51
|
Abramowicz I, Carpenter G, Alfieri M, Colnaghi R, Outwin E, Parent P, Thauvin-Robinet C, Iaconis D, Franco B, O'Driscoll M. Oral-facial-digital syndrome type I cells exhibit impaired DNA repair; unanticipated consequences of defective OFD1 outside of the cilia network. Hum Mol Genet 2017; 26:19-32. [PMID: 27798113 DOI: 10.1093/hmg/ddw364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 02/11/2024] Open
Abstract
Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.
Collapse
Affiliation(s)
- Iga Abramowicz
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Gillian Carpenter
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Rita Colnaghi
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Emily Outwin
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Philippe Parent
- Service de Génétique, Centre Hospitalier Universitaire de Brest, France
| | | | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Mark O'Driscoll
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
52
|
Cavero S, Herruzo E, Ontoso D, San-Segundo PA. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. MICROBIAL CELL 2016; 3:606-620. [PMID: 28357333 PMCID: PMC5348980 DOI: 10.15698/mic2016.12.548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is
a surveillance mechanism that monitors critical processes, such as recombination
and chromosome synapsis, which are essential for proper distribution of
chromosomes to the meiotic progeny. Failures in these processes lead to the
formation of aneuploid gametes. Meiotic recombination occurs in the context of
chromatin; in fact, the histone methyltransferase Dot1 and the histone
deacetylase Sir2 are known regulators of the pachytene checkpoint in
Saccharomyces cerevisiae. We report here that Sas2-mediated
acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets,
modulates meiotic checkpoint activity in response to synaptonemal complex
defects. We show that, like sir2, the H4-K16Q
mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in
meiotic cell cycle progression imposed by the checkpoint in the
synapsis-defective zip1 mutant. We also demonstrate that, like
in dot1, zip1-induced phosphorylation of the
Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are
impaired in H4-K16 mutants. However, in contrast to
sir2 and dot1, the
H4-K16R and H4-K16Q mutations have only a
minor effect in checkpoint activation and localization of the nucleolar Pch2
checkpoint factor in ndt80-prophase-arrested cells. We also
provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and
H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic
chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this
meiotic quality control mechanism and that Sir2 impinges on additional targets
to fully activate the checkpoint.
Collapse
Affiliation(s)
- Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Department of Experimental and Health Sciences, Pompeu Fabra University, 08003-Barcelona, Spain
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
53
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
54
|
Mitsumori R, Shinmyozu K, Nakayama JI, Uchida H, Oki M. Gic1 is a novel heterochromatin boundary protein in vivo. Genes Genet Syst 2016; 91:151-159. [PMID: 27301280 DOI: 10.1266/ggs.15-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae, HMR/HML, telomeres and ribosomal DNA are heterochromatin-like regions in which gene transcription is prevented by the silent information regulator (Sir) complex. The Sir complex (Sir2, Sir3 and Sir4) can spread through chromatin from the silencer. Boundaries prevent Sir complex spreading, and we previously identified 55 boundary genes among all ~6,000 yeast genes. These boundary proteins can be distinguished into two types: those that activate transcription to prevent spreading of silencing, and those that prevent gene silencing by forming a boundary. We selected 44 transcription-independent boundary proteins from the 55 boundary genes by performing a one-hybrid assay and focused on GIC1 (GTPase interaction component 1). Gic1 is an effector of Cdc42, which belongs to the Rho family of small GTPases, and has not been reported to function in heterochromatin boundaries in vivo. We detected a novel boundary-forming activity of Gic1 at HMR-left and telomeric regions by conducting a chromatin immunoprecipitation assay with an anti-Sir3 antibody. We also found that Gic1 bound weakly to histones in two-hybrid analysis. Moreover, we performed domain analysis to identify domain(s) of Gic1 that are important for its boundary activity, and identified two minimum domains, which are located outside its Cdc42-binding domain.
Collapse
Affiliation(s)
- Risa Mitsumori
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui
| | | | | | | | | |
Collapse
|
55
|
Behrouzi R, Lu C, Currie MA, Jih G, Iglesias N, Moazed D. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes. eLife 2016; 5. [PMID: 27835568 PMCID: PMC5106214 DOI: 10.7554/elife.17556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.
Collapse
Affiliation(s)
- Reza Behrouzi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Chenning Lu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Mark A Currie
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
56
|
|
57
|
Dodson AE, Rine J. Donor Preference Meets Heterochromatin: Moonlighting Activities of a Recombinational Enhancer in Saccharomyces cerevisiae. Genetics 2016; 204:1065-1074. [PMID: 27655944 PMCID: PMC5105842 DOI: 10.1534/genetics.116.194696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, a small, intergenic region known as the recombination enhancer regulates donor selection during mating-type switching and also helps shape the conformation of chromosome III. Using an assay that detects transient losses of heterochromatic repression, we found that the recombination enhancer also acts at a distance in cis to modify the stability of gene silencing. In a mating-type-specific manner, the recombination enhancer destabilized the heterochromatic repression of a gene located ∼17 kbp away. This effect depended on a subregion of the recombination enhancer that is largely sufficient to determine donor preference. Therefore, this subregion affects both recombination and transcription from a distance. These observations identify a rare example of long-range transcriptional regulation in yeast and raise the question of whether other cis elements also mediate dual effects on recombination and gene expression.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| |
Collapse
|
58
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
59
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
60
|
Lu L, Chen X, Sanders D, Qian S, Zhong X. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice. Epigenetics 2016; 10:1044-53. [PMID: 26646900 DOI: 10.1080/15592294.2015.1104446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone acetylation and deacetylation are key epigenetic gene regulatory mechanisms that play critical roles in eukaryotes. Acetylation of histone 4 lysine 16 (H4K16ac) is implicated in many cellular processes. However, its biological function and relationship with transcription are largely unexplored in plants. We generated first genome-wide high-resolution maps of H4K16ac in Arabidopsis thaliana and Oryza sativa. We showed that H4K16ac is preferentially enriched around the transcription start sites and positively correlates with gene expression levels. Co-existence of H4K16ac and H3K23ac is correlated with high gene expression levels, suggesting a potentially combinatorial effect of H4K16ac and H3K23ac histone 3 lysine 23 acetylation on gene expression. Our data further revealed that while genes enriched with both H4K16ac and H3K23ac are ubiquitously expressed, genes enriched with only H4K16ac or H3K23ac showed significantly distinct expression patterns in association with particular developmental stages. Unexpectedly, and unlike in Arabidopsis, there are significant levels of both H4K16ac and H3K23ac in the lowly expressed genes in rice. Furthermore, we found that H4K16ac-enriched genes are associated with different biological processes in Arabidopsis and rice, suggesting a potentially species-specific role of H4K16ac in plants. Together, our genome-wide profiling reveals the conserved and unique distribution patterns of H4K16ac and H3K23ac in Arabidopsis and rice and provides a foundation for further understanding their function in plants.
Collapse
Affiliation(s)
- Li Lu
- a Wisconsin Institute for Discovery
| | | | - Dean Sanders
- b Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI , USA
| | | | - Xuehua Zhong
- a Wisconsin Institute for Discovery.,b Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI , USA
| |
Collapse
|
61
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
62
|
An M, Shen H, Cao J, Pei X, Chang Y, Ma S, Bao J, Zhang X, Bai X, Ma Y. The alteration of H4-K16ac and H3-K27met influences the differentiation of neural stem cells. Anal Biochem 2016; 509:92-99. [PMID: 27396496 DOI: 10.1016/j.ab.2016.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The neural stem cell therapy provides a promising future for patients with central nerve system damage, thus an insight into its differentiation mechanism is urgently needed. Herein, we aimed to identify various histone modifications and reveal their impact on the differentiation of neural stem cells (NSCs) toward neurons. Firstly, we labeled primary NSCs using the stable isotope labeling with amino acids in cell culture (SILAC) technique. Then we induced these NSCs to differentiate by all-trans retinoic acid (atRA) or SB216763. Next, we identified the alteration of histone modifications in early-differentiated NSCs by mass spectrometry and verified them by Western blot. Interestingly, these modification alterations and phenotype changes were found similar in NSCs induced by the two different drugs. More interestingly, during the differentiation process H3-K27met was significantly up-regulated while H4-K16ac was not altered at the global level but down-regulated in some low-abundance combinatorial codes. We inhibited the methyltransferase of H3-K27 and deacetylase of H4-K16 simultaneously and found the differentiation procedure was obviously delayed. The function of H4-K16ac and H3-K27met in NSCs differentiation would be useful to reveal the differentiation mechanism and valuable for further neural stem cell therapy.
Collapse
Affiliation(s)
- Mingrui An
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, United States.
| | - Hongyan Shen
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Xiucong Pei
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, 110034, China.
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuaipeng Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jintao Bao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xuefei Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yuanhui Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
63
|
Duan YM, Zhou BO, Peng J, Tong XJ, Zhang QD, Zhou JQ. Molecular dynamics of de novo telomere heterochromatin formation in budding yeast. J Genet Genomics 2016; 43:451-65. [DOI: 10.1016/j.jgg.2016.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
|
64
|
Abstract
Recently, efforts have been made to characterize the hallmarks that accompany and
contribute to the phenomenon of aging, as most relevant for humans 1. Remarkably, studying the finite lifespan
of the single cell eukaryote budding yeast (recently reviewed in 2 and 3) has been paramount for our understanding of aging. Here, we
compile observations from literature over the past decades of research on
replicatively aging yeast to highlight how the hallmarks of aging in humans are
present in yeast. We find strong evidence for the majority of these, and
summarize how yeast aging is especially characterized by the hallmarks of
genomic instability, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Georges E Janssens
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
65
|
Alvarenga EM, Rodrigues VL, Moraes AS, Naves LS, Mondin M, Felisbino MB, Mello MLS. Histone epigenetic marks in heterochromatin and euchromatin of the Chagas' disease vector, Triatoma infestans. Acta Histochem 2016; 118:401-12. [PMID: 27079857 DOI: 10.1016/j.acthis.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 01/23/2023]
Abstract
Triatoma infestans, a vector of Chagas' disease, shows several particular cell biology characteristics, including the presence of conspicuous heterochromatic bodies (chromocenters) where DNA methylation has not been previously detected. Whether histone modifications contribute to the condensed state of these bodies has not yet been studied. Here, we investigated epigenetic modifications of histones H3 and H4 and presence of the non-histone heterochromatin protein (HP1-α) in the chromocenters and euchromatin of T. infestans cell nuclei, using immunocytochemistry. The effect of different concentrations of the histone deacetylase inhibitors valproic acid (VPA) and sodium butyrate (NaBt) on chromocenter condensation was visually examined; in VPA-treated specimens, this effect was also analyzed by image analysis. Trimethylated H3K9 signals, which were revealed in chromocenter and non-chromocenter areas, were strongest in chromocenters, whereas selected acetylated histone marks and mono- and dimethylated H3K9 and H4K20 signals were detected only in euchromatin. Weak trimethylated H4K20 signals and variable distribution of HP1-α were detected in chromocenters of part of the cellular population analyzed. Although specific VPA and NaBt treatment conditions affected the heterochromatin condensation pattern, they did not induce a decrease in survival and molting rates of the T. infestans nymphs. The VPA-induced chromatin remodeling was not accompanied by induction of H3K9 acetylation in chromocenters. Present findings regarding histone modifications and effects following VPA or NaBt treatments did not yet solve the question of which factors are responsible for maintenance of the condensed state of chromocenters in T. infestans. A possibility requiring further investigation remains on histone methylation marks and/or non-histone proteins.
Collapse
|
66
|
Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:275-88. [PMID: 27085853 DOI: 10.1016/j.bbcan.2016.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.
Collapse
Affiliation(s)
- Anna Kazanets
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Khalid Hilmi
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Maud Marques
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
67
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
68
|
Wang J, Jia ST, Jia S. New Insights into the Regulation of Heterochromatin. Trends Genet 2016; 32:284-294. [PMID: 27005444 DOI: 10.1016/j.tig.2016.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
All living organisms are constantly exposed to stresses from internal biological processes and surrounding environments, which induce many adaptive changes in cellular physiology and gene expression programs. Unexpectedly, constitutive heterochromatin, which is generally associated with the stable maintenance of gene silencing, is also dynamically regulated in response to stimuli. In this review we discuss the mechanism of constitutive heterochromatin assembly, its dynamic nature, and its responses to environmental changes.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sharon T Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
69
|
Mitsumori R, Ohashi T, Kugou K, Ichino A, Taniguchi K, Ohta K, Uchida H, Oki M. Analysis of novel Sir3 binding regions in Saccharomyces cerevisiae. J Biochem 2016; 160:11-7. [PMID: 26957548 DOI: 10.1093/jb/mvw021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023] Open
Abstract
In Saccharomyces cerevisiae, the HMR, HML, telomere and rDNA regions are silenced. Silencing at the rDNA region requires Sir2, and silencing at the HMR, HML and telomere regions requires binding of a protein complex, consisting of Sir2, Sir3 and Sir4, that mediates repression of gene expression. Here, several novel Sir3 binding domains, termed CN domains (Chromosomal Novel Sir3 binding region), were identified using chromatin immunoprecipitation (ChIP) on chip analysis of S. cerevisiae chromosomes. Furthermore, analysis of G1-arrested cells demonstrated that Sir3 binding was elevated in G1-arrested cells compared with logarithmically growing asynchronous cells, and that Sir3 binding varied with the cell cycle. In addition to 14 CN regions identified from analysis of logarithmically growing asynchronous cells (CN1-14), 11 CN regions were identified from G1-arrested cells (CN15-25). Gene expression at some CN regions did not differ between WT and sir3Δ strains. Sir3 at conventional heterochromatic regions is thought to be recruited to chromosomes by Sir2 and Sir4; however, in this study, Sir3 binding occurred at some CN regions even in sir2Δ and sir4Δ backgrounds. Taken together, our results suggest that Sir3 exhibits novel binding parameters and gene regulatory functions at the CN binding domains.
Collapse
Affiliation(s)
- Risa Mitsumori
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Tomoe Ohashi
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kazuto Kugou
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ayako Ichino
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kei Taniguchi
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Research and Education Program for Life Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
70
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
71
|
|
72
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
73
|
Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A 2016; 113:1309-14. [PMID: 26787877 DOI: 10.1073/pnas.1518375113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin, and components of the ubiquitin-proteasome system, feature extensively in the regulation of gene transcription. Although there are many examples of how ubiquitin controls the activity of transcriptional regulators and coregulators, there are few examples of core components of the transcriptional machinery that are directly controlled by ubiquitin-dependent processes. The budding yeast protein Asr1 is the prototypical member of the RPC (RING, PHD, CBD) family of ubiquitin-ligases, characterized by the presence of amino-terminal RING (really interesting new gene) and PHD (plant homeo domain) fingers and a carboxyl-terminal domain that directly binds the largest subunit of RNA polymerase II (pol II), Rpb1, in response to phosphorylation events tied to the initiation of transcription. Asr1-mediated oligo-ubiquitylation of pol II leads to ejection of two core subunits of the enzyme and is associated with inhibition of polymerase function. Here, we present evidence that Asr1-mediated ubiquitylation of pol II is required for silencing of subtelomeric gene transcription. We show that Asr1 associates with telomere-proximal chromatin and that disruption of the ubiquitin-ligase activity of Asr1--or mutation of ubiquitylation sites within Rpb1--induces transcription of silenced gene sequences. In addition, we report that Asr1 associates with the Ubp3 deubiquitylase and that Asr1 and Ubp3 play antagonistic roles in setting transcription levels from silenced genes. We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin.
Collapse
|
74
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
75
|
Simoneau A, Ricard É, Weber S, Hammond-Martel I, Wong LH, Sellam A, Giaever G, Nislow C, Raymond M, Wurtele H. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress. Nucleic Acids Res 2016; 44:2706-26. [PMID: 26748095 PMCID: PMC4824096 DOI: 10.1093/nar/gkv1537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/24/2015] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.
Collapse
Affiliation(s)
- Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Étienne Ricard
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada
| | - Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Molecular biology program, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Adnane Sellam
- Infectious Diseases Research Centre-CRI, CHU de Québec Research Center (CHUQ), Université Laval, Québec, G1V 4G2, Canada Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Québec, G1V 0A6, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Martine Raymond
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, H3C 3J7, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assomption boulevard, Montreal, H1T 2M4, Canada Department of Medicine, Université de Montréal, Montreal, H3T 1J4, Canada
| |
Collapse
|
76
|
Kang WK, Kim YH, Kang HA, Kwon KS, Kim JY. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. eLife 2015; 4. [PMID: 26329457 PMCID: PMC4586308 DOI: 10.7554/elife.09709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Silent information regulator 2 (Sir2), an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension. DOI:http://dx.doi.org/10.7554/eLife.09709.001 We know that cutting calorie intake through a restricted diet can slow down the aging process and prolong the lives of many organisms ranging from yeast to mammals. Calorie restriction also has protective effects on various age-related diseases including neurodegenerative disorders, cardiovascular disease, and cancer. Many studies suggest that we may mimic the beneficial effects of calorie restriction by controlling the activities of some proteins involved in the aging process. An enzyme called Sir2 is required for calorie restriction to be able to increase lifespan. This enzyme modifies proteins called histones, which are used to package DNA inside cells. In yeast, Sir2 modifies the histones in such a way that the genes contained in that section of DNA are inactivated (or ‘silenced’). As the yeast cells age, the activity of Sir2 declines, which allows these genes to become active and contribute to the aging process. However, when yeast cells are grown in the presence of little sugar—which mimics caloric restriction—Sir2 is activated and this restores gene silencing. It is not clear how Sir2's ability to silence these genes contributes to prolonged lifespan. Kang et al. studied the role of Sir2 in yeast and observed that one of the genes that Sir2 inactivates is called PMA1. This gene encodes a protein that is known to restrict the lifespan of yeast cells. Further experiments show that other proteins attach or remove molecules called phosphate groups from Sir2 to regulate its activity. Sir2 is inactivated when a phosphate group is attached, and active in the absence of phosphate. Under a reduced diet, the proteins that add phosphate to Sir2 are inactive, which allows Sir2 to become active and reduce the expression of the PMA1 gene. These results show that Sir2 fine-tunes the expression of PMA1 and other age-related genes and that the attachment of phosphate groups to Sir2 by other proteins interferes with this regulation. The next challenges will be to identify the proteins responsible for attaching phosphate groups to Sir2, and to find out how they work. DOI:http://dx.doi.org/10.7554/eLife.09709.002
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ki-Sun Kwon
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
77
|
Reiter C, Heise F, Chung HR, Ehrenhofer-Murray AE. A link between Sas2-mediated H4 K16 acetylation, chromatin assembly in S-phase by CAF-I and Asf1, and nucleosome assembly by Spt6 during transcription. FEMS Yeast Res 2015; 15:fov073. [PMID: 26260510 DOI: 10.1093/femsyr/fov073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
The histone acetyltransferase Sas2 is part of the SAS-I complex and acetylates lysine 16 of histone H4 (H4 K16Ac) in the genome of Saccharomyces cerevisiae. Sas2-mediated H4 K16Ac is strongest over the coding region of genes with low expression. However, it is unclear how Sas2-mediated acetylation is incorporated into chromatin. Our previous work has shown physical interactions of SAS-I with the histone chaperones CAF-I and Asf1, suggesting a link between SAS-I-mediated acetylation and chromatin assembly. Here, we find that Sas2-dependent H4 K16Ac in bulk histones requires passage of the cells through the S-phase of the cell cycle, and the rate of increase in H4 K16Ac depends on both CAF-I and Asf1, whereas steady-state levels and genome-wide distribution of H4 K16Ac show only mild changes in their absence. Furthermore, H4 K16Ac is deposited in chromatin at genes upon repression, and this deposition requires the histone chaperone Spt6, but not CAF-I, Asf1, HIR or Rtt106. Altogether, our data indicate that Spt6 controls H4 K16Ac levels by incorporating K16-unacetylated H4 in strongly transcribed genes. Upon repression, Spt6 association is decreased, resulting in less deposition of K16-unacetylated H4 and therefore in a concomitant increase of H4 K16Ac that is recycled during transcription.
Collapse
Affiliation(s)
- Christian Reiter
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | - Ho-Ryun Chung
- Max-Planck-Institute for Molecular Genetics, D-14195 Berlin, Germany
| | | |
Collapse
|
78
|
Abstract
Dosage compensation in Drosophila increases the transcription of genes on the single X chromosome in males to equal that of both X chromosomes in females. Site-specific histone acetylation by the male-specific lethal (MSL) complex is thought to play a fundamental role in the increased transcriptional output of the male X. Nucleation and sequence-independent spreading of the complex to active genes serves as a model for understanding the targeting and function of epigenetic chromatin-modifying complexes. Interestingly, two noncoding RNAs are key for MSL assembly and spreading to active genes along the length of the X chromosome.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, O. W. Rollins Research Center, Emory University, Atlanta, Georgia 30322
| | - Mitzi I Kuroda
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
79
|
Sun L, Kokura K, Izumi V, Koomen JM, Seto E, Chen J, Fang J. MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition. EMBO Rep 2015; 16:689-99. [PMID: 25870236 DOI: 10.15252/embr.201439792] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/17/2015] [Indexed: 11/09/2022] Open
Abstract
As a critical developmental process, epithelial-mesenchymal transition (EMT) involves complex transcriptional reprogramming and has been closely linked to malignant progression. Although various epigenetic modifications, such as histone deacetylation and H3K9 methylation, have been implicated in this process, how they are coordinated remains elusive. We recently revealed that MPP8 couples H3K9 methylation and DNA methylation for E-cadherin gene silencing and promotes tumor cell migration, invasion, and EMT. Here, we show that MPP8 cooperates with the class III HDAC SIRT1 in this process through their physical interaction. SIRT1 antagonizes PCAF-catalyzed MPP8-K439 acetylation to protect MPP8 from ubiquitin-proteasome-mediated proteolysis. Conversely, MPP8 recruits SIRT1 for H4K16 deacetylation after binding to methyl-H3K9 on target promoters. Consequently, disabling either MPP8 methyl-H3K9 binding or SIRT1 interaction de-represses E-cadherin and reduces EMT phenotypes, as does knockdown of MPP8 or SIRT1 in prostate cancer cells. These results illustrate how SIRT1 and MPP8 reciprocally promote each other's function and coordinate epithelial gene silencing and EMT.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kenji Kokura
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Edward Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
80
|
Xue Y, Van C, Pradhan SK, Su T, Gehrke J, Kuryan BG, Kitada T, Vashisht A, Tran N, Wohlschlegel J, Peterson CL, Kurdistani SK, Carey MF. The Ino80 complex prevents invasion of euchromatin into silent chromatin. Genes Dev 2015; 29:350-5. [PMID: 25691465 PMCID: PMC4335291 DOI: 10.1101/gad.256255.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we show that the Ino80 chromatin remodeling complex (Ino80C) directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II (Pol II) transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jason Gehrke
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin G Kuryan
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Tasuku Kitada
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy Tran
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA;
| |
Collapse
|
81
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
82
|
Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage. Genetics 2015; 200:185-205. [PMID: 25786853 DOI: 10.1534/genetics.115.175919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.
Collapse
|
83
|
Wang J, Lawry ST, Cohen AL, Jia S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 2014; 71:4841-52. [PMID: 25192661 PMCID: PMC4234687 DOI: 10.1007/s00018-014-1725-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
84
|
Affiliation(s)
- Juan Ausió
- Department; of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
85
|
Protein acetylation and acetyl coenzyme a metabolism in budding yeast. EUKARYOTIC CELL 2014; 13:1472-83. [PMID: 25326522 DOI: 10.1128/ec.00189-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation.
Collapse
|
86
|
Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun 2014; 5:4751. [PMID: 25163529 PMCID: PMC4151189 DOI: 10.1038/ncomms5751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the HM silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy, and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibers are less compact than canonical – magnesium-induced 30 nm fibers. We suggest that heterochromatin proteins promote silencing by “coating” nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
Collapse
|
87
|
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet 2014; 30:271-86. [PMID: 24877878 PMCID: PMC4077918 DOI: 10.1016/j.tig.2014.04.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relations between sirtuins, lifespan, and age-associated dysfunction. Here, we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process.
Collapse
Affiliation(s)
- William Giblin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary E Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
88
|
Rodriguez ME, Orozco H, Cantoral JM, Matallana E, Aranda A. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Res 2014; 14:845-57. [PMID: 24920206 DOI: 10.1111/1567-1364.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and adhesion of cells to themselves and to agar in a commercial wine strain. Deletion of acetyltransferase GCN5 leads to a similar phenotype. A naturally flocculant wine yeast strain called P2 was characterized. Its flocculation happens only during grape juice fermentation and is due to the presence of a highly transcribed version of flocculin FLO5, linked to the presence of a δ sequence in the promoter. Deletion of acetyltransferase SAS2 enhances this phenotype and maltose fermentation even more. Therefore, the manipulation of acetylation/deacetylation machinery members is a valid way to alter the interaction of industrial yeast to their environment.
Collapse
Affiliation(s)
- María E Rodriguez
- Laboratorio de MicrobiologÍa Enológica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
89
|
SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans. Dev Biol 2014; 392:266-82. [PMID: 24882710 DOI: 10.1016/j.ydbio.2014.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
Abstract
Chromatin regulators contribute to the developmental control of gene expression. In the nematode Caenorhabditis elegans, the roles of chromatin regulation in development have been explored in several contexts, including vulval differentiation. The synthetic multivulva (synMuv) genes are regulators of vulval development in C. elegans and the proteins encoded by these genes include components of several histone modification and chromatin remodelling complexes. By inhibiting ectopic expression of the epidermal growth factor (LIN-3) in the nematode hypodermis, the synMuv genes prevent inappropriate vulval induction. In a forward genetic screen for modifiers of the expression of a hypodermal reporter gene, we identified a mutation that results in increased expression of the reporter. This mutation also suppresses ectopic vulval induction in synMuv mutants and we have consequently named the affected gene suppressor of synthetic multivulva-1 (sumv-1). We show that SUMV-1 is required in the hypodermis for the synMuv phenotype and that loss of sumv-1 function suppresses ectopic expression of lin-3 in synMuv mutant animals. In yeast two-hybrid assays SUMV-1 physically interacts with SUMV-2, and reduction of sumv-2 function also suppresses the synMuv phenotype. We identified similarities between SUMV-1 and SUMV-2 and mammalian proteins KAT8 NSL2 and KAT8 NSL3, respectively, which are components of the KAT8/MOF histone acetyltransferase complex. Reduction of function of mys-2, which encodes the enzymatic component of the KAT8/MOF complex, also suppresses the synMuv phenotype, and MYS-2 physically interacts with SUMV-2 in yeast two-hybrid assays. Together these observations suggest that SUMV-1 and SUMV-2 may function together with MYS-2 in a nematode KAT8/MOF-like complex to antagonise the activity of the synMuv genes.
Collapse
|
90
|
Oling D, Masoom R, Kvint K. Loss of Ubp3 increases silencing, decreases unequal recombination in rDNA, and shortens the replicative life span in Saccharomyces cerevisiae. Mol Biol Cell 2014; 25:1916-24. [PMID: 24760971 PMCID: PMC4055270 DOI: 10.1091/mbc.e13-10-0591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ubp3 is an antisilencing factor. Accordingly, loss of Upb3 leads to lower RNAPII occupancy in heterochromatic regions and suppression of unequal recombination in rDNA. However, ubp3Δ mutants have a shortened replicative life span, suggesting that recombination frequency is not directly correlated with aging. Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.
Collapse
Affiliation(s)
- David Oling
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Rehan Masoom
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Kristian Kvint
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Gothenburg, Sweden
| |
Collapse
|
91
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
92
|
Young TJ, Kirchmaier AL. Cell cycle regulation of silent chromatin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:303-312. [PMID: 24459732 DOI: 10.1016/j.bbagrm.2011.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
93
|
Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res 2014; 14:73-88. [PMID: 24164855 PMCID: PMC4365911 DOI: 10.1111/1567-1364.12115] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022] Open
Abstract
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
94
|
Kamata K, Goswami G, Kashio S, Urano T, Nakagawa R, Uchida H, Oki M. The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function. ACTA ACUST UNITED AC 2013; 155:159-71. [DOI: 10.1093/jb/mvt108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
95
|
Wang J, Tadeo X, Hou H, Tu PG, Thompson J, Yates JR, Jia S. Epe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries. Genes Dev 2013; 27:1886-902. [PMID: 24013502 PMCID: PMC3778242 DOI: 10.1101/gad.221010.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterochromatin spreading leads to gene silencing, and boundary elements constrain such spreading. IRC inverted repeats are required for boundary function at centromeric heterochromatin in fission yeast. Jia and colleagues now identify BET family homolog Bdf2 as required for heterochromatin boundary function at IRCs. Bdf2 interacts with boundary protein Epe1, recognizes acetylated histone H4 tails, and antagonizes Sir2-mediated deacetylation of histone H4K16. This study illustrates a mechanism for establishing chromosome boundaries through recruitment of a factor that protects euchromatic histone modifications. Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified Bdf2, which is homologous to the mammalian bromodomain and extraterminal (BET) family double bromodomain proteins involved in diverse types of cancers, as a factor required for proper boundary function at IRCs. Bdf2 is enriched at IRCs through its interaction with the boundary protein Epe1. The bromodomains of Bdf2 recognize acetylated histone H4 tails and antagonize Sir2-mediated deacetylation of histone H4K16. Furthermore, abolishing H4K16 acetylation (H4K16ac) with an H4K16R mutation promotes heterochromatin spreading, and mimicking H4K16ac by an H4K16Q mutation blocks heterochromatin spreading at IRCs. Our results thus illustrate a mechanism of establishing chromosome boundaries at specific sites through the recruitment of a factor that protects euchromatic histone modifications. They also reveal a previously unappreciated function of H4K16ac in cooperation with H3K9 methylation to regulate heterochromatin spreading.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress. Genes Cancer 2013; 4:125-34. [PMID: 24020004 DOI: 10.1177/1947601912474893] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SIRT1 is a NAD(+)-dependent protein deacetylase that has a very large number of established protein substrates and an equally impressive list of biological functions thought to be regulated by its activity. Perhaps as notable is the remarkable number of points of conflict concerning the role of SIRT1 in biological processes. For example, evidence exists suggesting that SIRT1 is a tumor suppressor, is an oncogene, or has no effect on oncogenesis. Similarly, SIRT1 is variably reported to induce, inhibit, or have no effect on autophagy. We believe that the resolution of many conflicting results is possible by considering recent reports indicating that SIRT1 is an important hub interacting with a complex network of proteins that collectively regulate a wide variety of biological processes including cancer and autophagy. A number of the interacting proteins are themselves hubs that, like SIRT1, utilize intrinsically disordered regions for their promiscuous interactions. Many studies investigating SIRT1 function have been carried out on cell lines carrying undetermined numbers of alterations to the proteins comprising the SIRT1 network or on inbred mouse strains carrying fixed mutations affecting some of these proteins. Thus, the effects of modulating SIRT1 amount and/or activity are importantly determined by the genetic background of the cell (or the inbred strain of mice), and the effects attributed to SIRT1 are synthetic with the background of mutations and epigenetic differences between cells and organisms. Work on mice carrying alterations to the Sirt1 gene suggests that the network in which SIRT1 functions plays an important role in mediating physiological adaptation to various sources of chronic stress such as calorie restriction and calorie overload. Whether the catalytic activity of SIRT1 and the nuclear concentration of the co-factor, NAD(+), are responsible for modulating this activity remains to be determined. However, the effect of modulating SIRT1 activity must be interpreted in the context of the cell or tissue under investigation. Indeed, for SIRT1, we argue that context is everything.
Collapse
Affiliation(s)
- Michael W McBurney
- Program in Cancer Therapeutics, Ottawa Hospital Research Institute ; Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
97
|
Steglich B, Sazer S, Ekwall K. Transcriptional regulation at the yeast nuclear envelope. Nucleus 2013; 4:379-89. [PMID: 24021962 DOI: 10.4161/nucl.26394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Huddinge, Sweden; Verna and Marrs McLean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA; Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | | | | |
Collapse
|
98
|
Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 2013; 47:275-306. [PMID: 24016189 DOI: 10.1146/annurev-genet-021313-173730] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
99
|
Oppikofer M, Kueng S, Gasser SM. SIR–nucleosome interactions: Structure–function relationships in yeast silent chromatin. Gene 2013; 527:10-25. [DOI: 10.1016/j.gene.2013.05.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
|
100
|
Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A, Drechsel N, Charneco C, Davis S, Bellora N, Gallardo F, López-Arribillaga E, Asensio-Juan E, Rodilla V, González J, Iglesias M, Shih V, Albà MM, Di Croce L, Hoffmann A, Miyamoto S, Villà-Freixa J, López-Bigas N, Keyes WM, Domínguez M, Bigas A, Espinosa L. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell 2013; 24:151-66. [PMID: 23850221 PMCID: PMC3962677 DOI: 10.1016/j.ccr.2013.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/28/2013] [Accepted: 06/05/2013] [Indexed: 01/25/2023]
Abstract
IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation.
Collapse
Affiliation(s)
- María Carmen Mulero
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Dolors Ferres-Marco
- Developmental Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, Alicante 03550, Spain
| | - Abul Islam
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Pol Margalef
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Matteo Pecoraro
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - Agustí Toll
- Dermatology Department, Hospital del Mar, Barcelona 08003, Spain
| | - Nils Drechsel
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina Charneco
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Shelly Davis
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Nicolás Bellora
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
| | | | - Erika López-Arribillaga
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Elena Asensio-Juan
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Verónica Rodilla
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Jessica González
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona 08003, Spain
| | - Vincent Shih
- Signaling Systems Laboratory, UCSD, La Jolla, CA 92093-0375, USA
| | - M. Mar Albà
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | | | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordi Villà-Freixa
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
- Escola Politècnica Superior (EPS), Universitat de Vic, Barcelona 08500, Spain
| | - Nuria López-Bigas
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - William M. Keyes
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - María Domínguez
- Developmental Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, Alicante 03550, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- Correspondence:
| |
Collapse
|