51
|
Obermannova B, Sumnik Z, Dusatkova P, Cinek O, Grant M, Lebl J, Hendy GN. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study. Eur J Endocrinol 2016; 174:K1-K11. [PMID: 26764418 DOI: 10.1530/eje-15-1216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. DESIGN AND METHODS We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. RESULTS The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. CONCLUSIONS We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function.
Collapse
Affiliation(s)
- Barbora Obermannova
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Zdenek Sumnik
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Petra Dusatkova
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Ondrej Cinek
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Michael Grant
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Jan Lebl
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Geoffrey N Hendy
- Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1 Department of PediatricsSecond Faculty of Medicine, Charles University in Prague, University Hospital Motol V Uvalu 84, CZ-150 06 Prague, Czech RepublicLady Davis Institute for Medical ResearchSMBD-Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2Experimental Therapeutics and MetabolismRoom No. EM1.3226 RI-McGill University Health Centre Glen Site, 1001 Décarie Boulevard, Montréal, Québec, Canada H4A 3J1Departments of MedicinePhysiology, and Human Genetics, McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
52
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
53
|
Changcharoen B, Motosue M, Wong L, Arakaki R. A Woman and Her Father with Calcium-Sensing Receptor Mutation and Autosomal Dominant Hypocalcemia. AACE Clin Case Rep 2016. [DOI: 10.4158/ep15716.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
54
|
Formosa N, Torpiano J, Allgrove J, Dattani MT. Anticonvulsant treatment associated with intractable hypocalcaemia in a female child with hypoparathyroidism. Horm Res Paediatr 2015; 83:62-6. [PMID: 25227206 DOI: 10.1159/000365048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We report the case of a female infant with hypoparathyroidism due to an activating mutation in the calcium-sensing receptor gene. CASE REPORT The child presented in the neonatal period with clinical seizures associated with severe hypocalcaemia, hyperphosphataemia, low parathyroid hormone levels and elevated urine calcium:creatinine ratios. She required intravenous calcium and phenobarbitone initially, and then oral 1-alfacalcidol (1-AC) and phenobarbitone were started. The patient had intractable hypocalcaemia in the first 5 months of life despite escalating doses of 1-AC. When the phenobarbitone was stopped at 5 months of age she was admitted soon after with symptomatic hypercalcaemia. We postulate that the phenobarbitone increased the metabolism of 1-AC and thus she needed large doses of 1-AC to treat hypocalcaemia until the phenobarbitone was stopped. Her parents had no biochemical abnormalities on testing. RESULTS Molecular genetic analysis confirmed that our patient had a de novo missense variant, c.682G>A (p.Glu228Lys) in exon 4 of the calcium-sensing receptor. CONCLUSION This case report highlights the importance that clinicians caring for children on vitamin D and its analogues are aware of the interaction with phenobarbitone, which can result in symptomatic hypocalcaemia. 1-AC should be stored at 2-8°C, otherwise it will be rendered inactive.
Collapse
Affiliation(s)
- Nancy Formosa
- Department of Paediatrics, Mater Dei Hospital, Msida, Malta
| | | | | | | |
Collapse
|
55
|
Romero P, Schmitteckert S, Wouters MM, Houghton LA, Czogalla B, Sayuk GS, Boeckxstaens GE, Guenther P, Holland-Cunz S, Niesler B. No association between the common calcium-sensing receptor polymorphism rs1801725 and irritable bowel syndrome. BMC MEDICAL GENETICS 2015; 16:110. [PMID: 26654249 PMCID: PMC4676826 DOI: 10.1186/s12881-015-0256-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/27/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) is a calcium (Ca(2+)) sensitive G protein-coupled receptor implicated in various biological processes. In particular, it regulates Ca(2+)/Mg(2+)- homeostasis and senses interstitial Ca(2+) levels and thereby controls downstream signalling cascades. Due to its expression in the gut epithelium, the enteric nervous system and smooth muscles and its key function in regulation and coordination of muscular contraction and secretion, it represents an excellent candidate gene to be investigated in the pathophysiology of irritable bowel syndrome (IBS). Disturbed CaSR structure and function may impact gastrointestinal regulation of muscular contraction, neuronal excitation and secretion and consequently contribute to symptoms seen in IBS, such as disordered defecation as well as disturbed gut motility and visceral sensitivity. METHODS We have therefore genotyped the functional CASR SNP rs1801725 in three case control samples from the UK, Belgium and the USA. RESULTS Genotype frequencies showed no association in the three genotyped case-control samples, neither with IBS nor with IBS subtypes. CONCLUSIONS Although we could not associate the SNP to any of the established bowel symptom based IBS subtypes we cannot rule out association to altered Ca(2+) levels and disturbed secretion and gut motility which were unfortunately not assessed in the patients genotyped. This underlines the necessity of a more detailed phenotyping of IBS patients and control individuals in future studies.
Collapse
Affiliation(s)
- Philipp Romero
- Department of Surgery, Division of Paediatric Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg, 69120, Germany.
| | | | - Lesley A Houghton
- University of Manchester, Manchester, UK & Mayo Clinic, Jacksonville, USA.
| | - Bastian Czogalla
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg, 69120, Germany.
| | | | | | - Patrick Guenther
- Department of Surgery, Division of Paediatric Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg, 69120, Germany.
| |
Collapse
|
56
|
Dong B, Endo I, Ohnishi Y, Kondo T, Hasegawa T, Amizuka N, Kiyonari H, Shioi G, Abe M, Fukumoto S, Matsumoto T. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH). J Bone Miner Res 2015; 30:1980-93. [PMID: 25967373 DOI: 10.1002/jbmr.2551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/16/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a novel therapeutic agent for ADH.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | - Yukiyo Ohnishi
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | - Takeshi Kondo
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Masahiro Abe
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
57
|
Deng H, Zheng W, Jankovic J. Genetics and molecular biology of brain calcification. Ageing Res Rev 2015; 22:20-38. [PMID: 25906927 DOI: 10.1016/j.arr.2015.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Brain calcification is a common neuroimaging finding in patients with neurological, metabolic, or developmental disorders, mitochondrial diseases, infectious diseases, traumatic or toxic history, as well as in otherwise normal older people. Patients with brain calcification may exhibit movement disorders, seizures, cognitive impairment, and a variety of other neurologic and psychiatric symptoms. Brain calcification may also present as a single, isolated neuroimaging finding. When no specific cause is evident, a genetic etiology should be considered. The aim of the review is to highlight clinical disorders associated with brain calcification and provide summary of current knowledge of diagnosis, genetics, and pathogenesis of brain calcification.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
58
|
Baran N, ter Braak M, Saffrich R, Woelfle J, Schmitz U. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia. Mol Cell Endocrinol 2015; 407:18-25. [PMID: 25766501 DOI: 10.1016/j.mce.2015.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. OBJECTIVE The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. PATIENTS A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. MAIN OUTCOME MEASURE P136L CaR mutation was predicted to cause gain of function of CaR. RESULTS Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. CONCLUSIONS The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family.
Collapse
Affiliation(s)
- Natalia Baran
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Michael ter Braak
- Institut of Pharmacology, University of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Saffrich
- Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, University of Bonn, Adenauerallee 119, 53113 Bonn, Germany
| | - Udo Schmitz
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
59
|
Thakker RV. The calcium-sensing receptor: And its involvement in parathyroid pathology. ANNALES D'ENDOCRINOLOGIE 2015; 76:81-3. [PMID: 25910996 DOI: 10.1016/j.ando.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, University of Oxford, Radcliffe Department of Clinical Medicine, OCDEM, Churchill Hospital, Headington, OX3 7LJ Oxford, United Kingdom.
| |
Collapse
|
60
|
What is nephrocalcinosis? Kidney Int 2015; 88:35-43. [PMID: 25807034 DOI: 10.1038/ki.2015.76] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/18/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022]
Abstract
The available publications on nephrocalcinosis are wide-ranging and have documented multiple causes and associations of macroscopic or radiological nephrocalcinosis, most often located in the renal medulla, with various metabolic and genetic disorders; in fact, so many and various are these that it is difficult to define a common underlying mechanism. We have reviewed nephrocalcinosis in relation to its definition, genetic associations, animal models, and putative mechanisms. We have concluded, and hypothesized, that nephrocalcinosis is primarily a renal interstitial process, resembling metastatic calcification, and that it may have some features in common with, and pathogenic links to, vascular calcification.
Collapse
|
61
|
Abstract
Phosphate is essential for growth and maintenance of the skeleton and for generating high-energy phosphate compounds. Evolutionary adaptation to high dietary phosphorous in humans and other terrestrial vertebrates involves regulated mechanisms assuring the efficient renal elimination of excess phosphate. These mechanisms prominently include PTH, FGF23, and Vitamin D, which directly and indirectly regulate phosphate transport. Disordered phosphate homeostasis is associated with pathologies ranging from kidney stones to kidney failure. Chronic kidney disease results in hyperphosphatemia, an elevated calcium×phosphate product with considerable morbidity and mortality, mostly associated with adverse cardiovascular events. This chapter highlights recent findings and insights regarding the hormonal regulation of renal phosphate transport along with imbalances of phosphate balance due to acquired or inherited diseases states.
Collapse
|
62
|
Marcucci G, Cianferotti L, Beck-Peccoz P, Capezzone M, Cetani F, Colao A, Davì MV, degli Uberti E, Del Prato S, Elisei R, Faggiano A, Ferone D, Foresta C, Fugazzola L, Ghigo E, Giacchetti G, Giorgino F, Lenzi A, Malandrino P, Mannelli M, Marcocci C, Masi L, Pacini F, Opocher G, Radicioni A, Tonacchera M, Vigneri R, Zatelli MC, Brandi ML. Rare diseases in clinical endocrinology: a taxonomic classification system. J Endocrinol Invest 2015; 38:193-259. [PMID: 25376364 DOI: 10.1007/s40618-014-0202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Rare endocrine-metabolic diseases (REMD) represent an important area in the field of medicine and pharmacology. The rare diseases of interest to endocrinologists involve all fields of endocrinology, including rare diseases of the pituitary, thyroid and adrenal glands, paraganglia, ovary and testis, disorders of bone and mineral metabolism, energy and lipid metabolism, water metabolism, and syndromes with possible involvement of multiple endocrine glands, and neuroendocrine tumors. Taking advantage of the constitution of a study group on REMD within the Italian Society of Endocrinology, consisting of basic and clinical scientists, a document on the taxonomy of REMD has been produced. METHODS AND RESULTS This document has been designed to include mainly REMD manifesting or persisting into adulthood. The taxonomy of REMD of the adult comprises a total of 166 main disorders, 338 including all variants and subtypes, described into 11 tables. CONCLUSIONS This report provides a complete taxonomy to classify REMD of the adult. In the future, the creation of registries of rare endocrine diseases to collect data on cohorts of patients and the development of common and standardized diagnostic and therapeutic pathways for each rare endocrine disease is advisable. This will help planning and performing intervention studies in larger groups of patients to prove the efficacy, effectiveness, and safety of a specific treatment.
Collapse
Affiliation(s)
- G Marcucci
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - L Cianferotti
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Beck-Peccoz
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - M Capezzone
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Endocrinology and Metabolism and Biochemistry, University of Siena, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - F Cetani
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - M V Davì
- Section D, Department of Medicine, Clinic of Internal Medicine, University of Verona, Verona, Italy
| | - E degli Uberti
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - S Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - R Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Faggiano
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - D Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - C Foresta
- Department of Medicine and Centre for Human Reproduction Pathology, University of Padova, Padua, Italy
| | - L Fugazzola
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetology and Metabolism Department of Medical Sciences, University Hospital Città Salute e Scienza, Turin, Italy
| | - G Giacchetti
- Division of Endocrinology, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi, Università Politecnica delle Marche, Ancona, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - A Lenzi
- Chair of Endocrinology, Section Medical Pathophysiology, Food Science and Endocrinology, Department Exp. Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - P Malandrino
- Endocrinology, Department of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - C Marcocci
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - L Masi
- Department of Orthopedic, Metabolic Bone Diseases Unit AOUC-Careggi Hospital, Largo Palagi, 1, Florence, Italy
| | - F Pacini
- Section of Endocrinology and Metabolism, University of Siena, Siena, Italy
| | - G Opocher
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IRCCS, Padua, Italy
- Department of Medicine DIMED, University of Padova, Padova, Italy
| | - A Radicioni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - M Tonacchera
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Vigneri
- Department of Clinical and Molecular Biomedicine, University of Catania, and Humanitas Catania Center of Oncology, Catania, Italy
| | - M C Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - M L Brandi
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
63
|
Letz S, Haag C, Schulze E, Frank-Raue K, Raue F, Hofner B, Mayr B, Schöfl C. Amino alcohol- (NPS-2143) and quinazolinone-derived calcilytics (ATF936 and AXT914) differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia. PLoS One 2014; 9:e115178. [PMID: 25506941 PMCID: PMC4266668 DOI: 10.1371/journal.pone.0115178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. METHODS All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. RESULTS All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. CONCLUSION The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.
Collapse
Affiliation(s)
- Saskia Letz
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | | | | | - Benjamin Hofner
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bernhard Mayr
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
64
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
65
|
Bonny O, Bochud M. Genetics of calcium homeostasis in humans: continuum between monogenic diseases and continuous phenotypes. Nephrol Dial Transplant 2014; 29 Suppl 4:iv55-62. [PMID: 25165186 DOI: 10.1093/ndt/gfu195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics.
Collapse
Affiliation(s)
- Olivier Bonny
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Murielle Bochud
- Community Prevention Unit, Institute for Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
66
|
Konrad M, Schlingmann KP. Inherited disorders of renal hypomagnesaemia. Nephrol Dial Transplant 2014; 29 Suppl 4:iv63-71. [PMID: 25165187 DOI: 10.1093/ndt/gfu198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kidney plays a key role in the maintenance of normal magnesium balance. The distal tubule of the kidney, namely the thick ascending limb of the loop of Henle and the distal convoluted tubule, is crucial for the regulation of serum magnesium levels and body magnesium content. The identification of molecular defects related to rare inherited magnesium losing disorders has contributed greatly to a better understanding of the process of renal magnesium handling. Since the number of genetic defects related to magnesium metabolism is still increasing, it might be expected that our knowledge on magnesium physiology will further improve. This knowledge will hopefully lead to therapeutic strategies that enable specific therapies for patients suffering from the symptoms and possible sequelae of chronic magnesium depletion.
Collapse
Affiliation(s)
- Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | | |
Collapse
|
67
|
Thim SB, Birkebaek NH, Nissen PH, Høst C. Activating calcium-sensing receptor gene variants in children: a case study of infant hypocalcaemia and literature review. Acta Paediatr 2014; 103:1117-25. [PMID: 25039540 DOI: 10.1111/apa.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/02/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Autosomal dominant hypocalcaemia (ADH) is caused by activating variants in the calcium-sensing receptor (CASR) gene, but detailed information on the paediatric phenotype is limited. The current paper presents a case of severe ADH and systematically reviews the literature on ADH in children. CONCLUSION We found that the severity of clinical neurological symptoms was inversely related to serum calcium levels and a high prevalence of renal calcifications and/or basal ganglia calcifications in children with ADH.
Collapse
Affiliation(s)
- Signe B Thim
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| | - Niels H Birkebaek
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry; Aarhus University Hospital; Aarhus Denmark
| | - Christian Høst
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
68
|
Crouzeix G, Kerlan V. Hyperparathyroïdie primaire : nouveaux concepts, nouvelles recommandations. ANNALES D'ENDOCRINOLOGIE 2014; 75 Suppl 1:S21-36. [DOI: 10.1016/s0003-4266(14)70024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
69
|
Li D, Opas EE, Tuluc F, Metzger DL, Hou C, Hakonarson H, Levine MA. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization. J Clin Endocrinol Metab 2014; 99:E1774-83. [PMID: 24823460 PMCID: PMC4154081 DOI: 10.1210/jc.2014-1029] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. OBJECTIVE Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. SUBJECTS Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. METHODS We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. RESULTS Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. CONCLUSIONS Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics (D.L., C.H., H.H.), Division of Endocrinology and Diabetes (E.E.O., M.A.L.), Division of Allergy and Immunology (F.T.), Division of Pulmonary Medicine (H.H.), and Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia; and Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Endocrinology and Diabetes Unit (D.L.M.), British Columbia Children's Hospital, and Department of Pediatrics (D.L.M.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | |
Collapse
|
70
|
Kirpalani DA, Patel J, Shah H, Kirpalani A, Amrapurkar D, Choudhary R, Dhurve A. An interesting case of primary hypoparathyroidism. Indian J Nephrol 2014; 24:175-7. [PMID: 25120296 PMCID: PMC4127838 DOI: 10.4103/0971-4065.132018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary hypoparathyroidism can occur due to an activating mutation of calcium sensing receptor (CaSR). Most patients remain asymptomatic and therefore not diagnosed until adulthood. We present a 38-year-old lady who had a history of muscle cramps since 8 years. She presented with vomiting, abdomen pain and body ache, showed clinical evidence of hypovolemia, severe hypocalcemia, hypokalemia, hypomagnesemia, hyperphosphatemia and metabolic alkalosis. Her 24 h urinary phosphorus was low and 24 h urinary excretion of sodium, potassium and chloride were high. Her intact parathormone was on the lower side of the normal range. She improved once we had corrected her biochemical abnormalities. By excluding acquired causes of hypoparathyroidism, we are able to conclude that this may be a case of primary hypoparathyroidism due to activating mutation of CaSR.
Collapse
Affiliation(s)
- D A Kirpalani
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - J Patel
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - H Shah
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - A Kirpalani
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - D Amrapurkar
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - R Choudhary
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - A Dhurve
- Department of Nephrology and Gastroenterology, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| |
Collapse
|
71
|
Gong Y, Himmerkus N, Plain A, Bleich M, Hou J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol 2014; 26:663-76. [PMID: 25071082 DOI: 10.1681/asn.2014020129] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney--claudin-14, -16, and -19--as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases.
Collapse
Affiliation(s)
- Yongfeng Gong
- Department of Internal Medicine, Renal Division, Washington University Medical School, St. Louis, Missouri; and
| | - Nina Himmerkus
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Allein Plain
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Jianghui Hou
- Department of Internal Medicine, Renal Division, Washington University Medical School, St. Louis, Missouri; and
| |
Collapse
|
72
|
Rogers A, Nesbit MA, Hannan FM, Howles SA, Gorvin CM, Cranston T, Allgrove J, Bevan JS, Bano G, Brain C, Datta V, Grossman AB, Hodgson SV, Izatt L, Millar-Jones L, Pearce SH, Robertson L, Selby PL, Shine B, Snape K, Warner J, Thakker RV. Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3). J Clin Endocrinol Metab 2014; 99:E1300-5. [PMID: 24708097 PMCID: PMC4447854 DOI: 10.1210/jc.2013-3909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. OBJECTIVE The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. DESIGN The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. RESULTS Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. CONCLUSION The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder.
Collapse
Affiliation(s)
- Angela Rogers
- Academic Endocrine Unit (A.R., M.A.N., F.M.H., S.A.H., C.M.G., R.V.T.), Nuffield Department of Clinical Medicine, and Academic Endocrine Unit (A.R., M.A.N., F.M.H., S.A.H., C.M.G., R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom; Oxford Molecular Genetics Laboratory (T.C.) and Oxford Centre for Diabetes, Endocrinology, and Metabolism (A.B.G.), Churchill Hospital, Oxford OX3 7LJ, United Kingdom; Department of Paediatric Endocrinology (J.A., C.B.), Great Ormond Street Hospital, London WC1N 3JH, United Kingdom; Department of Paediatric Endocrinology (J.A.), Royal London Hospital, London E1 1BB, United Kingdom; Department of Endocrinology (J.S.B.), Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, United Kingdom; Departments of Diabetes and Endocrinology (G.B.) and Clinical Genetics (S.V.H., K.S.), St George's Hospital, London SW17 0RE, United Kingdom; Jenny Lind Children's Department (V.D.), Norfolk and Norwich University Hospitals National Health Service Foundation Trust, Norfolk NR4 7UY, United Kingdom; Department of Clinical Genetics (L.I.), Guy's and St Thomas' Foundation Trust, Guy's Hospital, London SE1 9RT, United Kingdom; Department of Paediatrics (L.M.-J.), Royal Glamorgan Hospital, Glamorgan CF72 8XR, United Kingdom; Endocrine Unit (S.H.P.), Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Department of Clinical Genetics (L.R.), Leicester Royal Infirmary, Leicester LE1 5WW, United Kingdom; Department of Medicine (P.L.S.), Manchester Royal Infirmary, Manchester M13 9WL, United Kingdom; Department of Clinical Biochemistry (B.S.), John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; and Department of Paediatrics (J.W.), University Hospital of Wales, Cardiff CF14 4XW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. An understanding of the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. RECENT FINDINGS Identification of genetic mutations in humans and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of calcium-sensing receptor has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified to cause disorders of phosphate metabolism. SUMMARY Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow-up of these patients.
Collapse
|
74
|
The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatr Nephrol 2014; 29:257-67. [PMID: 24292865 PMCID: PMC3921621 DOI: 10.1007/s00467-013-2625-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% of cases of congenital anomalies of the kidney and urinary tract (CAKUT). Here, we illustrate how a molecular diagnosis of CNV can be beneficial to the clinical management of a pediatric patient presenting with CAKUT and other organ defects. METHODS We describe a 14-year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes. The patient presented with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We performed extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. RESULTS Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. The presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by the serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. CONCLUSIONS Extended annotation of CNV regions refines the diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions.
Collapse
|
75
|
Kinoshita Y, Hori M, Taguchi M, Watanabe S, Fukumoto S. Functional activities of mutant calcium-sensing receptors determine clinical presentations in patients with autosomal dominant hypocalcemia. J Clin Endocrinol Metab 2014; 99:E363-8. [PMID: 24297799 DOI: 10.1210/jc.2013-3430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcemia (ADH) is a congenital isolated hypoparathyroidism caused by activating mutations in the calcium-sensing receptor (CASR) gene. The clinical features of ADH are heterogeneous; some patients are asymptomatic, and others show severe hypocalcemia with Bartter's syndrome. We therefore recruited 12 patients with ADH to clarify the determinants of their clinical presentation. DESIGN AND METHODS We studied two sporadic and 10 familial cases of ADH. Serum concentrations of calcium, intact PTH, and magnesium (Mg(2+)) were measured in each patient. Fractional excretion of Mg (FE(Mg)) was calculated in spot urine samples. A nuclear factor of activated T cells luciferase assay was used to analyze the responsiveness of each mutant CaSR to extracellular Ca(2+). RESULTS Genomic analysis revealed five known activating mutations and a novel mutation, E481K, in the CASR. Patients with the A843E, C131W, or F788C mutation showed hypomagnesemia with elevated FE(Mg). Intact PTH in these patients was consistently near the detection limit. In contrast, patients with the P221L, K47N, or E481K mutation exhibited normal Mg(2+) levels. In these patients, intact PTH increased in response to low calcium, and their maximum intact PTH exceeded the lower limit of the reference range. Functional analysis showed an association between the disease severity and the in vitro activity of the mutant CaSR. CONCLUSIONS The functional activity of mutant CaSR determines the serum Mg(2+) level, renal Mg(2+) handling, and intact PTH in patients with ADH. The presence of hypomagnesemia with elevated FE(Mg) may indicate the diagnosis of ADH among patients with PTH-deficient hypoparathyroidism.
Collapse
Affiliation(s)
- Yuka Kinoshita
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
76
|
elezníková V, Vedralová M, Kotrbová-Kozak A, Zoubková H, Cerná M, Rychlík I. The Intron 4 Polymorphism in the Calcium-Sensing Receptor Gene in Diabetes Mellitus and its Chronic Complications, Diabetic Nephropathy and Non-Diabetic Renal Disease. ACTA ACUST UNITED AC 2014; 39:399-407. [DOI: 10.1159/000368453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 11/19/2022]
|
77
|
Linglart A, Rothenbuhler A. From synthesis to replacement of parathyroid hormone. Lancet Diabetes Endocrinol 2013; 1:260-1. [PMID: 24622403 DOI: 10.1016/s2213-8587(13)70145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Agnès Linglart
- Paediatric Endocrinology and Diabetology, French National Reference Centre for Rare Disorders of the Mineral Metabolism, AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre 94270, France; Faculté de Médecine, Université Paris Sud, le Kremlin-Bicêtre, France.
| | - Anya Rothenbuhler
- Paediatric Endocrinology and Diabetology, French National Reference Centre for Rare Disorders of the Mineral Metabolism, AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre 94270, France
| |
Collapse
|
78
|
Ranieri M, Tamma G, Di Mise A, Vezzoli G, Soldati L, Svelto M, Valenti G. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient. PLoS One 2013; 8:e79113. [PMID: 24244430 PMCID: PMC3828282 DOI: 10.1371/journal.pone.0079113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 12/22/2022] Open
Abstract
In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Vezzoli
- Nephrology and Dialysis Unit, San Raffaele Hospital, Scientific Institute, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Centre of Excellence Genomic and Proteomics GEBCA, University of Bari, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Centre of Excellence Genomic and Proteomics GEBCA, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
79
|
Nakamura A, Hotsubo T, Kobayashi K, Mochizuki H, Ishizu K, Tajima T. Loss-of-function and gain-of-function mutations of calcium-sensing receptor: functional analysis and the effect of allosteric modulators NPS R-568 and NPS 2143. J Clin Endocrinol Metab 2013; 98:E1692-701. [PMID: 23966241 DOI: 10.1210/jc.2013-1974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Activating mutations in the calcium-sensing receptor (CASR) gene cause autosomal dominant hypoparathyroidism, and heterozygous inactivating CASR mutations cause familial hypocalciuric hypercalcemia. Recently, there has been a focus on the use of allosteric modulators to restore the functional activity of mutant CASRs. In this study, the effect of allosteric modulators NPS R-568 and NPS 2143 on CASR mutants was studied in vitro. METHODS DNA sequence analysis of the CASR gene was undertaken in autosomal dominant hypoparathyroidism and familial hypocalciuric hypercalcemia Japanese patients, and the functional consequences for the Gi-MAPK pathway and cell surface expression of CASR were determined. Furthermore, we studied the effect of NPS R-568 and NPS 2143 on the signal transduction activity and cell surface expression of each mutant CASR. RESULTS We identified 3 activating mutations (S122C, P569H, and I839T) and 2 inactivating mutations (A110T and R172G) in patients. The activating and inactivating mutations caused leftward and rightward shifts, respectively, in the dose-response curves of the signaling pathway. NPS R-568 rescued the signal transduction capacity of 2 inactivating mutants without increasing cell surface expression levels. NPS 2143 suppressed the enhanced activity of the activating mutants without altering cell surface expression levels, although A843E, which is a constitutively active mutant, was suppressed to a lesser degree. CONCLUSIONS We have identified 4 novel mutations of CASR. Moreover, our results indicate that allosteric modulators can restore the activity of the loss- and gain-of-function mutant CASRs, identified in this study.
Collapse
Affiliation(s)
- Akie Nakamura
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo 060-8635, Japan.
| | | | | | | | | | | |
Collapse
|
80
|
Mamillapalli R, VanHouten J, Dann P, Bikle D, Chang W, Brown E, Wysolmerski J. Mammary-specific ablation of the calcium-sensing receptor during lactation alters maternal calcium metabolism, milk calcium transport, and neonatal calcium accrual. Endocrinology 2013; 154:3031-42. [PMID: 23782944 PMCID: PMC3749485 DOI: 10.1210/en.2012-2195] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, Box 208020, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Toka HR, Genovese G, Mount DB, Pollak MR, Curhan GC. Frequency of rare allelic variation in candidate genes among individuals with low and high urinary calcium excretion. PLoS One 2013; 8:e71885. [PMID: 23991001 PMCID: PMC3753300 DOI: 10.1371/journal.pone.0071885] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/10/2013] [Indexed: 12/29/2022] Open
Abstract
Our study investigated the association of rare allelic variants with extremes of 24-hour urinary calcium excretion because higher urinary calcium excretion is a dominant risk factor for calcium-based kidney stone formation. We resequenced 40 candidate genes potentially related to urinary calcium excretion in individuals from the Nurses' Health Studies I & II and the Health Professionals Follow-up Study. A total of 960 participants were selected based on availability of 24-hour urine collection data and level of urinary calcium excretion (low vs. high). We utilized DNA sample pooling, droplet-based target gene enrichment, multiplexing, and high-throughput sequencing. Approximately 64% of samples (n = 615) showed both successful target enrichment and sequencing data with >20-fold deep coverage. A total of 259 novel allelic variants were identified. None of the rare gene variants (allele frequencies <2%) were found with increased frequency in the low vs. high urinary calcium groups; most of these variants were only observed in single individuals. Unadjusted analysis of variants with allele frequencies ≥ 2% suggested an association of the Claudin14 SNP rs113831133 with lower urinary calcium excretion (6/520 versus 29/710 haplotypes, P value = 0.003). Our data, together with previous human and animal studies, suggest a possible role for Claudin14 in urinary calcium excretion. Genetic validation studies in larger sample sets will be necessary to confirm our findings for rs113831133. In the tested set of candidate genes, rare allelic variants do not appear to contribute significantly to differences in urinary calcium excretion between individuals.
Collapse
Affiliation(s)
- Hakan R. Toka
- Division of Nephrology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Giulio Genovese
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David B. Mount
- Division of Nephrology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary C. Curhan
- Division of Nephrology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
82
|
Gonzales MC, Lieb DC, Richardson DW, O'Brian JT, Aloi JA, Khardori RK. Recombinant human parathyroid hormone therapy (1-34) in an adult patient with a gain-of-function mutation in the calcium-sensing receptor-a case report. Endocr Pract 2013. [PMID: 23186954 DOI: 10.4158/ep12132.cr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe a case of hypocalcemia in a patient with a gain-of-function mutation in the calcium-sensing receptor that was undetected until adulthood and successfully treated with recombinant parathyroid hormone. METHODS The clinical findings, laboratory data, and a review of the pertinent literature are presented. RESULTS A 55-year-old woman was hospitalized and seen by the endocrinology consult service for hypocalcemia that was refractory to repeated doses of intravenous calcium gluconate. She expressed concern about chronic leg muscle cramps and paresthesias of the lips and fingertips. In addition, she had no history of neck surgery, neck irradiation, or any autoimmune disease. She was a well-appearing female with no dysmorphic features or skin changes. Laboratory tests revealed hypocalcemia, hyperphosphatemia, hypomagnesemia, and hypovitaminosis D. Her parathyroid hormone concentration (PTH) was low at 14.2 pg/mL. Her PTH and calcium concentrations remained low despite repletion of magnesium and treatment with calcitriol and oral calcium replacement. A 24-hour collection for urinary calcium showed inappropriate hypercalciuria. Medical records showed her hypocalcemia to be chronic. Additionally, several family members had also complained of muscle cramps. A congenital cause of her hypoparathyroidism was considered, and genetic testing confirmed heterozygosity for a gain-of-function mutation in the calcium-sensing receptor gene associated with autosomal dominant familial isolated hypoparathyroidism (ADH). Treatment with subcutaneous recombinant human parathyroid hormone teriparatide (rhPTH [1-34]) 20 mcg twice daily for three days normalized her calcium and phosphorus concentrations. CONCLUSION rhPTH (1-34) is an effective treatment for patients with hypoparathyroidism due to gain-of-function mutations in the calcium-sensing receptor. ADH can be insidious in presentation and the diagnosis can be missed unless there is a high index of suspicion.
Collapse
|
83
|
Abstract
Calcium nephrolithiasis is a common condition. Family-based genetic linkage studies and genome-wide association studies (GWASs) have uncovered a run of important candidate genes involved in renal Ca(++) disorders and kidney stone diseases. The susceptible genes include NKCC2, ROMK and ClCkb/Barttin that underlie renal salt excretion; claudin-14, -16 and -19 that underlie renal Ca(++) excretion; and CaSR that provides a sensing mechanism for the kidney to regulate salt, water and Ca(++) homeostasis. Biological and physiological analyses have revealed the cellular mechanism for transepithelial Ca(++) transport in the kidney that depends on the concerted action of these gene products. Although the individual pathogenic weight of the susceptible genes in nephrolithiasis remains unclear, perturbation of their expression or function compromises the different steps within the integrated pathway for Ca(++) reabsorption, providing a physiological basis for diagnosing and managing kidney stone diseases.
Collapse
Affiliation(s)
- Jianghui Hou
- Washington University Renal Division, St. Louis, MO 63110, USA.
| |
Collapse
|
84
|
Calcium regulation and bone mineral metabolism in elderly patients with chronic kidney disease. Nutrients 2013; 5:1913-36. [PMID: 23760058 PMCID: PMC3725483 DOI: 10.3390/nu5061913] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022] Open
Abstract
The elderly chronic kidney disease (CKD) population is growing. Both aging and CKD can disrupt calcium (Ca2+) homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD). CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.
Collapse
|
85
|
Park SY, Mun HC, Eom YS, Baek HL, Jung TS, Kim CH, Hong S, Lee S. Identification and characterization of D410E, a novel mutation in the loop 3 domain of CASR, in autosomal dominant hypocalcemia and a therapeutic approach using a novel calcilytic, AXT914. Clin Endocrinol (Oxf) 2013; 78:687-93. [PMID: 23009664 DOI: 10.1111/cen.12056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/06/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Activating mutations of the calcium-sensing receptor (CASR) gene are associated with autosomal dominant hypocalcemia (ADH) characterized by benign hypocalcemia, inappropriately low (PTH) levels and mostly hypercalciuria. Herein, we report a novel activating mutation in the CASR gene in a Korean family with ADH. METHOD The CASR gene was sequenced in the patient with ADH. The identified mutations were also evaluated in the patient's family members by PCR-based sequencing. For functional studies, we examined phosphorylation of ERK1/2. In addition, intracellular Ca(2+) mobilization and the effects of the calcilytic, AXT914 were measured using fluorophore Fura-2 dye. RESULT Direct sequencing analysis of the CASR gene showed that the proband and her daughter possess a novel mutation c.1230T>A, resulting in a D410E missense mutation on exon 4 of the CASR gene. Escalation of the extracellular Ca(2+) concentration resulted in stronger phosphorylation of ERK1/2 and higher levels of intracellular Ca(2+) in HEK293 cells expressing mutant CASR, compared with wild-type CASR. The increase in intracellular Ca(2+) signalling via CASR was successively blunted by treatment with AXT914. CONCLUSIONS Over 60 activating mutations in the CASR gene have been identified to cause ADH so far. Here, we add one more activating mutation that causes ADH. The novel activating mutation (D410E) occurred in the loop 3 region of CASR, where its function was believed to be of little importance; therefore, this mutation may be of interest. Further clinical study will be needed to validate the effectiveness of calcilytics in treatment of ADH in vivo.
Collapse
Affiliation(s)
- So Young Park
- Department of Internal Medicine, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Hypoparathyroidism is characterized by hypocalcemia with inappropriately low parathyroid hormone (PTH) levels. Bone turnover is abnormally low and bone mineral density (BMD) is typically increased. Plasma calcium levels can be normalized by treatment with calcium supplements and vitamin D analogs, but bone turnover remains low and patients complain of a reduced quality of life (QoL). During recent years, a number of studies have shown that PTH replacement therapy (PTH-RT) may maintain calcium levels within the normal range, while the need for calcium and vitamin D supplements is reduced. In the initial response to subcutaneous PTH injections once or twice daily, bone turnover is overstimulated. BMD increases in cancellous bone, but decreases in cortical bone due to an increased porosity. Microcomputed tomography scans and histomorphometric studies on bone biopsies have shown changes similar to the well-known bone anabolic effects of PTH treatment in osteoporosis rather than a normalization of bone remodeling balancing the anabolic and catabolic effects of PTH. Most recently, continuous PTH delivery by pump was shown to increase the levels of bone markers into the normal range (without overstimulation of bone turnover) and with a normalization of renal calcium excretion. As PTH has a short plasma half-life, these findings indicate that exposure to PTH once or twice daily is not sufficient to reestablish a calcium homeostasis and bone metabolism that resembles normal physiology. Further studies should assess the effects of continuous PTH exposure by pump delivery (or multiple daily injections) on BMD and bone histology, as well as the effects of PTH-RT on indices of QoL.
Collapse
Affiliation(s)
- L Rejnmark
- Department of Endocrinology and Internal Medicine, THG, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
87
|
Masvidal L, Iniesta R, Casalà C, Galván P, Rodríguez E, Lavarino C, Mora J, de Torres C. Polymorphisms in the calcium-sensing receptor gene are associated with clinical outcome of neuroblastoma. PLoS One 2013; 8:e59762. [PMID: 23533647 PMCID: PMC3606108 DOI: 10.1371/journal.pone.0059762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastic tumors include the neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Clinical behavior of these developmental malignancies varies from regression to aggressive growth with metastatic dissemination. Several clinical, histological, genetic, and biological features are associated with this diversity of clinical presentations. The calcium-sensing receptor (CaSR) is a G-protein coupled receptor with a key role in calcium homeostasis. We have previously reported that it is expressed in benign, differentiated neuroblastic tumors, but silenced by genetic and epigenetic events in unfavorable neuroblastomas. We have now analyzed three functionally relevant polymorphisms clustered at the signal transduction region of the CaSR (rs1801725, rs1042636 and rs1801726) to assess if genetic variants producing a less active receptor are associated with more aggressive disease course. Methods Polymorphisms were analyzed in DNA samples from 65 patients using specific Taqman Genotyping Assays. Results Mildly inactivating variant rs1801725 was associated with clinical stage 4 (P = 0.002) and the histological subgroup of undifferentiated neuroblastomas (P = 0.046). Patients harboring this polymorphism had significantly lower overall (P = 0.022) and event-free survival (P = 0.01) rates than those who were homozygous for the most common allele among Caucasians. However, this single locus genotype was not independently associated with outcome in multivariate analyses. Conversely, the tri-locus haplotype TAC was independently associated with an increased risk of death in the entire cohort (Hazard Ratio = 2.45; 95% Confidence Interval [1.14–5.29]; P = 0.022) and also in patients diagnosed with neuroblastomas (Hazard Ratio = 2.74; 95% Confidence Interval [1.20–6.25]; P = 0.016). Conclusions The TAC haplotype includes the moderately inactivating variant rs1801725 and absence of the gain-of-function rs1042636 polymorphism. Thus, its association with metastatic disease and poor outcome would add to our previous data and further support that inactivation of the CaSR gene is a mechanism associated with neuroblastoma malignant behavior.
Collapse
Affiliation(s)
- Laia Masvidal
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Raquel Iniesta
- Unitat de Recerca i Desenvolupament, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Barcelona, Spain
| | - Carla Casalà
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Patricia Galván
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
- * E-mail:
| |
Collapse
|
88
|
Imanishi Y, Inaba M, Kawata T, Nishizawa Y. Animal models of hyperfunctioning parathyroid diseases for drug development. Expert Opin Drug Discov 2013; 4:727-40. [PMID: 23489166 DOI: 10.1517/17460440903022743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Disorders of mineral and bone metabolism have been implicated as a risk factor in the high mortality in patients with chronic kidney disease (CKD). Hyperphosphatemia, disorders of vitamin D metabolism and secondary hyperparathyroidism of uremia (SHPT) are therapeutic targets in these patients to improve the mortality. Animal models for CKD are indispensable and uremic rats produced by 5/6-nephrectomies are one of the most useful animal models for the development of new therapeutic agents. As there are limitations of uremic rats such as short lifespan and less severity of secondary hyperparathyroidism distinct from CKD patients on maintenance hemodialysis, the development of new model animals is expected. OBJECTIVE This review discusses the molecular pathogenesis of hyperfunctioning parathyroid diseases and the applications of animal models exhibiting hyperparathyroidisms in the aspect of the development of new therapeutics. CONCLUSION PTH-cyclin D1 transgenic mice, with parathyroid-targeted overexpression of cyclin D1 oncogene, not only developed abnormal parathyroid cell proliferation but, notably, also developed biochemical hyperparathyroidism with characteristic abnormalities in bone. The mice exhibit age-dependent development of biochemical hyperparathyroidism, which enables testing of the drug precisely. In addition, the mice develop parathyroid cell hyperplasia, followed by monoclonal expansion, which is observed in refractory SHPT patients.
Collapse
Affiliation(s)
- Yasuo Imanishi
- Osaka City University Graduate School of Medicine, Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545 8585, Japan +81 6 6645 3806 ; +81 6 6645 3808 ;
| | | | | | | |
Collapse
|
89
|
Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT. Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol 2013; 304:F761-9. [PMID: 23283989 DOI: 10.1152/ajprenal.00263.2012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney stones are a prevalent clinical condition imposing a large economic burden on the healthcare system. Hypercalciuria remains the major risk factor for development of a Ca(2+)-containing stone. The kidney's ability to alter Ca(2+) excretion in response to changes in serum Ca(2+) is in part mediated by the Ca(2+)-sensing receptor (CaSR). Recent studies revealed renal claudin-14 (Cldn14) expression localized to the thick ascending limb (TAL) and its expression to be regulated via the CaSR. We find that Cldn14 expression is increased by high dietary Ca(2+) intake and by elevated serum Ca(2+) levels induced by prolonged 1,25-dihydroxyvitamin D3 administration. Consistent with this, activation of the CaSR in vivo via administration of the calcimimetic cinacalcet hydrochloride led to a 40-fold increase in Cldn14 mRNA. Moreover, overexpression of Cldn14 in two separate cell culture models decreased paracellular Ca(2+) flux by preferentially decreasing cation permeability, thereby increasing transepithelial resistance. These data support the existence of a mechanism whereby activation of the CaSR in the TAL increases Cldn14 expression, which in turn blocks the paracellular reabsorption of Ca(2+). This molecular mechanism likely facilitates renal Ca(2+) losses in response to elevated serum Ca(2+). Moreover, dysregulation of the newly described CaSR-Cldn14 axis likely contributes to the development of hypercalciuria and kidney stones.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
90
|
Kurozumi A, Okada Y, Arao T, Endou I, Matsumoto T, Tanaka Y. Extrapyramidal symptoms and advanced calcification of the basal ganglia in a patient with autosomal dominant hypocalcemia. Intern Med 2013; 52:2077-81. [PMID: 24042516 DOI: 10.2169/internalmedicine.52.8375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cases of hypoparathyroidism with decreased parathyroid hormone (PTH) secretion, excluding secondary hypoparathyroidism, are considered to be idiopathic. We herein report a relatively rare case of hypoparathyroidism with extrapyramidal symptoms, including brachybasia and a frozen gait, caused by advanced basal ganglia calcification in a 64-year-old man with hypoparathyroidism. A DNA (deoxyribonucleic acid) analysis of blood samples obtained from the patient and his eldest daughter revealed autosomal dominant hypocalcemia (ADH) with mutations in the calcium-sensing receptor (CaSR) gene. In cases of chronic hypoparathyroidism, calcification of the basal ganglia is observed if the patient is not treated for a long period. However, extrapyramidal symptoms as a complication of hypoparathyroidism are relatively rare.
Collapse
Affiliation(s)
- Akira Kurozumi
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Calcium sensing receptor signalling in physiology and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1732-44. [PMID: 23267858 DOI: 10.1016/j.bbamcr.2012.12.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/13/2022]
Abstract
The calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor that is crucial for the feedback regulation of extracellular free ionised calcium homeostasis. While extracellular calcium (Ca(2+)o) is considered the primary physiological ligand, the CaSR is activated physiologically by a plethora of molecules including polyamines and l-amino acids. Activation of the CaSR by different ligands has the ability to stabilise unique conformations of the receptor, which may lead to preferential coupling of different G proteins; a phenomenon termed 'ligand-biased signalling'. While mutations of the CaSR are currently not linked with any malignancies, altered CaSR expression and function are associated with cancer progression. Interestingly, the CaSR appears to act both as a tumour suppressor and an oncogene, depending on the pathophysiology involved. Reduced expression of the CaSR occurs in both parathyroid and colon cancers, leading to loss of the growth suppressing effect of high Ca(2+)o. On the other hand, activation of the CaSR might facilitate metastasis to bone in breast and prostate cancer. A deeper understanding of the mechanisms driving CaSR signalling in different tissues, aided by a systems biology approach, will be instrumental in developing novel drugs that target the CaSR or its ligands in cancer. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
92
|
|
93
|
Abstract
The calcium-sensing receptor (CaSR) is a 1,078 amino acid G protein-coupled receptor (GPCR), which is predominantly expressed in the parathyroids and kidney. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium re-absorption in response to alterations in extracellular calcium concentrations. Loss-of-function CaSR mutations have been reported in the hypercalcemic disorders of familial benign (hypocalciuric) hypercalcemia (FBH or FHH), neonatal severe primary hyperparathyroidism (NSHPT), and adult primary hyperparathyroidism. However, some individuals with loss-of-function CaSR mutations remain normocalcemic. Gain-of-function CaSR mutations have been shown to result in autosomal-dominant hypocalcemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with 4 hypercalcemic and 3 hypocalcemic disorders.
Collapse
Affiliation(s)
- R. V. Thakker
- Nuffield Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
94
|
Riccardi D. Parathyroid hormone-independent role for the calcium-sensing receptor in the control of urinary calcium excretion. J Am Soc Nephrol 2012; 23:1766-8. [PMID: 23085632 DOI: 10.1681/asn.2012090955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
95
|
Leaf DE, Wolf M. A physiologic-based approach to the evaluation of a patient with hyperphosphatemia. Am J Kidney Dis 2012; 61:330-6. [PMID: 22938849 DOI: 10.1053/j.ajkd.2012.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 01/16/2023]
Abstract
Phosphate is required for skeletal mineralization, cellular energy regulation, synthesis of cell membranes and nucleic acids, and a variety of cell signaling pathways. Extracellular serum phosphate concentration is determined by the balance of gastrointestinal phosphate absorption, skeletal turnover, distribution in intracellular compartments, and renal phosphate excretion. An integrated system of hormones, receptors, and phosphate transporters regulates phosphate homeostasis, and a variety of hereditary and acquired perturbations in these regulators can result in hyperphosphatemia. Although kidney failure is the most common cause of hyperphosphatemia encountered by nephrologists, hyperphosphatemia that presents in patients with early stages of chronic kidney disease or normal kidney function should prompt a detailed evaluation that can be diagnostically challenging. In this teaching case, we describe a case of hyperphosphatemia out of proportion to the degree of decrease in glomerular filtration rate. We present a practical parathyroid hormone-based diagnostic approach that illustrates the current understanding of phosphate regulation in clinically meaningful terms for the practicing nephrologist. Finally, we illustrate how measurement of fibroblast growth factor 23 could be integrated in the future when the test becomes more widely available.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
96
|
Abstract
Hypoparathyroidism is characterized by hypocalcemia, hyperphosphatemia and low or inappropriately normal levels of parathyroid hormone (PTH). Pseudohypoparathyroidism is characterized by similar findings however PTH is elevated due to PTH resistance. PTH is a key calcium regulating hormone essential for calcium homeostasis, vitamin D-dependant calcium absorption, renal calcium reabsorption and renal phosphate clearance. The most common cause of hypoparathyroidism is iatrogenic in the setting of anterior neck surgery. Hypoparathyroidism may be due to congenital or acquired disorders. Causes include autoimmune diseases, genetic abnormalities, destruction or infiltrative disorders of the parathyroids. Impaired secretion of PTH may be seen with hypomagnesemia or hypermagnesemia Work-up includes a comprehensive history, physical examination, and a relevant biochemical investigation. Treatment of symptomatic or profound asymptomatic hypocalcemia (Corrected Calcium (Ca) < 1.9 mmol/L) is aimed at rapid intravenous administration of calcium and oral supplementation of vitamin D metabolites. Oral calcium and vitamin D analogs are critical in the treatment of hypocalcemia. In the long-term management of hypoparathyroidism thiazide diuretics are of value as they enhance renal calcium reabsorption and increase serum calcium and are of particular benefit in those with activating mutations of the calcium-sensing receptor. Parathyroid hormone replacement is of great value in improving serum calcium and lowering serum phosphate as well as the doses of calcium and calcitriol supplementation required. It has been shown to lower urinary calcium losses. Careful monitoring of vitamin D, phosphorous, and calcium is necessary during acute and long-term therapy. Although hypocalcemic patients commonly present with symptoms of neuromuscular irritability with perioral numbers paresthesias, tingling, seizures and, bronchospasm; hypocalcemia may be identified on the biochemical profile of an asymptomatic patient.
Collapse
Affiliation(s)
- Hafsah Al-Azem
- McMaster University, 1101-75 Bold St, Hamilton, Ontario L8P 1T7, Canada
| | | |
Collapse
|
97
|
Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, Fernandez RA, Zeifman A, Makino A, Dong H, Yuan JXJ. Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res 2012; 111:469-81. [PMID: 22730443 DOI: 10.1161/circresaha.112.266361] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE We examined whether the extracellular Ca(2+)-sensing receptor (CaSR) is involved in the enhanced Ca(2+) influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. METHODS AND RESULTS In normal PASMC superfused with Ca(2+)-free solution, addition of 2.2 mmol/L Ca(2+) to the perfusate had little effect on [Ca(2+)](cyt). In IPAH-PASMC, however, restoration of extracellular Ca(2+) induced a significant increase in [Ca(2+)](cyt). Extracellular application of spermine also markedly raised [Ca(2+)](cyt) in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca(2+)-induced [Ca(2+)](cyt) rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca(2+)-mediated [Ca(2+)](cyt) increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. CONCLUSIONS The extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca(2+) influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Yi HS, Eom YS, Park IB, Lee S, Hong S, Jüppner H, Mannstadt M, Lee S. Identification and characterization of C106R, a novel mutation in the DNA-binding domain of GCMB, in a family with autosomal-dominant hypoparathyroidism. Clin Endocrinol (Oxf) 2012; 76:625-33. [PMID: 22066718 PMCID: PMC3701386 DOI: 10.1111/j.1365-2265.2011.04256.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OVERVIEW Glial cells missing B (GCMB) is a transcription factor that is expressed in the parathyroid hormone (PTH)-secreting cells of the parathyroid glands. Several mutations in GCMB have been reported to cause hypoparathyroidism (HP). We identified a family with two individuals in two generations (mother and son), who are affected by autosomal-dominant hypoparathyroidism (AD-HP). A novel heterozygous mutation in exon 2 of GCMB was identified in both affected individuals that changes cysteine at position 106 of the putative DNA-binding domain of GCMB to arginine (C106R). METHODS We performed mutational analysis of the genes encoding GCMB, pre-pro PTH, GATA3 and CaSR using polymerase chain reaction (PCR)-amplified genomic DNA. The identified GCMB mutant was characterized by functional studies including nuclear localization, electrophoretic mobility shift assays (EMSA) and luciferase reporter assays, and homology modelling was performed to generate a three-dimensional structural model for the DNA-binding domain of GCMB to predict the structural consequences of the identified mutation. RESULTS The C106R mutant of GCMB failed to interact with the DNA consensus recognition motif, as determined by EMSA. Furthermore, in comparison with wild-type GCMB, the C106R mutant demonstrated reduced transactivation in luciferase reporter assays; however, the mutant GCMB failed to reduce the activity of the wild-type protein. Consistent with the EMSA findings, homology modelling analysis suggested that replacement of cysteine 106 with arginine would interfere with DNA binding. CONCLUSIONS We have identified a novel GCMB mutation that may explain AD-HP in our family. However, the exact mechanism by which this heterozygous mutation leads to the disease in the described family remains to be elucidated.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Young Sil Eom
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Ie Byung Park
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| |
Collapse
|
99
|
The role of the calcium-sensing receptor in human disease. Clin Biochem 2012; 45:943-53. [PMID: 22503956 DOI: 10.1016/j.clinbiochem.2012.03.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Following the discovery of the calcium-sensing receptor (CaSR) in 1993, its pivotal role in disorders of calcium homeostasis such as Familial Hypocalciuric Hypercalcemia (FHH) was quickly demonstrated. Since then, it has become clear that the CaSR has immense functional versatility largely through its ability to activate many different signaling pathways in a ligand- and tissue-specific manner. This allows the receptor to play diverse and crucial roles in human physiology and pathophysiology, both in calcium homeostasis and in tissues and biological processes unrelated to calcium balance. This review covers current knowledge of the role of the CaSR in disorders of calcium homeostasis (FHH, neonatal severe hyperparathyroidism, autosomal dominant hypocalcemia, primary and secondary hyperparathyroidism, hypercalcemia of malignancy) as well as unrelated diseases such as breast and colorectal cancer (where the receptor appears to play a tumor suppressor role), Alzheimer's disease, pancreatitis, diabetes mellitus, hypertension and bone and gastrointestinal disorders. In addition, it examines the use or potential use of CaSR agonists or antagonists (calcimimetics and calcilytics) and other drugs mediated through the CaSR, in the management of disorders as diverse as hyperparathyroidism, osteoporosis and gastrointestinal disease.
Collapse
|
100
|
Riccardi D, Kemp PJ. The Calcium-Sensing Receptor Beyond Extracellular Calcium Homeostasis: Conception, Development, Adult Physiology, and Disease. Annu Rev Physiol 2012; 74:271-97. [DOI: 10.1146/annurev-physiol-020911-153318] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| | - Paul J. Kemp
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| |
Collapse
|