTL in the pathogenesis of type 1 diabetes and experimental autoimmune encephalomyelitis. J Clin Immunol 2011; 31:811-26. [PMID: 21674137 PMCID: PMC3275432 DOI: 10.1007/s10875-011-9549-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/18/2011] [Indexed: 02/08/2023]
Abstract
Both CD4(+) Th17-cells and CD8(+) cytotoxic T lymphocytes (CTLs) are involved in type 1 diabetes and experimental autoimmune encephalomyelitis (EAE). However, their relationship in pathogenesis of these autoimmune diseases is still elusive. We generated ovalbumin (OVA)- or myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells expressing RORγt and IL-17 by in vitro co-culturing OVA-pulsed and MOG(35-55) peptide-pulsed dendritic cells (DC(OVA) and DC(MOG)) with CD4(+) T cells derived from transgenic OTII and MOG-T cell receptor mice, respectively. We found that these Th17 cells when transferred into C57BL/6 mice stimulated OVA- and MOG-specific CTL responses, respectively. To assess the above question, we adoptively transferred OVA-specific Th17 cells into transgenic rat insulin promoter (RIP)-mOVA mice or RIP-mOVA mice treated with anti-CD8 antibody to deplete Th17-stimulated CD8(+) T cells. We demonstrated that OVA-specific Th17-stimulated CTLs, but not Th17 cells themselves, induced diabetes in RIP-mOVA. We also transferred MOG-specific Th17 cells into C57BL/6 mice and H-2K(b-/-) mice lacking of the ability to generate Th17-stimulated CTLs. We further found that MOG-specific Th17 cells, but not Th17-activated CTLs induced EAE in C57BL/6 mice. Taken together, our data indicate a distinct role of Th17 cells and Th17-stimulated CTLs in the pathogenesis of TID and EAE, which may have great impact on the overall understanding of Th17 cells in the pathogenesis of autoimmune diseases.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4 Antigens/metabolism
- CD8 Antigens/metabolism
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Proteins/genetics
- Myelin Proteins/immunology
- Myelin Proteins/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Ovalbumin/genetics
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/pathology
- Th17 Cells/transplantation
Collapse
Affiliation(s)
- Manjunatha Ankathatti Munegowda
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, Saskatoon Cancer Center, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada. Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yulin Deng
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, Saskatoon Cancer Center, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada
| | - Rajni Chibbar
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qingyong Xu
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sean J. Mulligan
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Deming Sun
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sidong Xiong
- Institute of Medical Sciences, Soocow University, Suzhou, China
| | - Jim Xiang
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, Saskatoon Cancer Center, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada. Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
54
|
Kollaee A, Ghaffarpor M, Pourmahmoudian H, Shahbazi M, Zamani M. Investigation of CD24 and its expression in Iranian relapsing-remitting multiple sclerosis. Int J Neurosci 2011; 121:684-90. [PMID: 21815873 DOI: 10.3109/00207454.2011.610529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD24 is a glycosylphosphatidylinositol (GPI)-linked cell surface glycoprotein expressed in central nervous system cells. Recent investigations have suggested that CD24 participates in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, a limited number of studies have been published regarding the contribution of CD24 to the risk and severity of MS in humans. We investigated the contribution of a CD24 single nucleotide polymorphism (SNP) to MS disease risk and severity. We also studied mRNA expression of the CD24 gene in Iranian MS patients using quantitative real-time polymerase chain reaction (PCR). Our findings showed that the CD24(v/v) genotype was significantly more frequent in MS patients compared with controls (p(c) = .004). Moreover, a statistically significant difference in the Multiple Sclerosis Severity Score (MSSS) was found between MS patients carrying CD24(a/a) and CD24(v/v) genotypes (p = .008). The results also indicated that the expression of CD24 mRNA was 1.7 times more in MS patients compared with controls. In conclusion, our results suggest that the CD24(v/v) genotype influences both MS disease risk and severity in Iranian MS patients, and the high disease severity in CD24(v/v) patients may indicate that they require more aggressive treatment than do patients carrying CD24(a/a).
Collapse
Affiliation(s)
- Abolghasem Kollaee
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
55
|
No association between APOE epsilon 4 allele and multiple sclerosis susceptibility: A meta-analysis from 5472 cases and 4727 controls. J Neurol Sci 2011; 308:110-6. [DOI: 10.1016/j.jns.2011.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/22/2011] [Accepted: 05/25/2011] [Indexed: 12/31/2022]
|
56
|
Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 2011; 74:1-13. [PMID: 21338381 DOI: 10.1111/j.1365-3083.2011.02536.x] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by recurrent episodes of demyelination and axonal lesion mediated by CD4(+) T cells with a proinflammatory Th1 and Th17 phenotype, macrophages, and soluble inflammatory mediators. Identification of Th17 cells led to breaking the dichotomy of Th1/Th2 axis in immunopathogenesis of autoimmune diseases such as MS, and its experimental model, experimental autoimmune encephalomyelitis (EAE). Th17 cells are characterized by expression of retinoic acid-related orphan receptor (ROR)γt and signal transducer and activator of transcription 3 (STAT3) factors. Th17-produced cytokine profile including interleukin (IL)-17, IL-6, IL-21, IL-22, IL-23 and tumour necrosis factor (TNF)-α, which have proinflammatory functions, suggests it as an important factor in immunopathogenesis of MS, because the main feature of MS pathophysiology is the neuroinflammatory reaction. The blood brain barrier (BBB) disruption is an early and central event in MS pathogenesis. Autoreactive Th17 cells can migrate through the BBB by the production of cytokines such as IL-17 and IL-22, which disrupt tight junction proteins in the central nervous system (CNS) endothelial cells. Consistent with this observation and regarding the wide range production of proinflammatory cytokines and chemokines by Th17 cells, it is expected that Th17 cell to be as a potent pathogenic factor in disease immunopathophysiology. Th17-mediated inflammation is characterized by neutrophil recruitment into the CNS and neurons killing. However, the majority of our knowledge about the role of Th17 in MS pathogenesis is resulted in investigation into EAE animal models. In this review, we intend to focus on the newest information regarding the precise role of Th17 cells in immunopathogenesis of MS, and its animal model, EAE.
Collapse
Affiliation(s)
- F Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
57
|
Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH. Myelin Regeneration: A Recapitulation of Development? Annu Rev Neurosci 2011; 34:21-43. [DOI: 10.1146/annurev-neuro-061010-113629] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen P.J. Fancy
- Departments of Pediatrics and Neurosurgery, Eli and Edyth Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| | - Jonah R. Chan
- Department of Neurology, University of California, San Francisco, California 94143
| | - Sergio E. Baranzini
- Department of Neurology, University of California, San Francisco, California 94143
| | - Robin J.M. Franklin
- MRC Center for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - David H. Rowitch
- Departments of Pediatrics and Neurosurgery, Eli and Edyth Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
- Division of Neonatology, University of California, San Francisco, California 94143;
| |
Collapse
|
58
|
Mowry EM. Vitamin D: evidence for its role as a prognostic factor in multiple sclerosis. J Neurol Sci 2011; 311:19-22. [PMID: 21762931 DOI: 10.1016/j.jns.2011.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
Abstract
Vitamin D insufficiency has been shown to be associated with increased susceptibility to multiple sclerosis (MS), but until recently, it was unclear if vitamin D status also influences the prognosis of the disease. In experimental autoimmune encephalomyelitis, a mouse model of MS, the administration of vitamin D reduces the severity of the disease. Initial reports in MS of inverse associations between vitamin D levels and disability or relapse rate were encouraging, but the cross-sectional or retrospective study designs limited their interpretability. More recently, studies of pediatric-onset and adult MS have demonstrated that among those with established MS, those with lower vitamin D levels are at higher risk for subsequent relapse. These observational data provide strong support for randomized controlled trials of vitamin D supplementation in MS.
Collapse
Affiliation(s)
- Ellen M Mowry
- Department of Neurology, Multiple Sclerosis Center, University of California, San Francisco, CA 94117, USA.
| |
Collapse
|
59
|
Sawcer S. The genetic aspects of multiple sclerosis. Ann Indian Acad Neurol 2011; 12:206-14. [PMID: 20182566 PMCID: PMC2824946 DOI: 10.4103/0972-2327.58272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022] Open
Abstract
The epidemiology of multiple sclerosis has been extensively investigated and two features have consistently emerged: marked geographical variation in prevalence and substantial familial clustering. At first sight, geographic variation would seem to imply an environmental cause for the disease, while familial clustering would seem to suggest that genetic factors have the predominant etiological effect. However, given that geographic variation in prevalence could result from variation in the frequency of genetic risk alleles and that familial clustering might result from shared environmental exposure rather than shared genetic risk alleles, it is clear that these crude inferences are unreliable. Epidemiologists have been resourceful in their attempts to resolve this apparent conflict between “nurture and nature” and have employed a whole variety of sophisticated methods to try and untangle the etiology of multiple sclerosis. The body of evidence that has emerged from these efforts has formed the foundation for decades of research seeking to identify relevant genes and this is the obvious place to start any consideration of the genetics of multiple sclerosis.
Collapse
Affiliation(s)
- Stephen Sawcer
- University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| |
Collapse
|
60
|
Flechter S, Klein T, Pollak L. Influence of histocompatibility genes on disease susceptibility and treatment response in patients with relapsing-remitting multiple sclerosis treated with interferon β-1a. Neurol Int 2011; 3:e5. [PMID: 21785677 PMCID: PMC3141116 DOI: 10.4081/ni.2011.e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 05/09/2011] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is the most common, non-traumatic cause of neurological disability in young adults. The aim of this study was to investigate the influence of HLA class II alleles DRB1* and DQB1* on susceptibility to relapsing-remitting (RR) MS and response to interferon (IFN) β-1a treatment. A prospective observational study was conducted. Seventeen patients with clinically definite RRMS, attending a tertiary referral center for multiple sclerosis in Israel and receiving treatment with subcutaneous IFN β-1a, 22 mcg three times weekly were recruited between December 1998 and February 2000 and observed for 12 months. HLA genotyping was performed and clinical characteristics (relapse rate and disability progression) assessed at baseline and after 12 months. HLA data for a healthy control group were also used for comparison. HLA and the success of treatment with IFN β-1a in this group of RRMS patients were assessed. The frequency of DRB1*03 was six times higher in patients treated with IFN β-1a than in the healthy control group (n=100): 29% (5/17) versus 5% (5/100), respectively. Additionally, DQB1*03 and DQB1*02 were present in 82% (14/17) and 41% (7/17) of RRMS patients, but in only 33% (33/100) and 18% (18/100) of control patients, respectively. A better response to IFN β-1a treatment was seen in patients carrying these alleles than in patients without these alleles. Our results indicated that DRB1*03, DQB1*03 and DQB1*02 alleles may contribute to MS susceptibility and IFN β-1a responsiveness, and warrant further verification in a larger population.
Collapse
Affiliation(s)
- Shlomo Flechter
- Multiple Sclerosis Clinical Research and Therapy Service, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
61
|
Abstract
Multiple sclerosis (MS) is characterized by autoimmune inflammation and subsequent neurodegeneration. It is believed that early in the disease course, proinflammatory T cells that are activated in the periphery by antigen presentation cross the blood-brain barrier (BBB) into the CNS directed by various chemotaxic agents. However, to date, there has been no formal demonstration of a specific precipitating antigen. Once inside the CNS, activated T cells including T helper-1 (T(h)1), T(h)17, γδ and CD8+ types are believed to secrete proinflammatory cytokines. Decreased levels of T(h)2 cells also correlate with relapses and disease progression in MS, since T(h)2-derived cytokines are predominantly anti-inflammatory. In healthy tissue, inflammatory effects are opposed by specific subsets of regulatory T cells (T(regs)) including CD4+, CD25+ and FoxP3+ cells that have the ability to downregulate the activity of proinflammatory T cells, allowing repair and recovery to generally follow inflammatory insult. Given their function, the pathogenesis of MS most likely involves deficits of T(reg) function, which allow autoimmune inflammation and resultant neurodegeneration to proceed relatively unchecked. Interferons (IFNs) are naturally occurring cytokines possessing a wide range of anti-inflammatory properties. Recombinant forms of IFNβ are widely used as first-line treatment in relapsing forms of MS. The mechanism of action of IFNβ is complex, involving effects at multiple levels of cellular function. IFNβ appears to directly increase expression and concentration of anti-inflammatory agents while downregulating the expression of proinflammatory cytokines. IFNβ treatment may reduce the trafficking of inflammatory cells across the BBB and increase nerve growth factor production, leading to a potential increase in neuronal survival and repair. IFNβ can also increase the number of CD56bright natural killer cells in the peripheral blood. These cells are efficient producers of anti-inflammatory mediators, and may have the ability to curb neuron inflammation. The mechanistic effects of IFNβ manifest clinically as reduced MRI lesion activity, reduced brain atrophy, increased time to reach clinically definite MS after the onset of neurological symptoms, decreased relapse rate and reduced risk of sustained disability progression. The mechanism of action of IFNβ in MS is multifactorial and incompletely understood. Ongoing and future studies will increase our understanding of the actions of IFNβ on the immune system and the CNS, which will in turn aid advances in the management of MS.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
62
|
|
63
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
64
|
Alatab S, Hossein-nezhad A, Mirzaei K, Mokhtari F, Shariati G, Najmafshar A. Inflammatory profile, age of onset, and the MTHFR polymorphism in patients with multiple sclerosis. J Mol Neurosci 2010; 44:6-11. [PMID: 21190091 DOI: 10.1007/s12031-010-9486-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Both genetic and inflammatory factors are suspected in the etiology of multiple sclerosis (MS). Of genetic factors, the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been associated with increased levels of plasma homocysteine, a neuronal excitotoxic amino acid. Sclerotic patients also have elevated levels of plasma and CSF homocysteine. In this study, the association between C677T polymorphism and MS was tested by recruiting 230 healthy and 194 multiple sclerotic age- and gender-matched patients. The MTHFR C677T polymorphism and the serum levels of inflammatory mediators IL-1β, TNFα, and CRP were measured. TNFα, CRP, and IL-1β levels were significantly higher in sclerotic patients. T allele was 1.7 times more present in this group. In patient's group, the levels of all inflammatory mediators were higher in T/T compared to two other genotypes. Evaluation of the age of onset of disease revealed that subjects with T allele developed the MS disease, almost 4 years sooner than other genotype. We concluded that having T allele of C677T in MS might be accompanied with higher levels of serum inflammatory mediators and a vulnerability to earlier age of onset of disease. Further studies are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Sudabeh Alatab
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, North Kargar Ave., 5th Floor, Dr. Shariati Hospital, Tehran 14114, Iran
| | | | | | | | | | | |
Collapse
|
65
|
Kroger CJ, Flores RR, Morillon M, Wang B, Tisch R. Dysregulation of thymic clonal deletion and the escape of autoreactive T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:449-57. [PMID: 20872284 DOI: 10.1007/s00005-010-0100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022]
Abstract
Events ongoing in the thymus are critical for deleting developing thymocytes specific for tissue antigens, and establishing self-tolerance within the T cell compartment. Aberrant thymic negative selection, however, is believed to generate a repertoire with increased self-reactivity, which in turn can contribute to the development of T cell-mediated autoimmunity. In this review, mechanisms that regulate the efficacy of negative selection and influence the deletion of autoreactive thymocytes will be discussed.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina, Mary Ellen Jones Bldg., Room 635, Campus Box 7290, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
66
|
Stüve O, Kieseier BC, Hemmer B, Hartung HP, Awad A, Frohman EM, Greenberg BM, Racke MK, Zamvil SS, Phillips JT, Gold R, Chan A, Zettl U, Milo R, Marder E, Khan O, Eagar TN. Translational research in neurology and neuroscience 2010: multiple sclerosis. ACTA ACUST UNITED AC 2010; 67:1307-15. [PMID: 20625066 DOI: 10.1001/archneurol.2010.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past 2 decades, enormous progress has been made with regard to pharmacotherapies for patients with multiple sclerosis. There is perhaps no other subspecialty in neurology in which more agents have been approved that substantially alter the clinical course of a disabling disorder. Many of the pharmaceuticals that are currently approved, in clinical trials, or in preclinical development were initially evaluated in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. Two Food and Drug Administration-approved agents (glatiramer acetate and natalizumab) were developed using the experimental autoimmune encephalomyelitis model. This model has served clinician-scientists for many decades to enable understanding the inflammatory cascade that underlies clinical disease activity and disease surrogate markers detected in patients.
Collapse
Affiliation(s)
- Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 S Lancaster Rd, Dallas, TX 75216, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Sinha S, Subramanian S, Emerson-Webber A, Lindner M, Burrows GG, Grafe M, Linington C, Vandenbark AA, Bernard CCA, Offner H. Recombinant TCR ligand reverses clinical signs and CNS damage of EAE induced by recombinant human MOG. J Neuroimmune Pharmacol 2010; 5:231-9. [PMID: 19789980 PMCID: PMC2866769 DOI: 10.1007/s11481-009-9175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Increasing evidence suggests that in addition to T cell-dependent effector mechanisms, autoantibodies are also involved in the pathogenesis of MS, including demyelinating antibodies specific for myelin oligodendrocyte glycoprotein (MOG). Our previous studies have demonstrated that recombinant T cell receptor ligands (RTLs) are very effective for treating T cell-mediated experimental autoimmune encephalomyelitis (EAE). In order to expand the scope of RTL therapy in MS patients, it was of interest to study RTL treatment of EAE involving a demyelinating antibody component. Therefore, we evaluated the therapeutic effects of RTL551, specific for T cells reactive to mouse (m)MOG-35-55 peptide, on EAE induced with recombinant human (rh)MOG in C57BL/6 mice. We report that RTL551 therapy can reverse disease progression and reduce demyelination and axonal damage induced by rhMOG without suppressing the anti-MOG antibody response. This result suggests that T cell-mediated inflammation and associated blood-brain barrier dysfunction are the central contributors to EAE pathogenesis and that successful regulation of these key players restricts potential damage by demyelinating antibodies. The results of our study lend support for the use of RTL therapy for treatment of MS subjects whose disease includes inflammatory T cells as well as those with an additional antibody component.
Collapse
Affiliation(s)
- Sushmita Sinha
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
| | - Sandhya Subramanian
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - Ashley Emerson-Webber
- Multiple Sclerosis Research Group, Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, 3800, Australia
| | - Maren Lindner
- Division of Clinical Neurosciences, Glasgow University, Glasgow G12 9PP, UK
| | - Gregory G. Burrows
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - Marjorie Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239
| | | | - Arthur A. Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Claude C. A. Bernard
- Multiple Sclerosis Research Group, Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, 3800, Australia
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
68
|
Bronson PG, Caillier S, Ramsay PP, McCauley JL, Zuvich RL, De Jager PL, Rioux JD, Ivinson AJ, Compston A, Hafler DA, Sawcer SJ, Pericak-Vance MA, Haines JL, The International Multiple Sclerosis Genetics Consortium (IMSGC), Hauser SL, Oksenberg JR, Barcellos LF. CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Hum Mol Genet 2010; 19:2331-40. [PMID: 20211854 PMCID: PMC2865376 DOI: 10.1093/hmg/ddq101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/05/2010] [Accepted: 03/03/2010] [Indexed: 11/13/2022] Open
Abstract
The MHC class II transactivator gene (CIITA) is an important transcription factor regulating gene required for HLA class II MHC-restricted antigen presentation. Association with HLA class II variation, particularly HLA-DRB1*1501, has been well-established for multiple sclerosis (MS). In addition, the -168A/G CIITA promoter variant (rs3087456) has been reported to be associated with MS. Thus, a multi-stage investigation of variation within CIITA, DRB1*1501 and MS was undertaken in 6108 individuals. In stage 1, 24 SNPs within CIITA were genotyped in 1320 cases and 1363 controls (n = 2683). Rs4774 (missense +1614G/C; G500A) was associated with MS (P = 4.9 x 10(-3)), particularly in DRB1*1501 +individuals (P = 1 x 10(-4)). No association was observed for the -168A/G promoter variant. In stage 2, rs4774 was genotyped in 973 extended families; rs4774*C was also associated with increased risk for MS in DRB1*1501+ families (P = 2.3 x 10(-2)). In a third analysis, rs4774 was tested in cases and controls (stage 1) combined with one case per family (stage 2) for increased power. Rs4774*C was associated with MS (P = 1 x 10(-3)), particularly in DRB1*1501+ cases and controls (P = 1 x 10(-4)). Results obtained from logistic regression analysis showed evidence for interaction between rs4774*C and DRB1*1501 associated with risk for MS (ratio of ORs = 1.72, 95% CI 1.28-2.32, P = 3 x 10(-4)). Furthermore, rs4774*C was associated with DRB1*1501+ MS when conditioned on the presence (OR = 1.67, 95% CI = 1.19-2.37, P = 1.9 x 10(-3)) and absence (OR = 1.49, 95% CI = 1.15-1.95, P = 2.3 x 10(-3)) of CLEC16A rs6498169*G, a putative MS risk allele adjacent to CIITA. Our results provide strong evidence supporting a role for CIITA variation in MS risk, which appears to depend on the presence of DRB1*1501.
Collapse
Affiliation(s)
- Paola G. Bronson
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| | | | - Patricia P. Ramsay
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Rebecca L. Zuvich
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA
| | - Philip L. De Jager
- Program in NeuroPsychiatric Genomics, Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D. Rioux
- Laboratory in Genetics and Genomic Medicine of Inflammation, Montréal Heart Institute, Université de Montréal, Montréal, Québec, CanadaH1T 1C8
| | - Adrian J. Ivinson
- Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA 02155, USA
| | - Alastair Compston
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK and
| | - David A. Hafler
- Program in Medical and Population Genetics, Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT 06520-8018, USA
| | - Stephen J. Sawcer
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK and
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA
| | | | - Stephen L. Hauser
- Department of Neurology and
- Institute for Human Genetics, School of Medicine, University of California, San Francisco, CA 94143-0435, USA
| | - Jorge R. Oksenberg
- Department of Neurology and
- Institute for Human Genetics, School of Medicine, University of California, San Francisco, CA 94143-0435, USA
| | - Lisa F. Barcellos
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| |
Collapse
|
69
|
The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Dev Immunol 2010; 2010:186813. [PMID: 20613949 PMCID: PMC2896842 DOI: 10.1155/2010/186813] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/18/2010] [Indexed: 01/28/2023]
Abstract
Apolipoprotein E (apoE) is a 34.2 kDa glycoprotein characterized by its wide tissue distribution and multiple functions. The nonlipid-related properties of apoE include modulating inflammation and oxidation, suppressing T cell proliferation, regulating macrophage functions, and facilitating lipid antigen presentation by CD1 molecules to natural killer T (NKT) cells, and so forth. Increasing studies have revealed that APOE ε allele might be associated with multiple sclerosis (MS), although evidence is still not sufficient enough. In this review, we summarized the current progress of the immunomodulatory functions of apoE, with special focus on the association of APOE ε allele with the clinical features of MS and of its animal model experimental autoimmune encephalomyelitis (EAE).
Collapse
|
70
|
Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 2010; 59:180-9. [PMID: 20493888 DOI: 10.1016/j.neuropharm.2010.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/09/2010] [Accepted: 05/17/2010] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease associated with chronic inflammatory demyelination of the central nervous system (CNS). Due to disease complexity and heterogeneity, its pathogenesis remains unknown and despite extensive studies, specific effective treatments have not yet been developed. The factors behind the initiation of the inflammatory reactions in CNS have not been identified until now. MS is considered as a complex disease depending on genetic as well as environmental factors. Experimental autoimmune encephalomyelitis (EAE) is the preferential experimental rodent model for MS. Histamine [2-(4-imidazole) ethylamine] is a ubiquitous inflammatory mediator of diverse physiological processes including neurotransmission, secretion of pituitary hormones, and regulation of the gastrointestinal and circulatory systems which can modulate immune responses. Histamine functions are mediated through four G-protein coupled receptors that are named H1-H4 receptor. Histamine is implicated as an important factor in pathophysiology of MS and EAE. It has been shown that histamine can change the permeability of blood brain barrier, which leads to elevation of infiltrated cells in CNS and neuroinflammation. In contrast, there are evidence that show the protective role of histamine in MS and its animal model, EAE. In this review, we try to clarify the role of histamine in pathogenesis of MS, as well as we evaluate the efficacy of histamine receptors agonists and antagonists in treatment of this disease.
Collapse
|
71
|
|
72
|
Mirshafiey A, Jadidi-Niaragh F. Immunopharmacological role of the Leukotriene Receptor Antagonists and inhibitors of leukotrienes generating enzymes in Multiple Sclerosis. Immunopharmacol Immunotoxicol 2010; 32:219-27. [DOI: 10.3109/08923970903283662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
73
|
Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32:543-54. [PMID: 20233088 DOI: 10.3109/08923971003667627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, axonal loss, and gliosis. The inflammatory lesions are manifested by a large infiltration and a heterogeneous population of cellular and soluble mediators of the immune system, such as T cells, B cells, macrophages, and microglia, as well as a broad range of cytokines, chemokines, antibodies, complement, and other toxic substances. Prostaglandins (PGs) are arachidonic acid-derived autacoids that have a role in the modulation of many physiological systems including the CNS, respiratory, cardiovascular, gastrointestinal, genitourinary, endocrine, and immune systems. PG production is associated with inflammation, a major feature in MS that is characterized by the loss of myelinating oligodendrocytes in the CNS. With respect to the role of PGs in the induction of inflammation, they can be effective mediators in the pathophysiology of MS. Thus use of agonists or antagonists of PG receptors may be considered as a new therapeutic protocol in MS. In this review, we try to clarify the role of PGs in immunopathology and treatment of MS.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran.
| | | |
Collapse
|
74
|
Zuvich RL, McCauley JL, Oksenberg JR, Sawcer SJ, De Jager PL, Aubin C, Cross AH, Piccio L, Aggarwal NT, Evans D, Hafler DA, Compston A, Hauser SL, Pericak-Vance MA, Haines JL. Genetic variation in the IL7RA/IL7 pathway increases multiple sclerosis susceptibility. Hum Genet 2010; 127:525-35. [PMID: 20112030 DOI: 10.1007/s00439-010-0789-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/15/2010] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is characterized as an autoimmune demyelinating disease. Numerous family studies have confirmed a strong genetic component underlying its etiology. After several decades of frustrating research, the advent and application of affordable genotyping of dense SNP maps in large data sets has ushered in a new era in which rapid progress is being made in our understanding of the genetics underlying many complex traits. For MS, one of the first discoveries to emerge in this new era was the association with rs6897932[T244I] in the interleukin-7 receptor alpha chain (IL7RA) gene (Gregory et al. in Nat Genet 39(9):1083-1091, 2007; International Multiple Sclerosis Genetics Consortium in N Engl J Med 357(9):851-862, 2007; Lundmark in Nat Genet 39(9):1108-1113, 2007), a discovery that was accompanied by functional data that suggest this variant is likely to be causative rather than a surrogate proxy (Gregory et al. in Nat Genet 39(9):1083-1091, 2007). We hypothesized that variations in other genes functionally related to IL7RA might also influence MS. We investigated this hypothesis by examining genes in the extended biological pathway related to IL7RA to identify novel associations. We identified 73 genes with putative functional relationships to IL7RA and subsequently genotyped 7,865 SNPs in and around these genes using an Illumina Infinium BeadChip assay. Using 2,961 case-control data sets, two of the gene regions examined, IL7 and SOCS1, had significantly associated single-nucleotide polymorphisms (SNPs) that further replicated in an independent case-control data set (4,831 samples) with joint p values as high as 8.29 x 10(-6) and 3.48 x 10(-7), respectively, exceeding the threshold for experiment-wise significance. Our results also implicate two additional novel gene regions that are likely to be associated with MS: PRKCE with p values reaching 3.47 x 10(-4), and BCL2 with p values reaching 4.32 x 10(-4). The TYK2 gene, which also emerged in our analysis, has recently been associated with MS (Ban et al. 2009). These results help to further delineate the genetic architecture of MS and validate our pathway approach as an effective method to identify novel associations in a complex disease.
Collapse
Affiliation(s)
- Rebecca L Zuvich
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Buenafe AC, Andrew S, Afentoulis M, Offner H, Vandenbark AA. Prevention and treatment of experimental autoimmune encephalomyelitis with clonotypic CDR3 peptides: CD4(+) Foxp3(+) T-regulatory cells suppress interleukin-2-dependent expansion of myelin basic protein-specific T cells. Immunology 2010; 130:114-24. [PMID: 20059576 DOI: 10.1111/j.1365-2567.2009.03218.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
T-cell receptor (TCR)-derived peptides are recognized by the immune system and are capable of modulating autoimmune responses. Using the myelin basic protein (MBP) TCR 1501 transgenic mouse model, we demonstrated that TCR CDR3 peptides from the transgenic TCR can provide a protective effect when therapy is initiated before the induction of experimental autoimmune encephalomyelitis (EAE). More importantly, TCR CDR3 peptide therapy can ameliorate the disease when administered after EAE onset. Concurrent with the therapeutic effects, we observed reduced T-cell proliferation and reduced interleukin-2 (IL-2) levels in response to stimulation with MBP-85-99 peptide in splenocyte cultures from mice receiving TCR CDR3 peptides compared with that of control mice. Moreover, we found that Foxp3(+) CD4 T cells from mice protected with TCR CDR3 peptide are preferentially expanded in the presence of IL-2. This is supportive of a proposed mechanism where Foxp3(+) T-regulatory cells induced by therapy with MBP-85-99 TCR CDR3 peptides limit expansion and the encephalitogenic activity of MBP-85-99-specific T cells by regulating the levels of secreted IL-2.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
76
|
O'Brien K, Gran B, Rostami A. T-cell based immunotherapy in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunotherapy 2010; 2:99-115. [PMID: 20231863 PMCID: PMC2837464 DOI: 10.2217/imt.09.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the reasons multiple sclerosis (MS) has been considered a T-cell mediated autoimmune disease is that a similar experimental disease can be induced in certain rodents and primates by immunization with myelin antigens, leading to T-cell-mediated inflammatory demyelination in the CNS. In addition, most if not all pharmacological treatments available for MS are biologically active on T cells. In this article we review the principles of T-cell-based immunotherapies and the specific actions of current and novel treatments on T-cell functions, when these are known. For both licensed and innovative agents, we also discuss biological actions on other immune cell types. Finally, we offer a brief perspective on expected changes in the use of MS immunotherapies in the near future.
Collapse
Affiliation(s)
- Kate O'Brien
- Division of Clinical Neurology, University of Nottingham, UK
| | - Bruno Gran
- Division of Clinical Neurology, University of Nottingham, UK
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
77
|
McCauley JL, Zuvich RL, Bradford Y, Kenealy SJ, Schnetz-Boutaud N, Gregory SG, Hauser SL, Oksenberg JR, Mortlock DP, Pericak-Vance MA, Haines JL. Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis. Genes Immun 2009; 10:624-30. [PMID: 19626040 PMCID: PMC2765552 DOI: 10.1038/gene.2009.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/03/2009] [Accepted: 05/18/2009] [Indexed: 01/20/2023]
Abstract
Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disease affecting >4,00,000 individuals in the United States. Population and family-based studies have suggested that there is a strong genetic component. Numerous genomic linkage screens have identified regions of interest for MS loci. Our own second-generation genome-wide linkage study identified a handful of non-major histocompatibility complex regions with suggestive linkage. Several of these regions were further examined using single-nucleotide polymorphisms (SNPs) with average spacing between SNPs of approximately 1.0 Mb in a dataset of 173 multiplex families. The results of that study provided further evidence for the involvement of the chromosome 1q43 region. This region is of particular interest given linkage evidence in studies of other autoimmune and inflammatory diseases including rheumatoid arthritis and systemic lupus erythematosus. In this follow-up study, we saturated the region with approximately 700 SNPs (average spacing of 10 kb per SNP) in search of disease-associated variation within this region. We found preliminary evidence to suggest that common variation within the RGS7 locus may be involved in disease susceptibility.
Collapse
Affiliation(s)
- Jacob L. McCauley
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca L. Zuvich
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuki Bradford
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shannon J. Kenealy
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nathalie Schnetz-Boutaud
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simon G. Gregory
- Center for Human Genetics and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen L. Hauser
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Douglas P. Mortlock
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
78
|
Sadovnick AD. European Charcot Foundation Lecture: the natural history of multiple sclerosis and gender. J Neurol Sci 2009; 286:1-5. [PMID: 19782378 DOI: 10.1016/j.jns.2009.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 01/21/2023]
Abstract
The role of gender in the natural history of multiple sclerosis (MS) is multi-faceted. Earliest debate on this topic was about the sex ratio (female:male) among affected individuals. It was only clearly shown within the last 4 decades that females are more often affected. The sex ratio continues to intrigue researchers. An observed increase in the sex ratio among more recently born MS patients has now been taken as a clear indication that the rate of MS is truly increasing in many geographical areas. This temporal increase in females has been relatively rapid, implicating environmental rather than genetic risk factors. Gender issues in MS expand beyond the scope of sex ratio. Gender has an impact on various aspects of MS, including age of onset, "parent-of-origin" effects (seen in half-siblings, twin sibships, avuncular pairs, transmission of HLA haplotype), recurrence risks for relatives of MS patients and the topic of reproduction when one parent has MS. Gender issues can also confound data collection and analyses with respect to studies on comorbidity, risk factors and family history. In fact, it has now been clearly validated and quantified that among persons with MS, there is a sex-specificity of recall and reporting bias as well a greater female awareness of medical history.
Collapse
Affiliation(s)
- A D Sadovnick
- Department of Medical Genetics and Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
79
|
Zuvich RL, McCauley JL, Pericak-Vance MA, Haines JL. Genetics and pathogenesis of multiple sclerosis. Semin Immunol 2009; 21:328-33. [PMID: 19775910 DOI: 10.1016/j.smim.2009.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is an idiopathic autoimmune neurodegenerative disease. Like many common diseases, MS has a genetic component; however, as with most complex diseases, the genetic architecture may be influenced by heterogeneity, incomplete penetrance, polygenic inheritance, and environmental factors. This clinically complex disease has provided great challenges for geneticists over the years. Although the first consistent genetic association to MS (with HLA-DR*1501) was discovered more than 30 years ago, lack of consistently replicated genetic results has plagued the scientific community. New study design methods (particularly genome-wide associations studies [GWAS]) along with genome project data and larger datasets have allowed several additional MS genes to be identified and consistently replicated. Thus, after many years of frustration, the strong genetic component associated with MS is finally beginning to be characterized.
Collapse
Affiliation(s)
- R L Zuvich
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
80
|
Husted C, Dhondup L. Tibetan Medical Interpretation of Myelin Lipids and Multiple Sclerosis. Ann N Y Acad Sci 2009; 1172:278-96. [DOI: 10.1196/annals.1393.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
81
|
Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57:1192-203. [PMID: 19191336 PMCID: PMC2706928 DOI: 10.1002/glia.20841] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-based therapies are attractive approaches to promote myelin repair. Recent studies demonstrated a reduction in disease burden in mice with experimental allergic encephalomyelitis (EAE) treated with mouse mesenchymal stem cells (MSCs). Here, we demonstrated human bone marrow-derived MSCs (BM-hMSCs) promote functional recovery in both chronic and relapsing-remitting models of mouse EAE, traced their migration into the injured CNS and assayed their ability to modulate disease progression and the host immune response. Injected BM-hMSCs accumulated in the CNS, reduced the extent of damage and increased oligodendrocyte lineage cells in lesion areas. The increase in oligodendrocytes in lesions may reflect BM-hMSC-induced changes in neural fate determination, since neurospheres from treated animals gave rise to more oligodendrocytes and less astrocytes than nontreated neurospheres. Host immune responses were also influenced by BM-hMSCs. Inflammatory T-cells including interferon gamma producing Th1 cells and IL-17 producing Th17 inflammatory cells and their associated cytokines were reduced along with concomitant increases in IL-4 producing Th2 cells and anti-inflammatory cytokines. Together, these data suggest that the BM-hMSCs represent a viable option for therapeutic approaches.
Collapse
Affiliation(s)
- Lianhua Bai
- Case Western Reserve University, Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Triviño T, Asensio A, Olaskoaga J, López de Munain A. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 2009; 4:e6309. [PMID: 19617918 PMCID: PMC2708922 DOI: 10.1371/journal.pone.0006309] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/19/2009] [Indexed: 12/15/2022] Open
Abstract
Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS.
Collapse
Affiliation(s)
- David Otaegui
- Multiple Sclerosis Unit, Biodonostia Institute, San Sebastián, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Study of leukemia inhibitory factor polymorphism within an Australian multiple sclerosis population. J Neurol Sci 2009; 280:62-4. [DOI: 10.1016/j.jns.2009.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 01/19/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
|
84
|
Bonetti A, Koivisto K, Pirttilä T, Elovaara I, Reunanen M, Laaksonen M, Ruutiainen J, Peltonen L, Rantamäki T, Tienari PJ. A follow-up study of chromosome 19q13 in multiple sclerosis susceptibility. J Neuroimmunol 2009; 208:119-24. [PMID: 19195718 PMCID: PMC2682252 DOI: 10.1016/j.jneuroim.2009.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
A possible role of allelic variation on chromosome 19q13 in multiple sclerosis (MS) susceptibility has been suggested. We tested association of sixteen 19q13 markers with MS in 459 families. Nominally significant associations were tested in an independent set of 323 families as well as in the pooled set of 782 families. We were not able to confirm previously suggested associations with APOE, GIPR, ZNF45, ILT6 and D19S585. In the screening dataset nominally significant associations were found with D19S867 and with APOE haplotype (p=0.007 in both), but these were not replicated in the independent dataset nor in the pooled analysis of 757 families. Thus, we were not able to detect any statistically significant allelic associations. Re-sequencing based approaches may be required for elucidating the role chromosome 19q13 with MS.
Collapse
Affiliation(s)
- Alessandro Bonetti
- Molecular Neuroscience Programme, Biomedicum-Helsinki, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu W, Uitdehaag BMJ, Kappos L, Polman CH, Matthews PM, Hauser SL, Gibson RA, Oksenberg JR, Barnes MR. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009; 18:2078-90. [PMID: 19286671 PMCID: PMC2678928 DOI: 10.1093/hmg/ddp120] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) testing several hundred thousand SNPs have been performed in multiple sclerosis (MS) and other complex diseases. Typically, the number of markers in which the evidence for association exceeds the genome-wide significance threshold is very small, and markers that do not exceed this threshold are generally neglected. Classical statistical analysis of these datasets in MS revealed genes with known immunological functions. However, many of the markers showing modest association may represent false negatives. We hypothesize that certain combinations of genes flagged by these markers can be identified if they belong to a common biological pathway. Here we conduct a pathway-oriented analysis of two GWAS in MS that takes into account all SNPs with nominal evidence of association (P < 0.05). Gene-wise P-values were superimposed on a human protein interaction network and searches were conducted to identify sub-networks containing a higher proportion of genes associated with MS than expected by chance. These sub-networks, and others generated at random as a control, were categorized for membership of biological pathways. GWAS from eight other diseases were analyzed to assess the specificity of the pathways identified. In the MS datasets, we identified sub-networks of genes from several immunological pathways including cell adhesion, communication and signaling. Remarkably, neural pathways, namely axon-guidance and synaptic potentiation, were also over-represented in MS. In addition to the immunological pathways previously identified, we report here for the first time the potential involvement of neural pathways in MS susceptibility.
Collapse
Affiliation(s)
- Sergio E Baranzini
- Department of Neurology, School of Medicine, University of California San Francisco, 513 Parnassus Ave. Room S-256, San Francisco, CA 94143-0435, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Menge T, Weber MS, Hemmer B, Kieseier BC, von Büdingen HC, Warnke C, Zamvil SS, Boster A, Khan O, Hartung HP, Stüve O. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2009; 68:2445-68. [PMID: 19016573 DOI: 10.2165/0003495-200868170-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS. Currently, six medications are approved for immunmodulatory and immunosuppressive treatment of the relapsing disease course and secondary-progressive MS. In the first part of this review, the pathogenesis of MS and its current treatment options are discussed. During the last decade, our understanding of autoimmunity and the pathogenesis of MS has advanced substantially. This has led to the development of a number of compounds, several of which are currently undergoing clinical testing in phase II and III studies. While current treatment options are only available for parenteral administration, several oral compounds are now in clinical trials, including the immunosuppressive agents cladribine and laquinimod. A novel mode of action has been described for fingolimod, another orally available agent, which inhibits egress of activated lymphocytes from draining lymph nodes. Dimethylfumarate exhibits immunomodulatory as well as immunosuppressive activity when given orally. All of these compounds have successfully shown efficacy, at least in regards to the surrogate marker contrast-enhancing lesions on magnetic resonance imaging. Another class of agents that is highlighted in this review are biological agents, namely monoclonal antibodies (mAb) and recombinant fusion proteins. The humanized mAb daclizumab inhibits T-lymphocyte activation via blockade of the interleukin-2 receptor. Alemtuzumab and rituximab deplete leukocytes and B cells, respectively; the fusion protein atacicept inhibits specific B-cell growth factors resulting in reductions in B-cells and plasma cells. These compounds are currently being tested in phase II and III studies in patients with relapsing MS. The concept of neuro-protection and -regeneration has not advanced to a level where specific compounds have entered clinical testing. However, several agents approved for conditions other than MS are highlighted. Finally, with the advent of these highly potent novel therapies, rare, but potentially serious adverse effects have been noted, namely infections and malignancies. These are critically reviewed and put into perspective.
Collapse
Affiliation(s)
- Til Menge
- Department of Neurology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Ingram G, Hakobyan S, Robertson NP, Morgan BP. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin Exp Immunol 2009; 155:128-39. [PMID: 19040603 PMCID: PMC2675242 DOI: 10.1111/j.1365-2249.2008.03830.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system with a poorly defined and complex immunopathogenesis. Although initiated by reactive T cells, persistent inflammation is evident throughout the disease course. A contribution from complement has long been suspected, based on the results of pathological and functional studies which have demonstrated complement activation products in MS brain and biological fluids. However, the extent and nature of complement activation and its contribution to disease phenotype and long-term outcome remain unclear. Furthermore, functional polymorphisms in components and regulators of the complement system which cause dysregulation, and are known to contribute to other autoimmune inflammatory disorders, have not been investigated to date in MS in any detail. In this paper we review evidence from pathological, animal model and human functional and genetic studies, implicating activation of complement in MS. We also evaluate the potential of complement components and regulators and their polymorphic variants as biomarkers of disease, and suggest appropriate directions for future research.
Collapse
Affiliation(s)
- G Ingram
- Department of Neurosciences, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
88
|
Sulonen AM, Kallio SP, Ellonen P, Suvela M, Elovaara I, Koivisto K, Pirttilä T, Reunanen M, Tienari PJ, Palotie A, Peltonen L, Saarela J. No evidence for shared etiology in two demyelinative disorders, MS and PLOSL. J Neuroimmunol 2009; 206:86-90. [PMID: 19019460 PMCID: PMC2682253 DOI: 10.1016/j.jneuroim.2008.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/08/2008] [Accepted: 10/13/2008] [Indexed: 01/08/2023]
Abstract
Loss-of-function mutations of DAP12 and TREM2 cause a recessively inherited disease PLOSL, manifesting in brain white matter. The genes of the DAP12-TREM2 signaling receptor are located on 19q13.12 and 6p21.1, to which linkage has been observed also in families affected by another immune-mediated demyelinating disease, MS. We have tested if allelic variation in DAP12 or TREM2 predisposes also to MS by monitoring carrier frequency of the Finnish PLOSL mutation in Finnish MS cases and by studying DAP12 and TREM2 in MS by linkage and association. To conclude, the DAP12-TREM2 complex unlikely has a role in genetic susceptibility of MS.
Collapse
Affiliation(s)
- Anna-Maija Sulonen
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Suvi P. Kallio
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Minna Suvela
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
| | - Irina Elovaara
- Department of Neurology, Tampere University Hospital, Tampere, Finland
- Medical School, University of Tampere, Tampere, Finland
| | - Keijo Koivisto
- Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Tuula Pirttilä
- Department of Neurology and Neuroscience, Kuopio University Hospital, Kuopio, Finland
| | - Mauri Reunanen
- Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Pentti J. Tienari
- Department of Neurology, Helsinki University Central Hospital, and Molecular Neurology Programme, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Finnish Institute for Molecular Medicine, FIMM, Finnish Genome Center and Department of Clinical Chemistry, University of Helsinki, Finland
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Leena Peltonen
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Janna Saarela
- Finnish Institute for Molecular Medicine, FIMM, and National Public Health Institute, Biomedicum, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
89
|
Klotz L, Schmidt S, Heun R, Klockgether T, Kölsch H. Association of the PPARγ gene polymorphism Pro12Ala with delayed onset of multiple sclerosis. Neurosci Lett 2009; 449:81-3. [DOI: 10.1016/j.neulet.2008.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/07/2008] [Accepted: 10/19/2008] [Indexed: 11/24/2022]
|
90
|
Sawcer S. The complex genetics of multiple sclerosis: pitfalls and prospects. Brain 2008; 131:3118-31. [PMID: 18490360 PMCID: PMC2639203 DOI: 10.1093/brain/awn081] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 03/27/2008] [Accepted: 04/02/2008] [Indexed: 12/29/2022] Open
Abstract
The genetics of complex disease is entering a new and exciting era. The exponentially growing knowledge and technological capabilities emerging from the human genome project have finally reached the point where relevant genes can be readily and affordably identified. As a result, the last 12 months has seen a virtual explosion in new knowledge with reports of unequivocal association to relevant genes appearing almost weekly. The impact of these new discoveries in Neuroscience is incalculable at this stage but potentially revolutionary. In this review, an attempt is made to illuminate some of the mysteries surrounding complex genetics. Although focused almost exclusively on multiple sclerosis all the points made are essentially generic and apply equally well, with relatively minor addendums, to any other complex trait, neurological or otherwise.
Collapse
Affiliation(s)
- Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
91
|
HLA class I alleles tag HLA-DRB1*1501 haplotypes for differential risk in multiple sclerosis susceptibility. Proc Natl Acad Sci U S A 2008; 105:13069-74. [PMID: 18765817 DOI: 10.1073/pnas.0801042105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major locus for multiple sclerosis (MS) susceptibility is located within the class II region of the Major Histocompatibility Complex (MHC). HLA-DRB1 alleles, constituting the strongest MS susceptibility factors, have been widely exploited in research including construction of transgenic animal models of MS. Many studies have concluded that HLA-DRB1*15 allele itself determines MS-associated susceptibility. If this were true, haplotypes bearing this allele would confer equal risk. If HLA-DRB1*15 bearing haplotypes differed for risk, roles for other loci in this region would be implied and further study of the fine structure of this locus would be compelling. We have tested the hypothesis comparing haplotypes stratified by HLA class I tagging. We show here that HLA-DRB1*15-bearing-haplotypes in 1970 individuals from 494 MS families are indeed heterogeneous. Some HLA-DRB1*15 haplotypes determine susceptibility while others do not. Three groups of class I tagged HLA-DRB1*15 haplotypes were not over-transmitted: (i) HLA-DRB1*15-HLA-B*08 (TR = 25, NT = 23, Odds Ratio = 1.09), (ii) -HLA-B*27 (TR = 18, NT = 17, Odds Ratio = 1.06), and (iii) rare HLA-DRB1*15 haplotypes (frequency <0.02). Rare haplotypes were significantly different from common haplotypes, and transmissions were remarkably similar to those for class-I-matched non-HLA-DRB1*15 haplotypes. These results unambiguously indicate that HLA-DRB1*15 is part of a susceptibility haplotype but cannot be the susceptibility allele itself, requiring either epistatic interactions, epigenetic modifications on some haplotypes, or nearby structural variation. These findings strongly imply that differences among HLA-DRB1*15 haplotypes will furnish the basis for MHC-associated susceptibility in MS and raise the possibility that the MHC haplotype is the fundamental unit of genetic control of immune response.
Collapse
|
92
|
Kawamura K, McLaughlin KA, Weissert R, Forsthuber TG. Myelin-reactive type B T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3202-11. [PMID: 18713991 PMCID: PMC2724067 DOI: 10.4049/jimmunol.181.5.3202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.
Collapse
Affiliation(s)
| | | | - Robert Weissert
- Hertie Institute for Clinical Brain Research, department of General Neurology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
93
|
Barcellos LF, Ramsay PP, Caillier SJ, Sawcer S, Haines J, Schmidt S, Pericak-Vance M, Compston DAS, Gabatto P, Hauser SL, Oksenberg JR. Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis. Genes Immun 2008; 9:493-500. [PMID: 18580885 PMCID: PMC4020442 DOI: 10.1038/gene.2008.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system with a strong genetic component. Variation in the major histocompatibility complex on chromosome 6p21, specifically the HLA-DRB1*15 haplotype, is the strongest genetic factor for MS, yet it is estimated to account for only a portion of risk for the disease. Previous evidence has implicated the nitric oxide synthase gene (NOS2A) encoding inducible NOS on chromosome 17q11 as a potential MS susceptibility gene. To determine whether variation in the NOS2A gene contributes to MS risk, we investigated a total of 50 polymorphisms within or flanking the locus for evidence of association using a comprehensive analytical strategy. A total of 6265 members from 1858 well-characterized MS families were utilized. No evidence for overtransmission of any individual single-nucleotide polymorphism allele or haplotype to the MS-affected individuals was observed. Furthermore, different transmission rates were not observed in either DRB1*15-positive or DRB1*15-negative family subgroups, or when extreme clinical outcomes characterizing disease progression were examined. The very largest study of NOS2A variation in MS, to date, excludes even a modest role for this locus in susceptibility.
Collapse
Affiliation(s)
- L F Barcellos
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhang X, Tang Y, Sujkowska D, Wang J, Ramgolam V, Sospedra M, Adams J, Martin R, Pinilla C, Markovic-Plese S. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Eur J Immunol 2008; 38:1297-309. [PMID: 18412170 DOI: 10.1002/eji.200737519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TCR degeneracy may facilitate self-reactive T cell activation and the initiation of an autoimmune response in multiple sclerosis (MS). MHC class II alleles of the DR2 haplotype DR2a (DRB5*0101) and DR2b (DRB1*1501) are associated with an increased risk for MS in Caucasian populations. In order to selectively expand and characterize T cells with a high degree of TCR degeneracy that recognize peptides in the context of disease-associated DR2 alleles, we developed DR2-anchored peptide mixtures (APM). We report here that DR2-APM have a high stimulatory potency and can selectively expand T cells with a degenerate TCR (TCR(deg)). Due to the low concentration of individual peptides in the mixtures, T cell clones' proliferative response to DR2-APM implies that multiple peptides stimulate the TCR, which is a characteristic of TCR(deg). The frequency of DR2-APM-reactive T cells is significantly higher in MS patients than in healthy controls, suggesting that they may play a role in the development of the autoimmune response in MS. DR2-APM-reactive cells have a dual DR2 restriction: they recognize DR2-APM in the context of both DR2a and DR2b molecules. The DR2-APM-reactive cells' IL-17 secretion, together with cross-reactivity against myelin peptides, may contribute to their role in the development of autoimmune response in MS.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Fernandez-Morera JL, Rodriguez-Rodero S, Tunon A, Martinez-Borra J, Vidal-Castineira JR, Lopez-Vazquez A, Rodrigo L, Rodrigo P, González S, Lahoz CH, Lopez-Larrea C. Genetic influence of the nonclassical major histocompatibility complex class I molecule MICB in multiple sclerosis susceptibility. TISSUE ANTIGENS 2008; 72:54-59. [PMID: 18588574 DOI: 10.1111/j.1399-0039.2008.01066.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been widely reported that the major histocompatibility complex (MHC) class II region provides the main genetic contribution to multiple sclerosis (MS) susceptibility. However, recent studies have suggested that the MHC class I region may also contribute to the development of MS. In this study, we investigated the possible association of the human leukocyte antigen (HLA)-B, MHC class I chain-related gene B (MICB) and MHC class I chain-related gene A (MICA) genes, located in the MHC class I region, with MS susceptibility. For this purpose, we analyzed the distribution of HLA-DR, HLA-B, MICB and MICA alleles in 121 MS patients and 156 healthy controls. Neither HLA-B nor MICA alleles were found to be associated with MS susceptibility, and only the frequency of HLA-DRB1*01 allele was found to be increased in controls (31% vs 14%, P(c) = 0.011). However, MICB*004 allele frequency was significantly increased in MS patients (46.3% vs 23.3%, P(c) < 0.001, odds ratio = 2.82, 95% confidence interval = 1.68-4.73). Although, MICB*004 and HLA-DRB1*15 belong to the AH 7.1 ancestral haplotype, the association of MICB*004 to MS susceptibility was found to be independent of HLA-DRB1*15 in our population. This and previous studies clearly suggest that the MHC class I, in addition to class II, could be involved in MS susceptibility.
Collapse
Affiliation(s)
- J L Fernandez-Morera
- Histocompatibility and Transplant Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dyment DA, Cader MZ, Datta A, Broxholme SJ, Cherny SS, Willer CJ, Ramagopalan S, Herrera BM, Orton S, Chao M, Sadovnick AD, Hader M, Hader W, Ebers GC. A first stage genome-wide screen for regions shared identical-by-descent in Hutterite families with multiple sclerosis. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:467-72. [PMID: 18081025 DOI: 10.1002/ajmg.b.30620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complexity of multiple sclerosis (MS) genetics has made the search for novel genes using traditional sharing methods problematic. In order to minimize the genetic heterogeneity present in the MS population we have screened the Canadian MS population for individuals belonging to the Hutterite Brethren. Seven Hutterites with clinically definite MS were ascertained and are related to a common founder by eight generations. Six of the 7 affected individuals and 21 of their unaffected family members (total = 27) were genotyped for 807 markers. Haplotypes were then inspected for sharing among the six MS patients. There were three haplotypes shared among all six MS patients. The haplotypes were located at 2q34-35, 4q31-32, and 17p13. An additional 15 haplotypes were shared among five of the six Hutterites MS patients. The HLA Class II region was one of the highlighted regions; however, the shared MHC haplotype bore the DRB1*04 allele and not the MS-associated DRB1*15 allele providing further evidence of the complexity of the MHC. Additional genotyping to refine the haplotypes followed by screening for potential variants may lead to the identification of a novel MS susceptibility gene(s) in this unique population.
Collapse
|
97
|
Abstract
Cleft lip with or without cleft palate is the most common facial birth defect and it is caused by a complex interaction between genetic and environmental factors. The purpose of this review is to provide an overview of the spectrum of the genetic causes for cleft lip and cleft palate using both syndromic and nonsyndromic forms of clefting as examples. Although the gene identification process for orofacial clefting in humans is in the early stages, the pace is rapidly accelerating. Recently, several genes have been identified that have a combined role in up to 20% of all clefts. While this is a significant step forward, it is apparent that additional cleft causing genes have yet to be identified. Ongoing human genome-wide linkage studies have identified regions in the genome that likely contain genes that when mutated cause orofacial clefting, including a major gene on chromosome 9 that is positive in multiple racial groups. Currently, efforts are focused to identify which genes are mutated in these regions. In addition, parallel studies are also evaluating genes involved in environmental pathways. Furthermore, statistical geneticists are developing new methods to characterize both gene-gene and gene-environment interactions to build better models for pathogenesis of this common birth defect. The ultimate goal of these studies is to provide knowledge for more accurate risk counseling and the development of preventive therapies.
Collapse
Affiliation(s)
- Andrew C. Lidral
- Department of Orthodontics, University of Iowa, Iowa City, IA
- Dows Institute for Dental Research, University of Iowa, Iowa City, IA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA
| | - Lina M. Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | | |
Collapse
|
98
|
Svejgaard A. The immunogenetics of multiple sclerosis. Immunogenetics 2008; 60:275-86. [PMID: 18461312 DOI: 10.1007/s00251-008-0295-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 12/26/2022]
Abstract
The discoveries in the 1970s of strong associations between various diseases and certain human leukocyte antigen (HLA) factors were a revolution within genetic epidemiology in the last century by demonstrating for the first time how genetic markers can help unravel the genetics of disorders with complex genetic backgrounds. HLA controls immune response genes and HLA associations indicate the involvement of autoimmunity. Multiple sclerosis (MS) was one of the first conditions proven to be HLA associated involving primarily HLA class II factors. We review how HLA studies give fundamental information on the genetics of the susceptibility to MS, on the importance of linkage disequilibrium in association studies, and on the pathogenesis of MS. The HLA-DRB1*1501 molecule may explain about 50% of MS cases and its role in the pathogenesis is supported by studies of transgenic mice. Studies of polymorphic non-HLA genetic markers are discussed based on linkage studies and candidate gene approaches including complete genome scans. No other markers have so far rivaled the importance of HLA in the genetic susceptibility to MS. Recently, large international collaborations provided strong evidence for the involvement of polymorphism of two cytokine receptor genes in the pathogenesis of MS: the interleukin 7 receptor alpha chain gene (IL7RA) on chromosome 5p13 and the interleukin 2 receptor alpha chain gene (IL2RA (=CD25)) on chromosome 10p15. It is estimated that the C allele of a single nucleotide polymorphism, rs6897932, within the alternative spliced exon 6 of IL7RA is involved in about 30% of MS cases.
Collapse
Affiliation(s)
- Arne Svejgaard
- Department of Clinical Immunology, Section 7631, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
99
|
Li KC, Palotie A, Yuan S, Bronnikov D, Chen D, Wei X, Choi OW, Saarela J, Peltonen L. Finding disease candidate genes by liquid association. Genome Biol 2008; 8:R205. [PMID: 17915034 PMCID: PMC2246280 DOI: 10.1186/gb-2007-8-10-r205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/23/2007] [Accepted: 10/04/2007] [Indexed: 01/29/2023] Open
Abstract
A novel approach to finding candidate genes by using gene-expression data has been developed and used to identify a multiple sclerosis susceptibility candidate genes. A novel approach to finding candidate genes by using gene expression data through liquid association is developed and used to identify multiple sclerosis susceptibility candidate genes.
Collapse
Affiliation(s)
- Ker-Chau Li
- Department of Statistics, UCLA, 8125 Math Sciences Bldg, Los Angeles, California 90095-1554, USA
- Institute of Statistical Science, Academia Sinica, Academia Road, Nankang, Taipei 115, Taiwan
| | - Aarno Palotie
- The Finnish Genome Center and Department of Clinical Chemistry, University of Helsinki, Haartmaninkatu, 00290 Helsinki, Finland
- The Broad Institute of Harvard and MIT, Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Pathology and Laboratory Medicine, Gonda Researach Center, UCLA, Los Angeles, California 90095-1766, USA
- Department of Human Genetics, UCLA, 695 Charles E. Young Drive South, Los Angeles, California 90095-1766, USA
| | - Shinsheng Yuan
- Institute of Statistical Science, Academia Sinica, Academia Road, Nankang, Taipei 115, Taiwan
| | - Denis Bronnikov
- The Broad Institute of Harvard and MIT, Cambridge Center, Cambridge, Massachusetts 02142, USA
- National Public Health Institute, Helsinki, Finland, Biomedicum Helsinki, Haartmaninkatu, 00290 Helsinki, Finland
| | - Daniel Chen
- The Broad Institute of Harvard and MIT, Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Xuelian Wei
- Department of Statistics, UCLA, 8125 Math Sciences Bldg, Los Angeles, California 90095-1554, USA
| | - Oi-Wa Choi
- The Broad Institute of Harvard and MIT, Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Janna Saarela
- National Public Health Institute, Helsinki, Finland, Biomedicum Helsinki, Haartmaninkatu, 00290 Helsinki, Finland
| | - Leena Peltonen
- National Public Health Institute, Helsinki, Finland, Biomedicum Helsinki, Haartmaninkatu, 00290 Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu, 00290 Helsinki, Finland
| |
Collapse
|
100
|
Sonobe Y, Jin S, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. TOHOKU J EXP MED 2008; 213:329-39. [PMID: 18075237 DOI: 10.1620/tjem.213.329] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). The etiology of MS remains unclear, but T cells specific for myelin components, such as myelin oligodendrocyte glycoprotein (MOG), are thought to play a critical role in the onset of MS. Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of MS, and T helper type 1 (Th1) cells play an essential role for the pathogenesis of EAE through the production of Th1 cytokines, interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). We examined CD4(+) and CD8(+) T cell responses in the spleen and CNS of EAE mice, generated by immunization with a peptide (35-55 amino acid residues) of MOG. The number of both CD4(+) and CD8(+) T cells and their MOG-reactivity in the CNS were associated with increasing disease severity but not those in the spleen, suggesting that the MOG-specific CD4(+) and CD8(+) T cells in the CNS are involved in the development of EAE. Polymerase chain reaction analysis suggested that both CD4(+) and CD8(+) T cells produced IFN-gamma and TNF-alpha, while CD4(+) T cells also produced interleukin-17 (IL-17), an important factor in the development of EAE. Thus, CD4(+) T cells may contribute to the induction of EAE by producing IL-17. Furthermore, CD8(+) T cells express higher levels of a suppressive cytokine, IL-10. Taking together, our data suggest that CD4(+) T cells are involved in the early phase of EAE, whereas CD8(+) T cells have a regulatory role in the later stage of EAE.
Collapse
Affiliation(s)
- Yoshifumi Sonobe
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|