51
|
Zeng G, Wang Z, Huang Y, Abedin Z, Liu Y, Randhawa P. Cellular and viral miRNA expression in polyomavirus BK infection. Transpl Infect Dis 2019; 21:e13159. [PMID: 31410940 DOI: 10.1111/tid.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
Polyomavirus BK (BKV) is an important pathogen in kidney transplant patients. Regulation of BKV encoded microRNAs (miRNAs) is not well understood. Therefore, tubular epithelial cells infected with BKV were examined for changes in small RNA expression. The observed changes were further evaluated by real-time PCR and RNA-seq analysis of renal allograft biopsies. BKV-miR-B1-5p and BKV-miR-B1-3p showed a 1000-fold increase over 12 days but did not prevent cell lysis. Downregulation of host miR-10b and miR-30a could be confirmed on all three platforms evaluated. Whereas, the BKV genome expressed more 3p than 5p miRNA species, the reverse was true for the human genome. Decreased expression of TP53INP2, and increased expression of BCL2A1, IL-6, IL8 and other proinflammatory cytokines were shown in biopsies with BKV nephropathy. No change in expression was seen in miR-10a dependent expression of NKG2D ligands ULBP3, MICA, or MICB. In conclusion, BKV infection results in regulation of cellular genes regulated by and possibly amenable to therapies targeting miR-10 and miR-30.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Huang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Yang Liu
- PrimBio Research Institute LLC, Exton, PA, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
52
|
Cox ST, Hernandez D, Danby R, Turner TR, Madrigal JA. Diversity and characterisation of polymorphic 3' untranslated region haplotypes of MICA and MICB genes. HLA 2019; 92:392-402. [PMID: 30471210 DOI: 10.1111/tan.13434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
MICA and MICB genes encode ligands that interact with the natural killer (NK) cell activating receptor, NKG2D. These ligands display a highly polymorphic allelic repertoire, although the true functional significance of this polymorphism remains elusive. We previously reported additional polymorphism in the 5' untranslated region (UTR) proximal promoter region of these genes by sequencing international histocompatibility workshop (IHW) cell line DNA promoter and coding regions. The present study extends this analysis by further characterising the 3'UTR region of the same IHW reference panel to achieve a more complete understanding of MICA and MICB haplotype diversity and possible functional relevance. We found 17 extended MICA haplotypes encompassing the coding region and 3'UTR, including four novel haplotypes identified in IHW cell line DNA. This increased to 21 when also considering the 5'UTR proximal promoter region. Analysis of the MICB 3'UTR revealed two novel sequences in cell lines KLO and WIN designated MICB-UTR8 and UTR9, respectively. A total of 11 MICB haplotypes were identified in this study and five were unique. The present study, characterising MICA/B 3'UTR polymorphism utilising IHW reference cell lines, could be useful for future studies investigating the role of microRNA in post-transcriptional repression of gene expression and for immunotherapy strategies to combat cancer progression.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Robert Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
53
|
Huang Y, Zeng G, Randhawa PS. Detection of BKV encoded mature MicroRNAs in kidney transplant patients: Clinical and biologic insights. J Clin Virol 2019; 119:6-10. [PMID: 31422199 DOI: 10.1016/j.jcv.2019.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polyomavirus BK (BKV) encodes two mature miRNAs that regulate the viral life cycle. OBJECTIVES This study investigated the autoregulatory and immunomodulatory effects of these miRNAs that have been defined in culture systems, but subject to only limited exploration in clinical samples. METHODS BKV-miR-B1-5p, BKV-miR-BJ1-3p, BKV DNA and BKV VP-1 mRNA levels were measured in 32 paired obtained plasma & urine samples from kidney transplant patients with (a) early stage infection manifesting as viruria, and (b) later stage infections complicated by viremia. RESULTS All patients showed abundant urine miRNAs (7.84E + 02-1.91E + 06 copies/ml, but plasma miRNA was below the limit of detection. There was no statistically significant difference in urinary miRNA levels between viruric and viremic patients. Median 5p miRNA load was 4-6 logs lower than the BKV genomic load. Higher miRNA levels in the urine were associated not with lower but higher urinary viral loads. BKV preferentially used the 3p miRNA for its interactions with host cell mRNAs. The mean ratio of 5p/3p in patients with viruria was 0.09, and 0.03 in patients with viremia. CONCLUSIONS The data suggest that immune evasion functions of BKV miRNAs over-ride the negative autoregulatory feedback effects in kidney transplant patients with active viral replication.
Collapse
Affiliation(s)
- Yuchen Huang
- Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Gang Zeng
- Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Parmjeet S Randhawa
- Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
54
|
Nutalai R, Gaudieri S, Jumnainsong A, Leelayuwat C. Regulation of KIR3DL3 Expression via Mirna. Genes (Basel) 2019; 10:genes10080603. [PMID: 31405037 PMCID: PMC6723774 DOI: 10.3390/genes10080603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Killer-cell immunoglobulin-like receptor (KIR) 3DL3 is a framework gene present in all human KIR haplotypes. Although the structure of KIR3DL3 is suggestive of an inhibitory receptor, the function of KIR3DL3 has not been demonstrated and cognate ligands have not been identified. KIR3DL3 has been shown to be constitutively expressed at a low RNA level in peripheral blood mononuclear cell (PBMC) and decidual natural kill (NK) cells, but cell surface expression of KIR3DL3 cannot be detected. Accordingly, post-transcriptional regulation of KIR3DL3 should exist. Using bioinformatics analysis, we identified three candidate micro ribonucleic acids (miRNAs; miR-26a-5p, -26b-5p and -185-5p) that potentially regulate KIR3DL3 expression. Luciferase reporter assays utilizing constructs with mutated miRNA-binding sites of miR-26a-5p, -26b-5p and -185-5p in the 3’-untranslated region (3’ UTR) of KIR3DL3 resulted in up-regulation of luciferase activity demonstrating a potential mechanism of gene regulation. Furthermore, knockdown of the same endogenous miRNAs using silencing ribonucleic acid (siRNA) led to induced surface expression of KIR3DL3. In conclusion, we provide a novel mechanism of functional regulation of KIR3DL3 via miRNAs. These findings are relevant in understanding the generation of KIR repertoire and NK cell clonality.
Collapse
Affiliation(s)
- Rungtiwa Nutalai
- Biomedical Sciences Program, Graduates School of Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Clinical Immunology and Transfusion Sciences, School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amonrat Jumnainsong
- Department of Clinical Immunology and Transfusion Sciences, School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanvit Leelayuwat
- Department of Clinical Immunology and Transfusion Sciences, School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
55
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|
56
|
Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019; 41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are innate lymphocytes able to mediate immune-surveillance and clearance of viral infected and tumor-transformed cells. Growing experimental and clinical evidence highlighted a dual role of NK cells either in the control of cancer development/progression or in promoting the onset of immune-suppressant tumor microenvironments. Indeed, several mechanisms of NK cell-mediated tumor escape have been described and these includes cancer-induced aberrant expression of activating and inhibitory receptors (i.e. NK cell immune checkpoints), impairments of NK cell migration to tumor sites and altered NK cell effector-functions. These phenomena highly contribute to tumor progression and metastasis formation. In this review, we discuss the latest insights on those NK cell receptors and related molecules that are currently being implemented in clinics either as possible prognostic factors or therapeutic targets to unleash NK cell anti-tumor effector-functions in vivo. Moreover, we address here the major recent advances in regard to the genetic modification and ex vivo expansion of anti-tumor specific NK cells used in innovative adoptive cellular transfer approaches.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy.
| |
Collapse
|
57
|
Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019; 234:19352-19365. [DOI: 10.1002/jcp.28657] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
58
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
59
|
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, Li X, Li G, Zeng Z, Xiong W, Wang F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 2019; 18:29. [PMID: 30813924 PMCID: PMC6391774 DOI: 10.1186/s12943-019-0956-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The immune system plays important roles in tumor development. According to the immune-editing theory, immune escape is the key to tumor survival, and exploring the mechanisms of tumor immune escape can provide a new basis for the treatment of tumors. In this review, we describe the mechanisms of natural killer group 2D (NKG2D) receptor and NKG2D ligand (NKG2DL) in tumor immune responses. Natural killer (NK) cells are important cytotoxic cells in the immune system, and the activated NKG2D receptor on the NK cell surface can bind to NKG2DL expressed in tumor cells, enabling NK cells to activate and kill tumor cells. However, tumors can escape the immune clearance mediated by NKG2D receptor/NKG2DL through various mechanisms. The expression of NKG2D receptor on NK cells can be regulated by cells, molecules, and hypoxia in the tumor microenvironment. Tumor cells regulate the expression of NKG2DL at the level of transcription, translation, and post-translation and thereby escape recognition by NK cells. In particular, viruses and hormones have special mechanisms to affect the expression of NKG2D receptor and NKG2DL. Therefore, NKG2D\NKG2DL may have applications as targets for more effective antitumor therapy.
Collapse
Affiliation(s)
- Shixin Duan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuxing Xu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yunbo He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chuting Liang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
60
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
61
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
62
|
Trinh TL, Kandell WM, Donatelli SS, Tu N, Tejera MM, Gilvary DL, Eksioglu EA, Burnette A, Adams WA, Liu J, Teer JK, Djeu JY, Coppola D, Wei S. Immune evasion by TGFβ-induced miR-183 repression of MICA/B expression in human lung tumor cells. Oncoimmunology 2019; 8:e1557372. [PMID: 30906652 PMCID: PMC6422376 DOI: 10.1080/2162402x.2018.1557372] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/07/2018] [Accepted: 12/01/2018] [Indexed: 01/02/2023] Open
Abstract
Immune escape is a hallmark of cancer. In human lung cancer, we have identified a unique microRNA (miR)-based pathway employed by tumor cells to repress detection by immune cells via the NKG2D-MICA/B receptor-ligand system. MICA/B is readily induced by cell transformation and serves as a danger signal and ligand to alert NK and activated CD8+ T cells. However, immunohistochemical analysis indicated that human lung adenocarcinoma and squamous cell carcinoma specimens express little MICA/B while high levels of miR-183 were detected in both tumor types in a TCGA database. Human lung tumor cell lines confirmed the reverse relationship in expression of MICA/B and miR-183. Importantly, a miR-183 binding site was identified on the 3'untranslated region (UTR) of both MICA and MICB, suggesting its role in MICA/B regulation. Luciferase reporter constructs bearing the 3'UTR of MICA or MICB in 293 cells supported the function of miR-183 in repressing MICA/B expression. Additionally, anti-sense miR-183 transfection into H1355 or H1299 tumor cells caused the upregulation of MICA/B. Abundant miR-183 expression in tumor cells was traced to transforming growth factor-beta (TGFβ), as evidenced by antisense TGFβ transfection into H1355 or H1299 tumor cells which subsequently lost miR-183 expression accompanied by MICA/B upregulation. Most significantly, anti-sense miR-183 transfected tumor cells became more sensitive to lysis by activated CD8+ T cells that express high levels of NKG2D. Thus, high miR-183 triggered by TGFβ expressed in lung tumor cells can target MICA/B expression to circumvent detection by NKG2D on immune cells.
Collapse
Affiliation(s)
- Thu Le Trinh
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Wendy M Kandell
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | | | - Nhan Tu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Melba M Tejera
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Erika A Eksioglu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Alexis Burnette
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - William A Adams
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jinhong Liu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Julie Y Djeu
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Sheng Wei
- Departments of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
63
|
Wang X, Yu J, Shao F, Zhang Y, Li Y, Lu X, Gong D, Gu Z. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xingguo Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jianfeng Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Fang Shao
- Department of Oncology, the Affiliated Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou, China
| | - Yanping Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yanyan Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Xiangyun Lu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiliang Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
64
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
65
|
Luo D, Dong XW, Yan B, Liu M, Xue TH, Liu H, You JH, Li F, Wang ZL, Chen ZN. MG132 selectively upregulates MICB through the DNA damage response pathway in A549 cells. Mol Med Rep 2018; 19:213-220. [PMID: 30483783 PMCID: PMC6297755 DOI: 10.3892/mmr.2018.9676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells recognize stress-activated NK group 2, member D (NKG2D) ligands in tumors. In the present study, the expression levels of NKG2D ligands were examined in four lung cancer cell lines (A549, PLA801D, NCI-H157 and NCI-H520). In the A549 cells, the expression of MHC class I polypeptiderelated sequence (MIC)A/B and UL16 binding protein (ULBP)1 was weak, the expression of ULBP2 was typical, and neither ULBP3 nor ULBP4 were expressed. The mechanism underlying the regulatory effect of a cancer treatment agent on the expression of NKG2D ligands was investigated using the proteasome inhibitor MG132. Following treatment for 8 h with MG132, the transcription levels of MICB and ULBP1 were upregulated 10.62- and 11.09-fold, respectively, and the expression levels of MICB and ULBP1 were increased by 68.18 and 23.65%, respectively. Notably, MICB exhibited significant time-dependent change. MG132 increased the transcription of MICB by acting at a site in the 480-bp MICB upstream promoter. The activity of the MICB promoter was upregulated 1.77-fold following treatment with MG132. MG132 treatment improved the cytotoxicity of NK cells, which was partially blocked by an antibody targeting NKG2D, and more specifically the MICB molecule. The expression of MICB induced by MG132 was inhibited by KU-55933 [ataxia telangiectasia mutated (ATM) kinase inhibitor], wortmannin (phosphoinositide 3 kinase inhibitor) and caffeine (ATM/ATM-Rad3-related inhibitor). The phosphorylation of checkpoint kinase 2 (Chk2), an event associated with DNA damage, was observed following treatment with MG132. These results indicated that MG132 selectively upregulates the expression of MICB in A549 cells, and increases the NKG2D-mediated cytotoxicity of NK cells. The regulatory effect of MG132 may be associated with the activation of Chk2, an event associated with DNA damage. The combination of MG132 with NK cell immunotherapy may have a synergistic effect that improves the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- Dan Luo
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Xi-Wen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Bing Yan
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Mei Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Tian-Hui Xue
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Hui Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Jun-Hao You
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Fang Li
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Zi-Ling Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Zhi-Nan Chen
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
66
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
67
|
HCMV miRNA Targets Reveal Important Cellular Pathways for Viral Replication, Latency, and Reactivation. Noncoding RNA 2018; 4:ncrna4040029. [PMID: 30360396 PMCID: PMC6315856 DOI: 10.3390/ncrna4040029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.
Collapse
|
68
|
Zhang J, Han X, Hu X, Jin F, Gao Z, Yin L, Qin J, Yin F, Li C, Wang Y. IDO1 impairs NK cell cytotoxicity by decreasing NKG2D/NKG2DLs via promoting miR-18a. Mol Immunol 2018; 103:144-155. [PMID: 30268986 DOI: 10.1016/j.molimm.2018.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Indoleamine-2,3-dioxygenase 1 (IDO1) is an important enzyme for altering the tumour microenvironment and assisting tumour cells to escape the immune system. RESULTS In this study, a significant reduction in NK cell cytotoxicity that was associated with a high expression of IDO1 in a reconstructed tumour microenvironment was observed. In a co-culture system of tumour cell culture supernatant (TSN) and murine NK cell, IDO1 was substantially increased, while NKG2D was markedly downregulated in NK cells. Based on computational predictions, miR-18a, which has two definite binding sites consisting of the 3'UTR of NKG2D and the 3'UTR of NKG2D ligand (Mult-1), was suspected to be a negative regulator of which its conjoined. As expected, the IDO1 could promote the expression of miR-18a and promote the downregulation effect of miR-18a on NKG2D and NKG2DL, and INCB024360 (INCB) could reverse the result. For digging the mechanism deeper, we authenticated IDO1 promoted the combination of miR-18a and AGO2 after argonaute 2 (AGO2) co-immunoprecipitation, which then degraded Mult-1 mRNA and inhibited the translation of it, further destructing NK cell cytotoxicity. CONCLUSION Our findings revealed a new regulatory axis, IDO1/miR-18a/NKG2D/NKG2DL, in the regulation of NK cell function. This may provide insight into the mechanism of the priming effect of IDO1 inhibitors and miR-18a interference, then elicit possible new methods of cancer treatment.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Xiao Han
- School of Medicine, Nankai University, Tianjin, China
| | - Xiao Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Fengjiao Jin
- School of Medicine, Nankai University, Tianjin, China
| | - Zihe Gao
- School of Medicine, Nankai University, Tianjin, China
| | - Liyong Yin
- First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, China
| | - Fuzai Yin
- First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Chen Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
69
|
Schmiedel D, Mandelboim O. NKG2D Ligands-Critical Targets for Cancer Immune Escape and Therapy. Front Immunol 2018; 9:2040. [PMID: 30254634 PMCID: PMC6141707 DOI: 10.3389/fimmu.2018.02040] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
DNA damage, oncogene activation and excessive proliferation, chromatin modulations or oxidative stress are all important hallmarks of cancer. Interestingly, all of these abnormalities also induce a cellular stress response. By upregulating “stress-induced ligands,” damaged or transformed cells can be recognized by immune cells and cleared. The human genome encodes eight functional “stress-induced ligands”: MICA, MICB, and ULBP1-6. All of them are recognized by a single receptor, NKG2D, which is expressed on natural killer (NK) cells, cytotoxic T cells and other T cell subsets. The NKG2D ligand/NKG2D-axis is well-recognized as an important mediator of anti-tumor activity; however, patient data about the role of NKG2D ligands in immune surveillance and escape appears conflicting. As these ligands are often actively transcribed, tumor cells are urged to manipulate the expression of these ligands on post-transcriptional or post-translational level. Although our knowledge on the regulation of NKG2D ligand expression remains fragmentary, research of the past years revealed multiple cellular mechanisms that are adopted by tumor cells to reduce the expression of “stress-induced ligands” and therefore escape immune recognition. Here, we review the post-transcriptional and post-translational mechanisms by which NKG2D ligands are modulated in cancer cells and their impact on patient prognosis.We discuss controversies and approaches to apply our understanding of the NKG2D ligand/NKG2D-axis for cancer therapy.
Collapse
Affiliation(s)
- Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
70
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
71
|
Edri A, Shemesh A, Iraqi M, Matalon O, Brusilovsky M, Hadad U, Radinsky O, Gershoni-Yahalom O, Dye JM, Mandelboim O, Barda-Saad M, Lobel L, Porgador A. The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Front Immunol 2018; 9:1428. [PMID: 30013549 PMCID: PMC6036185 DOI: 10.3389/fimmu.2018.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.
Collapse
Affiliation(s)
- Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Emerging and Reemerging Diseases and Special Pathogens Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
72
|
Yang Y, Alderman C, Sehlaoui A, Xiao Y, Wang W. MicroRNAs as Immunotherapy Targets for Treating Gastroenterological Cancers. Can J Gastroenterol Hepatol 2018; 2018:9740357. [PMID: 30046565 PMCID: PMC6038585 DOI: 10.1155/2018/9740357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gastroenterological cancers are the most common cancers categorized by systems and are estimated to comprise 18.4% of all cancers in the United States in 2017. Gastroenterological cancers are estimated to contribute 26.2% of cancer-related death in 2017. Gastroenterological cancers are characterized by late diagnosis, metastasis, high recurrence, and being refractory to current therapies. Since the current targeted therapies provide limited benefit to the overall response and survival, there is an urgent need for developing novel therapeutic strategy to improve the outcome of gastroenterological cancers. Immunotherapy has been developed and underwent clinical trials, but displayed limited therapeutic benefit. Since aberrant expressions of miRNAs are found in gastroenterological cancers and miRNAs have been shown to regulate antitumor immunity, the combination therapy combining the traditional antibody-based immunotherapy and novel miRNA-based immunotherapy is promising for achieving clinical success. This review summarizes the current knowledge about the miRNAs and long noncoding RNAs that exhibit immunoregulatory roles in gastroenterological cancers and precancerous diseases of digestive system, as well as the miRNA-based clinical trials for gastroenterological cancers. This review also analyzes the ongoing challenge of identifying appropriate therapy candidates for complex and dynamic tumor microenvironment, ensuring efficient and targeted delivery to specific cancer tissues, and developing strategy for avoiding off-target effect.
Collapse
Affiliation(s)
- Yixin Yang
- College of Natural, Applied and Health Sciences, Kean University, 100 Morris Avenue, Union, NJ 07083, USA
| | - Christopher Alderman
- School of Medicine, University of Colorado, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Ayoub Sehlaoui
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Yuan Xiao
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Wei Wang
- Department of Thoracic Surgery III, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
73
|
Cox ST, Danby R, Hernandez D, Laza-Briviesca R, Pearson H, Madrigal JA, Saudemont A. Functional Characterisation and Analysis of the Soluble NKG2D Ligand Repertoire Detected in Umbilical Cord Blood Plasma. Front Immunol 2018; 9:1282. [PMID: 29963042 PMCID: PMC6013648 DOI: 10.3389/fimmu.2018.01282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
We previously reported that cord blood plasma (CBP) contains significantly more soluble NKG2D ligands (sNKG2DLs), such as sMICB and sULBP1, than healthy adult plasma. Viral infection or malignant transformation upregulates expression of NKG2D ligand on affected cells, leading to NK group 2, member D (NKG2D)-mediated natural killer (NK) cell lysis. Conversely, sNKG2DL engagement of NKG2D decreases NK cell cytotoxicity leading to viral or tumour immune escape. We hypothesised that sNKG2DLs detected in CBP may represent an additional fetal–maternal tolerance mechanism. To further understand the role of sNKG2DL in pregnancy and individual contributions of the various ligand types, we carried out functional analysis using 181 CBP samples. To test the ability of CBP to suppress the function of NK cells in vitro, we measured expression of NKG2D, CD107a, and IFN-γ in NK cells from control donors after exposure to 181 individual CBP samples and characterised the sMICA, sMICB, and sULBP1 content of each one. Furthermore, to detect possible allelic differences between samples that may also affect function, we carried out umbilical cord blood typing for MHC class I-related chain A (MICA) and MHC class I-related chain B (MICB) coding and promoter allelic types. Strongest functional correlations related to increasing concentration of exosomal sULBP1, which was present in all CBP samples tested. In addition, common MICB alleles, such as MICB*005:02, resulted in increased concentration of sMICB. Interestingly, MICB*005:02 uniquely associated with eight different promoter types. Among promoter polymorphisms, P2 resulted in the highest expression of sMICB and P9 the least and was confirmed using luciferase reporter assays. Higher levels of sMICB associated with lower IFN-γ production, indicating that sMICB also suppressed NK cell function. We also examined the MICA functional dimorphism encoding methionine (met) or valine (val) at residue 129 associated with strong or weak NKG2D binding, respectively. Most sMICA associated with val/val, some with met/val but none with met/met and, counter-intuitively, the presence of sMICA in CBP increased NK cell cytotoxicity. We propose a model for fetal–maternal tolerance, whereby NK cell activity is limited by sULBP1 and sMICB in CBP. The release of 129val sMICA with weak NKG2D signalling may reduce the overall net suppressive signal and break tolerance thus allowing fetal NK cells to overcome immunological threats in utero.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | - Robert Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | | | - Hayley Pearson
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | - Aurore Saudemont
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
74
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
75
|
Yang X, Kuang S, Wang L, Wei Y. MHC class I chain-related A: Polymorphism, regulation and therapeutic value in cancer. Biomed Pharmacother 2018; 103:111-117. [PMID: 29635123 DOI: 10.1016/j.biopha.2018.03.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
MICA and MICB are stress-induced molecules recognized by NKG2D, one of major activation receptors of natural killer (NK) cells. Upon binding to NKG2D, NKG2D-mediated cytolytic immune response of immune effector cells will be activated against virally infected and tumor cells expressing MICA. In the early oncogenic development, membrane-bound MICA serves as a key signal to recruit anti-tumor immune effectors. Nevertheless, both MICA polymorphic features and its dysregulated expression in evolving tumors have resulted in tumor evasion in various cancer types. Therefore, in order to reconstitute tumor immunosurveilance, it is of great significance that we understand MICA genetics, polymorphisms, mechanisms of MICA-associated tumor escape and molecular/cellular modulation of MICA. In this review, the MICA-associated co-expression networks involving microRNAs (miRNAs) and novel candidate long non-coding RNAs (lncRNAs) were also discussed. Given the current importance in the study of MICA gene, this review paper focuses on the role of MICA in different cancer types, and strategies that we manipulate MICA regulation against tumor proliferation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Biological Sciences, Clemson University, USA
| | - Shuzhen Kuang
- Department of Biological Sciences, Clemson University, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, USA.
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, USA.
| |
Collapse
|
76
|
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol 2018; 51:55-61. [PMID: 29525346 PMCID: PMC6145810 DOI: 10.1016/j.coi.2018.02.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Chicago, Northwestern University, Chicago IL60611, United States
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL60611, United States.
| |
Collapse
|
77
|
Toledano T, Vitenshtein A, Stern-Ginossar N, Seidel E, Mandelboim O. Decay of the Stress-Induced Ligand MICA Is Controlled by the Expression of an Alternative 3′ Untranslated Region. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.1700968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
78
|
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C, Santoni A. NKG2D and Its Ligands: "One for All, All for One". Front Immunol 2018; 9:476. [PMID: 29662484 PMCID: PMC5890157 DOI: 10.3389/fimmu.2018.00476] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 01/30/2023] Open
Abstract
The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
79
|
Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med 2018; 7:842-855. [PMID: 29473328 PMCID: PMC5852357 DOI: 10.1002/cam4.1353] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
To study the regulatory effect of lncRNA HOTAIR/miR-20a-5p/HMGA2 axis on breast cancer (BC) cell growth, cell mobility, invasiveness, and apoptosis. The microarray data of lncRNAs and mRNAs with differential expression in BC tissues were analyzed in the Cancer Genome Atlas (TCGA) database. LncRNA HOX transcript antisense RNA (lncRNA HOTAIR) expression in BC was assessed by qRT-PCR. Cell viability was confirmed using MTT and colony formation assay. Cell apoptosis was analyzed by TdT-mediated dUTP nick-end labeling (TUNEL) assay. Cell mobility and invasiveness were testified by transwell assay. RNA pull-down and dual luciferase assay were used for analysis of the correlation between lncRNA HOTAIR and miR-20a-5p, as well as relationship of miR-20a-5p with high mobility group AT-hook 2 (HMGA2). Tumor xenograft study was applied to confirm the correlation of lncRNA HOTAIR/miR-20a-5p/HMGA2 axis on BC development in vivo. The expression levels of the lncRNA HOTAIR were upregulated in BC tissues and cells. Knockdown lncRNA HOTAIR inhibited cell propagation and metastasis and facilitated cell apoptosis. MiR-20a-5p was a target of lncRNA HOTAIR and had a negative correlation with lncRNA HOTAIR. MiR-20a-5p overexpression in BC suppressed cell growth, mobility, and invasiveness and facilitated apoptosis. HMGA2 was a target of miR-20a-5p, which significantly induced carcinogenesis of BC. BC cells progression was mediated by lncRNA HOTAIR via affecting miR-20a-5p/HMGA2 in vivo. LncRNA HOTAIR affected cell growth, metastasis, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer.
Collapse
Affiliation(s)
- Wenyan Zhao
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Donghua Geng
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Shuqiang Li
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Zhaofu Chen
- Department of UrologyShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Ming Sun
- Department of UrologyShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| |
Collapse
|
80
|
Regis S, Caliendo F, Dondero A, Bellora F, Casu B, Bottino C, Castriconi R. Main NK cell receptors and their ligands: regulation by microRNAs. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.2.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
81
|
McCarthy MT, Moncayo G, Hiron TK, Jakobsen NA, Valli A, Soga T, Adam J, O'Callaghan CA. Purine nucleotide metabolism regulates expression of the human immune ligand MICA. J Biol Chem 2017; 293:3913-3924. [PMID: 29279329 DOI: 10.1074/jbc.m117.809459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Expression of the cell-surface glycoprotein MHC class I polypeptide-related sequence A (MICA) is induced in dangerous, abnormal, or "stressed" cells, including cancer cells, virus-infected cells, and rapidly proliferating cells. MICA is recognized by the activating immune cell receptor natural killer group 2D (NKG2D), providing a mechanism by which immune cells can identify and potentially eliminate pathological cells. Immune recognition through NKG2D is implicated in cancer, atherosclerosis, transplant rejection, and inflammatory diseases, such as rheumatoid arthritis. Despite the wide range of potential therapeutic applications of MICA manipulation, the factors that control MICA expression are unclear. Here we use metabolic interventions and metabolomic analyses to show that the transition from quiescent cellular metabolism to a "Warburg" or biosynthetic metabolic state induces MICA expression. Specifically, we show that glucose transport into the cell and active glycolytic metabolism are necessary to up-regulate MICA expression. Active purine synthesis is necessary to support this effect of glucose, and increases in purine nucleotide levels are sufficient to induce MICA expression. Metabolic induction of MICA expression directly influences NKG2D-dependent cytotoxicity by immune cells. These findings support a model of MICA regulation whereby the purine metabolic activity of individual cells is reflected by cell-surface MICA expression and is the subject of surveillance by NKG2D receptor-expressing immune cells.
Collapse
Affiliation(s)
- Michael T McCarthy
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gerard Moncayo
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Thomas K Hiron
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Niels A Jakobsen
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Alessandro Valli
- the Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom, and
| | - Tomoyoshi Soga
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Julie Adam
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.,the Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom, and
| | - Christopher A O'Callaghan
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom,
| |
Collapse
|
82
|
Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep 2017; 7:13090. [PMID: 29026144 PMCID: PMC5638832 DOI: 10.1038/s41598-017-12998-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells employ activating receptors like the Natural Cytotoxicity Receptors (NCRs: NKp30, NKp44 and NKp46), of which only NKp46 has a mouse orthologue (Ncr1), to eliminate abnormal cells. NKp46/Ncr1 is considered a selective marker for NK cells, although it is also found on a subset of ILCs, where it appears to be without function. The influenza virus hemagglutinin (HA) was the first ligand identified for Ncr1/NKp46 followed by other viral, bacterial and even fungal ligands. NKp46/Ncr1 also recognizes unknown self and tumor ligands. Here we describe the generation of a transgenic mouse where the Ncr1 gene is expressed in the Rosa locus, preceded by a floxed stop sequence allowing Ncr1/NKp46 expression in various tissues upon crossing with Cre transgenic mouse lines. Surprisingly, while several crossings were attempted, Ncr1 overexpression was successful only where cre recombinase expression was dependent on the Ncr1 promoter. Ncr1 overexpression in NK cells increased NK cell immunity in two hallmark Ncr1 related pathologies, influenza virus infection and B16 melanoma. These data suggest that increasing NK cell cytotoxicity by enforced NKp46/Ncr1 expression serves as a potential therapeutic opportunity for the treatment of various pathologies, and in immunotherapy.
Collapse
|
83
|
Wongfieng W, Jumnainsong A, Chamgramol Y, Sripa B, Leelayuwat C. 5'-UTR and 3'-UTR Regulation of MICB Expression in Human Cancer Cells by Novel microRNAs. Genes (Basel) 2017; 8:genes8090213. [PMID: 28850101 PMCID: PMC5615347 DOI: 10.3390/genes8090213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
The treatment of cancer through the induction of natural killer group 2, member D (NKG2D) ligands is of interest, but understanding of mechanisms controlling expression of individual ligand is limited. The major histocompatibility complex (MHC) class I chain related protein B (MICB) is a member of NKG2D ligands. We aimed to investigate the role of 3′-untranslated (3′-UTR) and 5′-untranslated regions (5′-UTR) in post-transcriptional regulation of MICB. Nine novel microRNAs (miRNAs) predicted to interact with 3′-UTR and 5′-UTR using TargetScan, RNAhybrid and miBridge were identified. Their regulation of 3′-UTR, 5′-UTR and both 3′- and 5′-UTR sequences of MICB were indicated by the reduction of luciferase activities of luciferase reporter constructs. Mutations of miRNA binding sites at 3′- and 5′-UTRs resulted in increased luciferase activities confirming the regulation of nine candidate miRNAs. In addition, overexpression of candidate miRNAs also down-regulated the expression of reporter constructs. Consequently, the overexpression and inhibition of candidate miRNAs lead to the decreased and increased. MICB protein expressions on the cells tested, respectively. This study has identified a new role of miRNAs in regulation of MICB expression via both 3′-UTR and 5′-UTR sequences applicable for cancer immunotherapy.
Collapse
Affiliation(s)
- Wipaporn Wongfieng
- Biomedical Sciences Program, Graduates School of Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Amonrat Jumnainsong
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Yaovalux Chamgramol
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chanvit Leelayuwat
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
84
|
Vyas M, Reinartz S, Hoffmann N, Reiners KS, Lieber S, Jansen JM, Wagner U, Müller R, von Strandmann EP. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncoimmunology 2017; 6:e1339854. [PMID: 28932639 PMCID: PMC5599084 DOI: 10.1080/2162402x.2017.1339854] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer. We show that high levels of sMICA and sULBP2 in ascites were associated with a poor prognosis. Ascites inhibited the activation of normal NK cells, which, in contrast to the prevailing notion, was not associated with decreased NKG2D expression. Of note, an inverse correlation of soluble NKG2D ligands with effector memory T cells and a direct correlation with pro-tumorigenic CD163+CD206+ macrophages was observed. Thus, the role of soluble NKG2D ligands within the ovarian cancer microenvironment is more complex than anticipated and does not exclusively function via NKG2D downregulation.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Katrin S Reiners
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
85
|
Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A, Wiemann S. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 2017; 8:e2973. [PMID: 28771222 PMCID: PMC5596553 DOI: 10.1038/cddis.2017.364] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Aggressive breast cancer is associated with poor patient outcome and characterized by the development of tumor cell variants that are able to escape from control of the immune system or are resistant to targeted therapies. The complex molecular mechanisms leading to immune escape and therapy resistance are incompletely understood. We have previously shown that high miR-519a-3p levels are associated with poor survival in breast cancer. Here, we demonstrate that miR-519a-3p confers resistance to apoptosis induced by TRAIL, FasL and granzyme B/perforin by interfering with apoptosis signaling in breast cancer cells. MiR-519a-3p diminished the expression of its direct target genes for TRAIL-R2 (TNFRSF10B) and for caspase-8 (CASP8) and its indirect target gene for caspase-7 (CASP7), resulting in reduced sensitivity and tumor cell apoptosis in response to apoptotic stimuli. Furthermore, miR-519a-3p impaired tumor cell killing by natural killer (NK) cells via downregulation of the NKG2D ligands ULBP2 and MICA on the surface of tumor cells that are crucial for the recognition of these tumor cells by NK cells. We determined that miR-519a-3p was overexpressed in more aggressive mutant TP53 breast cancer that was associated with poor survival. Furthermore, low levels of TRAIL-R2, caspase-7 and caspase-8 correlated with poor survival, suggesting that the inhibitory effect of miR-519a-3p on TRAIL-R2 and caspases may have direct clinical relevance in lowering patient’s prognosis. In conclusion, we demonstrate that miR-519a-3p is a critical factor in mediating resistance toward cancer cell apoptosis and impairing tumor cell recognition by NK cells. This joint regulation of apoptosis and immune cell recognition through miR-519a-3p supports the hypothesis that miRNAs are key regulators of cancer cell fate, facilitating cancer progression and evasion from immunosurveillance at multiple and interconnected levels.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Pahl
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Küblbeck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Antonelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Wirth
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Genomics &Proteomics Core Facilities, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
86
|
Hosomi S, Grootjans J, Tschurtschenthaler M, Krupka N, Matute JD, Flak MB, Martinez-Naves E, Gomez Del Moral M, Glickman JN, Ohira M, Lanier LL, Kaser A, Blumberg R. Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation. J Exp Med 2017; 214:2985-2997. [PMID: 28747426 PMCID: PMC5626394 DOI: 10.1084/jem.20162041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/25/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Hosomi et al. show that intestinal epithelial cell–specific deletion of X-box–binding protein 1, an unfolded protein response–related transcription factor, results in CHOP-dependent increased expression of specific natural killer group 2 member D (NKG2D) ligands. This activates NKG2D-expressing intraepithelial group 1 ILCs and promotes small intestinal inflammation. Endoplasmic reticulum (ER) stress is commonly observed in intestinal epithelial cells (IECs) and can, if excessive, cause spontaneous intestinal inflammation as shown by mice with IEC-specific deletion of X-box–binding protein 1 (Xbp1), an unfolded protein response–related transcription factor. In this study, Xbp1 deletion in the epithelium (Xbp1ΔIEC) is shown to cause increased expression of natural killer group 2 member D (NKG2D) ligand (NKG2DL) mouse UL16-binding protein (ULBP)–like transcript 1 and its human orthologue cytomegalovirus ULBP via ER stress–related transcription factor C/EBP homology protein. Increased NKG2DL expression on mouse IECs is associated with increased numbers of intraepithelial NKG2D-expressing group 1 innate lymphoid cells (ILCs; NK cells or ILC1). Blockade of NKG2D suppresses cytolysis against ER-stressed epithelial cells in vitro and spontaneous enteritis in vivo. Pharmacological depletion of NK1.1+ cells also significantly improved enteritis, whereas enteritis was not ameliorated in Recombinase activating gene 1−/−;Xbp1ΔIEC mice. These experiments reveal innate immune sensing of ER stress in IECs as an important mechanism of intestinal inflammation.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Joep Grootjans
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Markus Tschurtschenthaler
- Department of Medicine, Division of Gastroenterology, University of Cambridge, Cambridge, England, UK
| | - Niklas Krupka
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juan D Matute
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Magdalena B Flak
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Eduardo Martinez-Naves
- Department of Microbiology and Immunology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Gomez Del Moral
- Department of Cell Biology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Mizuki Ohira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Arthur Kaser
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Blumberg
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
87
|
Pan J, Shen J, Si W, Du C, Chen D, Xu L, Yao M, Fu P, Fan W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget 2017; 8:65743-65758. [PMID: 29029468 PMCID: PMC5630368 DOI: 10.18632/oncotarget.19445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Major histocompatibility complex class I chain-related proteins A and B (MICA and MICB) are important ligands for recognition of tumor cells by immune effector cells. Here, we report that resveratrol upregulated the protein and mRNA expression of MICA and MICB in breast cancer cells, which in turn promoted breast cancer cell lysis by natural killer (NK) cells in vitro and in vivo. Antibodies against NK group 2 member D blocked this effect. The 3'-untranslated regions of MICA and MICB were found to be direct binding targets of miR-17. MICA and MICB expression increased or decreased in breast cancer cells transfected with a miR-17 inhibitor or mimic, respectively. C-Myc overexpression/knockdown increased/decreased transcription of the miR-17-92 cluster host gene. Resveratrol suppressed c-Myc expression, which inhibited the transcription of miR-17-92 cluster, thereby downregulating miR-17. MiR-17 expression correlated inversely with MICA and MICB expression and overall survival in two sets of breast cancer specimens. Resveratrol thus upregulates MICA and MICB by suppressing the c-Myc/miR-17 pathway in breast cancer cells, and increases the cytolysis of breast cancer cells by NK cells. This suggests resveratrol has the potential to promote antitumor immune responses in breast cancer patients.
Collapse
Affiliation(s)
- Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Wengong Si
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Chengyong Du
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China.,Clinical Research Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Minya Yao
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Peifen Fu
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
88
|
Kiany S, Huang G, Kleinerman ES. Effect of entinostat on NK cell-mediated cytotoxicity against osteosarcoma cells and osteosarcoma lung metastasis. Oncoimmunology 2017; 6:e1333214. [PMID: 28919994 DOI: 10.1080/2162402x.2017.1333214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
There is a crucial need for a new therapeutic approach for osteosarcoma (OS) lung metastasis since this disease remains the main cause of mortality in OS. We previously demonstrated that natural killer (NK) cell therapy has minimal efficacy against OS metastasis. This study determined whether the histone deacetylase inhibitor entinostat could immunosensitize OS cells to NK cell lysis and increases the efficacy of NK cell therapy for OS lung metastasis. Entinostat upregulated ligands for NK cell-activating receptors (major histocompatibility complex [MHC] class I polypeptide-related chain A [MICA] and B [MICB]; UL16 binding proteins 1, 2, 5, and 6; and CD155) on OS cells both in vitro and in vivo and led to more susceptibility to NK cell-mediated cytotoxicity in vitro. Importantly, entinostat did not change NK cell viability, receptor expression, or function within the 24-h treatment. We also demonstrated two potential mechanisms by which entinostat enhanced expression of MICA and MICB on OS cells. Although entinostat upregulated ligands for the NK cell activating receptor on OS lung metastasis, it failed to augment the efficacy of NK cell therapy in our nude mouse human OS lung metastasis model. This can be partly explained by our finding that although the infused NK cells were active and functional and could penetrate into the lungs, they failed to infiltrate into the lung nodules. These challenges regarding cellular immunotherapy against solid tumors may be overcome by combination therapy, such as adding a NK cell-activating cytokine (IL-2 or IL-21).
Collapse
Affiliation(s)
- Simin Kiany
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gangxiong Huang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugenie S Kleinerman
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
89
|
MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin. Genomics 2017; 109:147-157. [DOI: 10.1016/j.ygeno.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/01/2023]
|
90
|
Garrido-Tapia M, Hernández CJ, Ascui G, Kramm K, Morales M, Ga Rate V, Zúñiga R, Bustamante M, Aguillón JC, Catala N D, Ribeiro CH, Molina MAC. STAT3 inhibition by STA21 increases cell surface expression of MICB and the release of soluble MICB by gastric adenocarcinoma cells. Immunobiology 2017; 222:1043-1051. [PMID: 28578917 DOI: 10.1016/j.imbio.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Accepted: 05/14/2017] [Indexed: 02/04/2023]
Abstract
NKG2D is an activating receptor expressed on NK cells that binds to a variety of ligands, including MICA and MICB. These cell surface glycoproteins are overexpressed under cellular transformation, thus playing an important role in cell-mediated immune response to tumors. STAT3 is a transcription factor that is constitutively active in cancer. It negatively regulates MICA expression on target cells, while its inhibition enhances NK cell cytotoxicity against tumors. In this work, we aimed to describe the effect of STAT3 signaling inhibition by STA21 on the regulation of MICB expression in gastric adenocarcinoma cells and its effect on the cytotoxic function of NK cells. Treatment of gastric adenocarcinoma cells with STA21 induced an increase in MICB expression and soluble MICB secretion, as well as a variable pattern on effector cell degranulation. Soluble MICB secretion by gastric adenocarcinoma cells was not affected by metalloprotease inhibition. We also observed that primary gastric adenocarcinoma tissue released soluble MICB into the extracellular milieu. Recombinant MICB induced a significant decrease in the levels of NKG2D receptor on effector NK and CD8+ T cells, which correlated with an impaired cytotoxic function. Altogether, our data provide evidence that STAT3 signaling pathway regulates MICB expression on gastric adenocarcinoma cells and that recombinant soluble MICB compromises the cytolytic activity of NK cells.
Collapse
Affiliation(s)
- Macarena Garrido-Tapia
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina J Hernández
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile.
| | - Gabriel Ascui
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Karina Kramm
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Marcela Morales
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Valentina Ga Rate
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Programa de Doctorado en Química, Universidad de la República Oriental de Uruguay, Uruguay.
| | - Marco Bustamante
- Departamento de Cirugía Digestiva, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Chile.
| | - Juan Carlos Aguillón
- Laboratorio de Enfermedades Autoinmunes e Inflamatorias, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Diego Catala N
- Laboratorio de Inmunoregulación, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina H Ribeiro
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Mari A Carmen Molina
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
91
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
92
|
Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz EJHJ, Lebbink RJ. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2017; 198:4062-4073. [PMID: 28416598 DOI: 10.4049/jimmunol.1501605] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.
Collapse
Affiliation(s)
- Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Dik van Leenen
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 EA Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
93
|
Schmiedel D, Mandelboim O. Disarming Cellular Alarm Systems-Manipulation of Stress-Induced NKG2D Ligands by Human Herpesviruses. Front Immunol 2017; 8:390. [PMID: 28443092 PMCID: PMC5387052 DOI: 10.3389/fimmu.2017.00390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
The coevolution of viruses and their hosts led to the repeated emergence of cellular alert signals and viral strategies to counteract them. The herpesvirus family of viruses displays the most sophisticated repertoire of immune escape mechanisms enabling infected cells to evade immune recognition and thereby maintain infection. The herpesvirus family consists of nine viruses that are capable of infecting humans: herpes simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), roseoloviruses (HHV-6A, HHV-6B, and HHV-7), and Kaposi’s-sarcoma-associated herpesvirus (KSHV). Most of these viruses are highly prevalent and infect a vast majority of the human population worldwide. Notably, research over the past 15 years has revealed that cellular ligands for the activating receptor natural-killer group 2, member D (NKG2D)—which is primarily expressed on natural killer (NK) cells—are common targets suppressed during viral infection, i.e., their surface expression is reduced in virtually all lytic herpesvirus infections by diverse mechanisms. Here, we review the viral mechanisms by which all herpesviruses known to date to downmodulate the expression of the NKG2D ligands. Also, in light of recent findings, we speculate about the importance of the emergence of eight different NKG2D ligands in humans and further allelic diversification during host and virus coevolution.
Collapse
Affiliation(s)
- Dominik Schmiedel
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
94
|
Shen J, Pan J, Du C, Si W, Yao M, Xu L, Zheng H, Xu M, Chen D, Wang S, Fu P, Fan W. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis 2017; 8:e2740. [PMID: 28383557 PMCID: PMC5477582 DOI: 10.1038/cddis.2017.158] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DLs). NKG2DLs are expressed on malignant cells and sensitize them to early elimination by cytotoxic lymphocytes. We investigated the clinical importance of NKG2DLs and the mechanism of NKG2DL regulation in breast cancer (BC). Among the NKG2DLs MICA/B and ULBP1/2/3, the expression levels of MICA/B in BC tissues were inversely associated with the Tumor Node Metastasis stage. We first found that the high expression of MICB, but not MICA, was an independent prognostic factor for overall survival in patients with BC. Investigation into the mechanism revealed that a group of microRNAs (miRNAs) belonging to the miR-17-92 cluster, especially miR-20a, decreased the expression of ULBP2 and MICA/B. These miRNAs downregulated the expression of MICA/B by targeting the MICA/B 3'-untranslated region and downregulated ULBP2 by inhibiting the MAPK/ERK signaling pathway. Functional analysis showed that the silencing of NKG2DL-targeting miRNAs in BC cells increased NK cell-mediated cytotoxicity in vitro and inhibited immune escape in vivo. In addition, histone deacetylase inhibitors (HDACis) increased NKG2DL expression in BC cells by inhibiting members of the miR-17-92 cluster. Thus, targeting miRNAs with antisense inhibitors or HDACis may represent a novel approach for increasing the immunogenicity of BC.
Collapse
Affiliation(s)
- Jiaying Shen
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Jie Pan
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Wengong Si
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Minya Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Liang Xu
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China.,Clinical Research Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Huilin Zheng
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Mingjie Xu
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Danni Chen
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Weimin Fan
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
95
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
96
|
Berhani O, Nachmani D, Yamin R, Schmiedel D, Bar-On Y, Mandelboim O. Vigilin Regulates the Expression of the Stress-Induced Ligand MICB by Interacting with Its 5' Untranslated Region. THE JOURNAL OF IMMUNOLOGY 2017; 198:3662-3670. [PMID: 28356383 DOI: 10.4049/jimmunol.1601589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
NK cells are part of the innate immune system, and are able to identify and kill hazardous cells. The discrimination between normal and hazardous cells is possible due to an array of inhibitory and activating receptors. NKG2D is one of the prominent activating receptors expressed by all human NK cells. This receptor binds stress-induced ligands, including human MICA, MICB, and UL16-binding proteins 1-6. The interaction between NKG2D and its ligands facilitates the elimination of cells under cellular stress, such as tumor transformation. However, the mechanisms regulating the expression of these ligands are still not well understood. Under normal conditions, the NKG2D ligands were shown to be posttranscriptionally regulated by cellular microRNAs and RNA-binding proteins (RBPs). Thus far, only the 3' untranslated regions (UTRs) of MICA, MICB, and UL16-binding protein 2 were shown to be regulated by RBPs and microRNAs, usually resulting in their downregulation. In this study we investigated whether MICB expression is controlled by RBPs through its 5'UTR. We used an RNA pull-down assay followed by mass spectrometry and identified vigilin, a ubiquitously expressed multifunctional RNA-binding protein. We demonstrated that vigilin binds and negatively regulates MICB expression through its 5'UTR. Additionally, vigilin downregulation in target cells led to a significant increase in NK cell activation against said target cells. Taken together, we have discovered a novel mode of MICB regulation.
Collapse
Affiliation(s)
- Orit Berhani
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Daphna Nachmani
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Yotam Bar-On
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
97
|
Carapito R, Aouadi I, Ilias W, Bahram S. Natural Killer Group 2, Member D/NKG2D Ligands in Hematopoietic Cell Transplantation. Front Immunol 2017; 8:368. [PMID: 28396673 PMCID: PMC5366881 DOI: 10.3389/fimmu.2017.00368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). Malignant transformation and conditioning treatment prior to hematopoietic cell transplantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. The present review summarizes the current state of our knowledge pertaining to the role of the NKG2D and NKG2DL in HCT.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ismail Aouadi
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Wassila Ilias
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
98
|
Ghadially H, Brown L, Lloyd C, Lewis L, Lewis A, Dillon J, Sainson R, Jovanovic J, Tigue NJ, Bannister D, Bamber L, Valge-Archer V, Wilkinson RW. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer 2017; 116:1208-1217. [PMID: 28334733 PMCID: PMC5418453 DOI: 10.1038/bjc.2017.79] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class I chain-related protein A (MICA) and MHC class I chain-related protein B (MICB) are polymorphic proteins that are induced upon stress, damage or transformation of cells which act as a 'kill me' signal through the natural-killer group 2, member D receptor expressed on cytotoxic lymphocytes. MICA/B are not thought to be constitutively expressed by healthy normal cells but expression has been reported for most tumour types. However, it is not clear how much of this protein is expressed on the cell surface. METHODS Using a novel, well-characterised antibody and both standard and confocal microscopy, we systematically profiled MICA/B expression in multiple human tumour and normal tissue. RESULTS High expression of MICA/B was detected in the majority of tumour tissues from multiple indications. Importantly, MICA/B proteins were predominantly localised intracellularly with only occasional evidence of cell membrane localisation. MICA/B expression was also demonstrated in most normal tissue epithelia and predominantly localised intracellularly. Crucially, we did not observe qualitative differences in cell surface expression between tumour and MICA/B expressing normal epithelia. CONCLUSIONS This demonstrates for the first time that MICA/B is more broadly expressed in normal tissue and that expression is mainly intracellular with only a small fraction appearing on the cell surface of some epithelia and tumour cells.
Collapse
Affiliation(s)
| | - Lee Brown
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Chris Lloyd
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | | | - Arthur Lewis
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | | | | | | | | | | | - Lisa Bamber
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Viia Valge-Archer
- AstraZeneca, Chesterford Research Park, Little Chesterford CB10 1XL, UK
| | | |
Collapse
|
99
|
Transcriptional activation of the MICA gene with an engineered CRISPR-Cas9 system. Biochem Biophys Res Commun 2017; 486:521-525. [PMID: 28322797 DOI: 10.1016/j.bbrc.2017.03.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023]
Abstract
Major histocompatibility complex class I polypeptide-related sequence A (MICA) is a prototypical NKG2D ligand. Because immune cells, such as natural killer (NK) cells, recognize virally infected or transformed cells and eliminate them through the interaction between NKG2D receptors on NK cells and NKG2D ligands on pathogenic cells, MICA expression levels are associated with NK cell-mediated immunity. Here, we report that an engineered clustered regularly interspaced short palindromic repeats-Cas9-related complex targeting MICA gene promoter sequences activates transcription of the MICA gene from its endogenous locus. Inhibiting microRNA function, which targets the 3' untranslated region of the MICA gene, enhances this activation. These results demonstrate that the combination of Cas9-based transcriptional activators and simultaneous modulation of microRNA function may be a powerful tool for enhancing MICA protein expression and efficient anti-pathogenic cell immunity.
Collapse
|
100
|
Sheppard S, Guedes J, Mroz A, Zavitsanou AM, Kudo H, Rothery SM, Angelopoulos P, Goldin R, Guerra N. The immunoreceptor NKG2D promotes tumour growth in a model of hepatocellular carcinoma. Nat Commun 2017; 8:13930. [PMID: 28128200 PMCID: PMC5290164 DOI: 10.1038/ncomms13930] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammation is recognized as one of the drivers of cancer. Yet, the individual immune components that possess pro- and anti-tumorigenic functions in individual cancers remain largely unknown. NKG2D is a potent activating immunoreceptor that has emerged as an important player in inflammatory disorders besides its well-established function as tumour suppressor. Here, we provide genetic evidence of an unexpected tumour-promoting effect of NKG2D in a model of inflammation-driven liver cancer. Compared to NKG2D-deficient mice, NKG2D-sufficient mice display accelerated tumour growth associated with, an increased recruitment of memory CD8+T cells to the liver and exacerbated pro-inflammatory milieu. In addition, we show that NKG2D contributes to liver damage and consequent hepatocyte proliferation known to favour tumorigenesis. Thus, the NKG2D/NKG2D-ligand pathway provides an additional mechanism linking chronic inflammation to tumour development in hepatocellular carcinoma. Our findings expose the need to selectively target the types of cancer that could benefit from NKG2D-based immunotherapy. Expression of NKG2D immunoreceptor ligands on tumour cells is believed to inhibit tumour growth through engaging NKG2D-expressing immune cells. Here, the authors show that in a model of liver cancer the NKG2D/NKG2D-ligand pathway can also promote tumour formation by sustaining an inflammatory environment.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, SW7 2AZ London, UK
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, SW7 2AZ London, UK
| | - Anna Mroz
- Department of Cellular Pathology, Imperial College London, W2 1NY London, UK
| | | | - Hiromi Kudo
- Department of Cellular Pathology, Imperial College London, W2 1NY London, UK
| | - Stephen M Rothery
- Facility for Imaging by Light Microscopy, Imperial College London, SW7 2AZ London, UK
| | - Panagiotis Angelopoulos
- Department of Mathematics, National Technical University of Athens, Zografou, 15773 Athens, Greece
| | - Robert Goldin
- Department of Cellular Pathology, Imperial College London, W2 1NY London, UK
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|