51
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, classically characterized by a triad of motor features: bradykinesia, rigidity and resting tremor. Neurodegeneration in PD critically involves the dopaminergic neurons of the substantia nigra pars compacta, which results in a severe reduction in dopamine levels in the dorsal striatum. However, the disease also exhibits extensive non-nigral pathology and as many non-motor as motor features. Nevertheless, owing to the relatively circumscribed nature of the nigrostriatal lesion in PD, dopaminergic cell transplantation has emerged as a potentially reparative therapy for the disease. Sources for such cells are varied and include the developing ventral mesencephalon, several autologous somatic cell types, embryonic stem cells and induced pluripotent stem cells. In this article, we review the origins of dopaminergic transplantation for PD and the emergent hunt for a suitable long-term source of transplantable dopaminergic neurons.
Collapse
Affiliation(s)
- Sean C Dyson
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | | |
Collapse
|
52
|
Freed CR, Zhou W, Breeze RE. Dopamine cell transplantation for Parkinson's disease: the importance of controlled clinical trials. Neurotherapeutics 2011; 8:549-61. [PMID: 21997523 PMCID: PMC3250289 DOI: 10.1007/s13311-011-0082-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transplantation of human fetal dopamine neurons into the brain of Parkinson's disease patients started in the late 1980s, less than 10 years after experiments in rats showed that embryonic dopamine neurons from a narrow window of development are suitable for transplantation. For human transplantation, the critical stage of development is 6 to 8 weeks after conception. Because putamen is the basal ganglia structure most depleted of dopamine in Parkinson's disease and because it is the structure most closely mapped to the motor cortex, it has been the primary target for neurotransplantation. The double blind trial conducted at the University of Colorado, Columbia University, and North Shore University is the first controlled surgical trial performed in the field of neurosurgery. Results have shown that transplants of fetal dopamine neurons can survive transplantation without immunosuppression and without regard to the age of the patients. Transplants improved objective signs of Parkinson's disease to the best effects of L-DOPA seen preoperatively. Placebo surgery produced no clinical changes. In subjects in whom transplants replaced the need for L-DOPA, the implants replicated the preoperative effects of L-DOPA, including dyskinesias in susceptible patients. Our trial has provided the first controlled evidence that dopamine cell transplants can improve the clinical state of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Curt R Freed
- University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
53
|
Groth CG. The potential advantages of transplanting organs from pig to man: A transplant Surgeon's view. Indian J Urol 2011; 23:305-9. [PMID: 19718335 PMCID: PMC2721611 DOI: 10.4103/0970-1591.33729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Once pig organs can be transplanted into humans, transplantation will move into a new era. There will be unlimited access to undamaged organs and cells for transplantation and, eventually, donation from deceased or live human beings will become obsolete. Furthermore, it will be possible to alleviate graft rejection, at least in part, by genetic modification of the source animal. Currently, there are three major obstacles to performing transplantations from pig to man: 1) a powerful immune barrier, 2) a potential risk of transmitting microorganisms, particularly endogenous retrovirus and 3) ethical issues related to the future recipients and to society at large. This article will first discuss ongoing work with regards to overcoming the current obstacles. Then, the many potential advantages of using pig organs will be listed. Next, the criteria for selecting the first patients for transplantation with pig organs, will be briefly discussed. Finally, some promising observations made in the context of early attempts at transplanting porcine cells to patients, will be mentioned.
Collapse
|
54
|
Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant 2011; 16:190-4. [DOI: 10.1097/mot.0b013e32834494b5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
55
|
Abstract
INTRODUCTION Stroke remains the leading cause of disability in the Western world. Despite decades of work, no clinically effective therapies exist to facilitate recovery from stroke. Stem cells may have the potential to minimize injury and promote recovery after stroke. AREAS COVERED Transplanted stem cells have been shown in animal models to migrate to the injured region, secrete neurotrophic compounds, promote revascularization, enhance plasticity and regulate the inflammatory response, thereby minimizing injury. Endogenous neural stem cells also have a remarkable propensity to respond to injury. Under select conditions, subventricular zone progenitors may be mobilized to replace lost neurons. In response to focal infarcts, neuroblasts play important trophic roles to minimize neural injury. Importantly, these endogenous repair mechanisms may be experimentally augmented, leading to robust improvements in function. Ongoing clinical studies are now assessing the safety and feasibility of cell-based therapies for stroke. EXPERT OPINION We outline the unique challenges and potential pitfalls in the clinical translation of stem cell research for stroke. We then detail what we believe to be the specific basic science and clinical strategies needed to overcome these challenges, fill remaining gaps in knowledge and facilitate development of clinically viable stem cell-based therapies for stroke.
Collapse
Affiliation(s)
- Terry C Burns
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA 94305-5487, USA.
| | | |
Collapse
|
56
|
|
57
|
|
58
|
Cohen S, Tchorsh-Yutsis D, Aronovich A, Tal O, Eventov-Friedman S, Katchman H, Klionsky Y, Shezen E, Reisner Y. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs. Transplantation 2010; 89:1198-207. [PMID: 20195218 DOI: 10.1097/tp.0b013e3181d720fd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. METHODS Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. RESULTS E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. CONCLUSION Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Michel-Monigadon D, Bonnamain V, Nerrière-Daguin V, Dugast AS, Lévèque X, Plat M, Venturi E, Brachet P, Anegon I, Vanhove B, Neveu I, Naveilhan P. Trophic and immunoregulatory properties of neural precursor cells: benefit for intracerebral transplantation. Exp Neurol 2010; 230:35-47. [PMID: 20470774 DOI: 10.1016/j.expneurol.2010.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 12/20/2022]
Abstract
Intracerebral xenotransplantation of porcine fetal neuroblasts (pNB) is considered as an alternative to human neuroblasts for the treatment of neurodegenerative diseases. However, pNB are systematically rejected, even in an immunoprivileged site such as the brain. Within this context, neural stem/precursor cells (NSPC), which were suggested as exhibiting low immunogenicity, appeared as a useful source of xenogeneic cells. To determine the advantage of using porcine NSPC (pNSPC) in xenotransplantation, pNB and pNSPC were grafted into the striatum of rats without immunosuppression. At day 63, all the pNB were rejected while 40% of the rats transplanted with pNSPC exhibited large and healthy grafts with numerous pNF70-positive cells. The absence of inflammation at day 63 and the occasional presence of T cells in pNSPC grafts evoked a weak host immune response which might be partly due to the immunosuppressive properties of the transplanted cells. T cell proliferation assays confirmed such a hypothesis by revealing an inhibitory effect of pNSPC on T cells through a soluble factor. In addition to their immunosuppressive effect, in contrast to pNB, very few pNSPC differentiated into tyrosine hydroxylase-positive neurons but the cells triggered an intense innervation of the striatum by rat dopaminergic fibers coming from the substantia nigra. Further experiments will be required to optimize the use of pNSPC in regenerative medicine but here we show that their immunomodulatory and trophic activities might be of great interest for restorative strategies. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
Collapse
|
60
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
61
|
Efficacy of human adipose tissue-derived stem cells in cardiac muscle repair in an experimental acute myocardial infarction model using nude rats (Crl:NIH-Fox1RNU). ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s00580-009-0927-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:688-702. [DOI: 10.1016/j.bbadis.2008.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/12/2008] [Accepted: 10/13/2008] [Indexed: 12/21/2022]
|
63
|
Shyu WC, Li KW, Peng HF, Lin SZ, Liu RS, Wang HJ, Su CY, Lee YJ, Li H. Induction of GAP-43 modulates neuroplasticity in PBSC (CD34+) implanted-Parkinson's model. J Neurosci Res 2009; 87:2020-33. [DOI: 10.1002/jnr.22027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
64
|
Polymerase chain reaction in detection of porcine endogenous retrovirus (PERV) from porcine tissues. Indian J Microbiol 2009; 49:68-71. [PMID: 23100752 DOI: 10.1007/s12088-009-0002-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/13/2008] [Indexed: 10/21/2022] Open
Abstract
Pigs offer an unlimited source of xenografts for humans. The use of transplants from animal origin offers a potential solution to the limited supply of human organs and tissues. However, like many other mammalian species, pigs harbor porcine endogenous retrovirus (PERV), which are encoded in their genomic DNA and are assumed to have been integrated into the porcine germline. The ability of PERV to infect human cells in vitro has heightened safety concerns regarding the transmission of PERV to pig xenograft recipients. Porcine tissues were analyzed using validated assays specifi c for PERV: polymerase chain reaction (PCR) (for PERV DNA) and reverse transcriptase (RT)-PCR (for PERV RNA). PERV-specifi c gag sequences were found in the porcine heart tissue samples using DNA-PCR and RT-PCR. PCR is a rapid and specifi c test for the detection of PERV from xenografts. These fi ndings have demonstrated that the presence of both DNA and RNA forms of PERV in porcine tissues needs to be carefully considered when the infectious disease potential of xenotransplantation is being assessed.
Collapse
|
65
|
Molecular and cellular determinants for generating ES-cell derived dopamine neurons for cell therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:112-23. [PMID: 19731556 DOI: 10.1007/978-1-4419-0322-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Embryonic stem (ES) cells can generate midbrain dopaminergic (DA) neuronal phenotypes in vitro and have been successfully applied to restore function in animal models of Parkinson's disease (PD). How can we best integrate our growinginsight into the regulatory cascade of transcription factors guiding midbrain specification to further improve the in vitro differentiation of midbrain DA neurons for cell therapy of PD? To characterize the differentiation of authentic DA neurons in vitro, expression patterns of the numerous midbrain-characteristic markers need to be investigated. When using forced gene expression, such factors have to be closely monitored to avoid generation of nonphysiological cell types. Fluorescent markers such as Pitx3-GFP, TH-GFP, Sox1-GFP or surface antigens have proven useful for elimination of unwanted cell types by cell sorting, thereby averting tumors and increasing the DA fraction for transplantation studies. The importance of appropriate timing during application of extrinsic factors and the influence of cell-cell interactions in the dish has to be taken into account. This conceptual synopsis outlines current objectives, progress, but also challenges, in deriving midbrain DA neurons from pluripotent stem cells for clinical and scientific applications.
Collapse
|
66
|
Abstract
Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson's disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronic models of epileptogenesis, as well as assessment of safety in toxicological studies.
Collapse
Affiliation(s)
- Véronique Riban
- Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Biological Research Tower, Columbus, Ohio, U.S.A
| | | | - Matthew J. During
- Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Biological Research Tower, Columbus, Ohio, U.S.A
| |
Collapse
|
67
|
Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200808010-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
68
|
Olfactory Mucosa Is a Potential Source for Autologous Stem Cell Therapy for Parkinson's Disease. Stem Cells 2008; 26:2183-92. [DOI: 10.1634/stemcells.2008-0074] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
69
|
Rosenfeld JV. Surgical alleviation of Parkinson's disease. J Clin Neurosci 2008; 5:1-4. [PMID: 18644278 DOI: 10.1016/s0967-5868(98)90192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J V Rosenfeld
- Department of Neurosurgery, The Royal Melbourne Hospital and Department of Surgery, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
70
|
Astradsson A, Cooper O, Vinuela A, Isacson O. Recent advances in cell-based therapy for Parkinson disease. Neurosurg Focus 2008; 24:E6. [PMID: 18341409 DOI: 10.3171/foc/2008/24/3-4/e5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, the authors discuss recent advances in the field of cell therapy for Parkinson disease (PD). They compare and contrast recent clinical trials using fetal dopaminergic neurons. They attribute differences in cell preparation techniques, cell type specification, and immunosuppression as reasons for variable outcome and for some of the side effects observed in these clinical trials. To address ethical, practical, and technical issues related to the use of fetal cell sources, alternative sources of therapeutic dopaminergic neurons are being developed. The authors describe the progress in enrichment and purification strategies of stem cell-derived dopaminergic midbrain neurons. They conclude that recent advances in cell therapy for PD will create a viable long-term treatment option for synaptic repair for this debilitating disease.
Collapse
Affiliation(s)
- Arnar Astradsson
- NINDS Udall Parkinson's Disease Research Center of Excellence, Harvard University and McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | |
Collapse
|
71
|
Riley J, Sweeney W, Boulis N. Shifting the balance: cell-based therapeutics as modifiers of the amyotrophic lateral sclerosis–specific neuronal microenvironment. Neurosurg Focus 2008; 24:E10. [DOI: 10.3171/foc/2008/24/3-4/e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
✓ Recent advances in the laboratory have improved the current understanding of neurobiological mechanisms underlying the initiating events and pathological progression observed in amyotrophic lateral sclerosis (ALS). Whereas initial studies have revealed the late-stage intracellular cascades contributing to neuronal dysfunction and cell death, more recently collected data have begun to elucidate the presence and importance of a “non–cell autonomous” component indicating that affected glial cell subtypes may serve distinct and required roles. Pharmacological interventions for ALS have largely been disappointing likely in part because they have failed to address either the proximate events contributing to neuronal dysfunction and death or the deleterious contributions of non-neuronal cells within the local microenvironment. Alternatively, cell-based therapeutics offer the potential of a multifaceted approach oriented toward the dual ends of protecting remaining viable neurons and attempting to restore neuronal function lost as a manifestation of disease progression. The authors review the evolving knowledge of disease initiation and progression, with specific emphasis on the role of affected glia as crucial contributors to the observed ALS phenotype. This basis is used to underscore the potential roles of cell-based therapeutics as modifiers of the ALS-specific microenvironment.
Collapse
Affiliation(s)
- Jonathan Riley
- 1Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Walter Sweeney
- 1Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
72
|
Chao Y, Gang L, Na ZL, Ming WY, Zhong WS, Mian WS. Surgical management of Parkinson's disease: update and review. Interv Neuroradiol 2008; 13:359-68. [PMID: 20566105 DOI: 10.1177/159101990701300407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 11/16/2022] Open
Abstract
SUMMARY Although medical therapy is still the mainstay of treatment for Parkinson's disease, the development of surgical precision and decreased morbidity have made stereotatic lesioning and deep brain stimulation more popular. Neurosurgical ablations include pallidotomy, thalamotomy, and, more recently, subthalamotomy. Because of concern over the high risk of side-effects resulting from bilateral ablative procedure, alternative approaches have been explored.With improved deep brain stimulation (DBS) technology, DBS has been successfully applied in the internal globus pallidus, ventral intermediate nucleus and subthalamic nucleus for Parkinson's disease. In addition, recent surgical approaches including biological neurorestorative technologies - surgical therapies with transplantation, gene therapy, and growth factor are all being discussed in this review. Although a great deal of work remains to be done for researchers, advances in surgical therapies for the treatment of Parkinson's disease are moving forward at an unprecedented pace, and, not surprisingly, would give PD patients more choices and hope.
Collapse
Affiliation(s)
- Y Chao
- College of precision instrument & opto-electronic, Tianjin University, Tianjin; China
| | | | | | | | | | | |
Collapse
|
73
|
Shi F, Corrales CE, Liberman MC, Edge ASB. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci 2007; 26:3016-23. [PMID: 18005071 DOI: 10.1111/j.1460-9568.2007.05909.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and auditory neurons lack the capacity to regenerate, and damage to either cell type can result in hearing loss. Replacement cells for regeneration could potentially be made by directed differentiation of human embryonic stem (hES) cells. To generate sensory neurons from hES cells, neural progenitors were first made by suspension culture of hES cells in a defined medium. The cells were positive for nestin, a neural progenitor marker, and Pax2, a marker for cranial placodes, and were negative for alpha-fetoprotein, an endoderm marker. The precursor cells could be expanded in vitro in fibroblast growth factor (FGF)-2. Neurons and glial cells were found after differentiation of the neural progenitors by removal of FGF-2, but evaluation of neuronal markers indicated insignificant production of sensory neurons. Addition of bone morphogenetic protein 4 (BMP4) to neural progenitors upon removal of FGF-2, however, induced significant numbers of neurons that were positive for markers associated with cranial placodes and neural crest, the sources of sensory neurons in the embryo. Neuronal processes from hES cell-derived neurons made contacts with hair cells in denervated ex vivo sensory epithelia and expressed synaptic markers, suggesting the formation of synapses. In a gerbil model with a denervated cochlea, the ES cell-derived neurons engrafted in the auditory nerve trunk and sent out neurites that grew toward the auditory sensory epithelium. These data indicate that hES cells can be induced to form sensory neurons that have the potential to treat neural degeneration associated with sensorineural hearing loss.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
74
|
The search for a curative cell therapy in Parkinson's disease. J Neurol Sci 2007; 265:32-42. [PMID: 17936303 DOI: 10.1016/j.jns.2007.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/03/2007] [Accepted: 09/07/2007] [Indexed: 01/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, characterised by the progressive loss of dopaminergic neurons in the substantia nigra, and typically treated by dopamine replacement. This treatment, although very effective in the early stages of the disease, is not curative and has side-effects. As such there has been a search for a more definitive treatment for this condition, which has mainly concentrated on replacing the lost neurons with neural grafts. Possible cell sources for replacement range from autologous grafts of dopamine secreting cells to allografts of fetal ventral mesencephalon and neural precursor cells derived from fetal tissue or embryonic stem cells. Some of these cells have been the subject of clinical trials, which to date have produced disparate outcomes. Therefore, whilst cell therapies remain a promising treatment for PD, there is need for further refinement of the techniques involved in this experimental procedure, before any new trials in patients are undertaken.
Collapse
|
75
|
Miyagawa S. [Clinical xenotransplantation]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2007; 30:174-84. [PMID: 17603258 DOI: 10.2177/jsci.30.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The growing numerical gap between the number of patients and available human donor organs have led to a revival interest in xenotransplantation. This review will mainly focus on the clinical affairs of xenotransplantation and the project of producing the gene modified pigs. Trials, designed to overcome xenogenic rejection by the expression of human complement regulatory protein (CRP), such as DAF (CD55), on the pig organ and knocking out the alpha-Gal epitope(Galalpha1-3Galbeta1-4GlcNAc-R), which is biosynthesized by the action of alpha1,3 galactosyltransferase (alpha1,3GT), were accomplished in several institutes, such as Harvard University, Pittsburgh University, Mayo Clinic, and BresaGen. We have also produced the [DAF(CD55)+GnT-III+alpha-Gal KO] pigs in last year. On the other hand, the clinical pig islets transplantation was done in many countries, such as Russia, Sweden, Mexico and China, until 2005. In addition, the new clinical trials of pig islets transplantation will be started in USA within three years. In addition, as the current studies in the xenotransplantation field, the strategies for the downregulation of the glycoantigen, complement activation, NK cell, and other immuno responces on the xenografts, are reviewed. The studies for the infectivity of porcine endogenous retrovirus (PERV) to human cells are also introduced.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Division of Organ Transplantation, Department of Molecular therapeutics, Osaka University Graduate School of Medicine
| |
Collapse
|
76
|
Rahman A, von Unge M, Olivius P, Dirckx J, Hultcrantz M. Healing time, long-term result and effects of stem cell treatment in acute tympanic membrane perforation. Int J Pediatr Otorhinolaryngol 2007; 71:1129-37. [PMID: 17499859 DOI: 10.1016/j.ijporl.2007.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The incidence of otitis media in children between the age of 2 and 6 years is well documented. Repeated attacks may cause acute and chronic perforations. The surgical treatment for repairing chronic perforation is quite uncomfortable for the patients of this age group because of the invasiveness of this treatment. The aim of this study was to determine the long-term influence of embryonic stem cells on acute perforations and the effect of gelatin as a vehicle for applied stem cells. The possibility of teratogenic effects of the stem cells was also observed. METHODS Bilateral laser myringotomy was performed in 17 adult Sprague-Dawley rats, divided into two groups. Gelatin, a substance suitable as vehicle for bioactive material was used bilaterally around the perforation in group A, to serve as a scaffold for repairing tissue. The stem cells were used in the right tympanic membrane perforation leaving the left tympanic membrane as a control. The animals in group B received the same treatment except for the use of gelatin and in addition received an immuno-suppressive agent. After half a year of observation the mechanical stiffness of the tympanic membrane was measured by moiré interferometry for group B and the morphological study was performed by light microscopy for both groups A and B and electron microscopy for group A. RESULTS Stem cell treated ears did not show any enhanced healing of the perforation although a marked thickening of the lamina propria was observed compared with control group. After half a year the strength and the stiffness of the tympanic membrane was almost the same for both treated and untreated ears. No evidence of teratoma was found after half a year. CONCLUSION This study suggests that the stem cells stimulate the proliferation of connective tissue and fibers in the lamina propria, possibly mediated by secreted substances, although the stiffness properties do not seem to be altered. The use of gelatin does not seem to enhance the healing process of the tympanic membrane perforation.
Collapse
Affiliation(s)
- Anisur Rahman
- Center for Hearing and Communication Research, Department of Otorhinolaryngology, Karolinska University Hospital and Institute, 17176 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
77
|
Haas SJP, Beckmann S, Petrov S, Andressen C, Wree A, Schmitt O. Transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the neonatal parkinsonian rat caudate putamen. J Neurosci Res 2007; 85:778-86. [PMID: 17203489 DOI: 10.1002/jnr.21170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The present study analyzed whether grafts of the mesencephalic progenitor cell line CSM14.1 into the neonatal rat caudate putamen (CPu) differentiate into neurons and whether this is accompanied by a functional improvement in 6-hydroxydopamine (6-OHDA)-lesioned animals. As in previous studies, a neuronal differentiation of CSM14.1 cells transplanted into the CPu of adult animals could not be observed, so we here used neonatal rats, because graft location and host age seemingly are crucial parameters for neural transplant differentiation and integration. Rats bilaterally lesioned at postnatal day 1 by intraventricular 6-OHDA-injections 2 days later received 100,000 CSM14.1 cells prelabelled with the fluorescent dye PKH26 into the right CPu. Five weeks after grafting, the cylinder test was performed, and the data compared with data from age-matched intact controls and bilaterally lesioned-only animals. Brain slices immunostained for tyrosine hydroxylase (TH) were quantified by optical densitometry. We observed a significant preference of left forelimb use exclusively in transplanted animals. In these rats, TH-containing perikarya were found in the grafted CPu, presumedly leading to the significant increase of TH-immunoreactive fibers in this region. Moreover, confocal laser microscopy revealed a differentiation of transplanted PKH26-labelled CSM14.1 cells into neuronal nuclei antigen or TH-immunoreactive cells. Thus, CSM14.1 cells differentiate into TH-containing neurons, which most probably contribute to the preferred forelimb use, indicating a functional integration of CSM14.1 cells into the host basal ganglia loops during early postnatal development. These findings that are in contrast to observations in adult rats suggest instructive cues for neuronal differentiation and integration given by the neonatal microenvironment.
Collapse
|
78
|
Vajta G, Zhang Y, Macháty Z. Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev 2007; 19:403-23. [PMID: 17257528 DOI: 10.1071/rd06089] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/24/2006] [Indexed: 12/11/2022] Open
Abstract
During the past 6 years, considerable advancement has been achieved in experimental embryology of pigs. This process was mainly generated by the rapidly increasing need for transgenic pigs for biomedical research purposes, both for future xenotransplantation to replace damaged human organs or tissues, and for creating authentic animal models for human diseases to study aetiology, pathogenesis and possible therapy. Theoretically, among various possibilities, an established somatic cell nuclear transfer system with genetically engineered donor cells seems to be an efficient and reliable approach to achieve this goal. However, as the result of unfortunate coincidence of known and unknown factors, porcine embryology had been a handicapped branch of reproductive research in domestic animals and a very intensive and focused research was required to eliminate or minimise this handicap. This review summarises recent achievements both in the background technologies (maturation, activation, embryo culture) and the actual performance of the nuclear replacement. Recent simplified methods for in vivo development after embryo transfer are also discussed. Finally, several fields of potential application for human medical purposes are discussed. The authors conclude that although in this early phase of research no direct evidence can be provided about the practical use of transgenic pigs produced by somatic cell nuclear transfer as organ donors or disease models, the future chances even in medium term are good, and at least proportional with the efforts and sums that are invested into this research area worldwide.
Collapse
Affiliation(s)
- Gábor Vajta
- Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|
79
|
Kim NY, Jung WW, Oh YK, Chun T, Park HY, Lee HT, Han IK, Yang JM, Kim YB. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission. Xenotransplantation 2007; 14:104-11. [PMID: 17381684 DOI: 10.1111/j.1399-3089.2007.00377.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Greely HT, Cho MK, Hogle LF, Satz DM. Thinking about the human neuron mouse. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2007; 7:27-40. [PMID: 17497502 PMCID: PMC2220020 DOI: 10.1080/15265160701290371] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|
81
|
Abstract
Cell transplantation for Huntington's disease has developed over the last decade to clinical application in pilot trials in the USA, France and the UK. Although the procedures are feasible, and under appropriate conditions safe, evidence for efficacy is still limited, which has led to some calls that further development should be discontinued. We review the background of striatal cell transplantation in experimental animal models of Huntington's disease and the rationale for applying similar strategies in the human disease, and we survey the present status of the preliminary studies that have so far been undertaken in patients. When we consider the variety of parameters and principles that remain poorly defined -- such as the optimal source, age, dissection, preparation, implantation, immunoprotection and assessment protocols -- it is not surprising that clinical efficacy is still unreliable. However, since these protocols are all tractable to experimental refinement, we consider that the potential for cell transplantation in Huntington's disease is greater than has yet been realised, and remains a therapeutic strategy worthy of investigation and pursuit.
Collapse
|
82
|
Alemdar AY, Sadi D, McAlister V, Mendez I. Intracerebral co-transplantation of liposomal tacrolimus improves xenograft survival and reduces graft rejection in the hemiparkinsonian rat. Neuroscience 2007; 146:213-24. [PMID: 17303340 DOI: 10.1016/j.neuroscience.2007.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/26/2006] [Accepted: 01/08/2007] [Indexed: 01/19/2023]
Abstract
Immunosuppression remains a key issue in neural transplantation. Systemic administration of cyclosporin-A is currently widely used but has many severe adverse side effects. Newer immunosuppressive agents, such as tacrolimus (TAC) and rapamycin (RAPA), have been investigated for their neuroprotective properties on dopaminergic neurons. These drugs have been formulated into liposomal preparations [liposomal tacrolimus (LTAC) and liposomal rapamycin (LRAPA)] which retain these neuroprotective properties. Due to the slower release of the drugs from the liposomes, we hypothesized that co-transplantation of either LTAC or LRAPA within a xenogeneic cell suspension would increase cell survival and decrease graft rejection in the hemiparkinsonian rat, and that a combination of the two drugs may have a synergistic effect. 6-hydroxydopamine-lesioned rats were divided to four groups which received intra-striatal transplants of the following: 1) a cell suspension containing 400,000 fetal mouse ventral mesencephalic cells; 2) the cell suspension containing 0.63 microM LRAPA; 3) the cell suspension containing a dose of 2.0 microM LTAC; 4) the cell suspension containing 2.0 microM LTAC and 0.63 microM LRAPA. Functional recovery was assessed by amphetamine-induced rotational behavior. Animals were killed at 4 days or 6 weeks post-transplantation, and immunohistochemistry was performed to look at the expression of tyrosine hydroxylase and major histocompatibility complex classes I and II. Only the group receiving LTAC had a decrease in rotational behavior. This observation correlated well with significantly more surviving tyrosine hydroxylase immunoreactive cells compared with the other groups and significantly lower levels of immunorejection as assessed by major histocompatibility complex class I and II staining. This study has shown the feasibility of using local immunosuppression in xenotransplantation. These findings may be useful in optimizing immunosuppression in experimental neural transplantation in the laboratory and its translation into the clinical setting.
Collapse
Affiliation(s)
- A Y Alemdar
- Neural Transplantation Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax Infirmary, Nova Scotia, Canada B3H 3A7
| | | | | | | |
Collapse
|
83
|
Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: Modeling brain disorders. Neurosci Biobehav Rev 2007; 31:728-51. [PMID: 17445892 DOI: 10.1016/j.neubiorev.2007.02.003] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 02/05/2007] [Accepted: 02/18/2007] [Indexed: 11/22/2022]
Abstract
The use of pigs in neuroscience research has increased in the past decade, which has seen broader recognition of the potential of pigs as an animal for experimental modeling of human brain disorders. The volume of available background data concerning pig brain anatomy and neurochemistry has increased considerably in recent years. The pig brain, which is gyrencephalic, resembles the human brain more in anatomy, growth and development than do the brains of commonly used small laboratory animals. The size of the pig brain permits the identification of cortical and subcortical structures by imaging techniques. Furthermore, the pig is an increasingly popular laboratory animal for transgenic manipulations of neural genes. The present paper focuses on evaluating the potential for modeling symptoms, phenomena or constructs of human brain diseases in pigs, the neuropsychiatric disorders in particular. Important practical and ethical aspects of the use of pigs as an experimental animal as pertaining to relevant in vivo experimental brain techniques are reviewed. Finally, current knowledge of aspects of behavioral processes including learning and memory are reviewed so as to complete the summary of the status of pigs as a species suitable for experimental models of diverse human brain disorders.
Collapse
Affiliation(s)
- Nanna Marie Lind
- Department of Experimental Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
84
|
Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge ASB. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. JOURNAL OF NEUROBIOLOGY 2006; 66:1489-500. [PMID: 17013931 PMCID: PMC2040047 DOI: 10.1002/neu.20310] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell-derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64-98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration.
Collapse
Affiliation(s)
- C Eduardo Corrales
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
85
|
Li Z, Ping Y, Shengfu L, Youping L, Jingqiu C, Hong B. The Lack of Inhibition of Porcine Endogenous Retrovirus by Small Interference RNA Designed From the Long Terminal Regions. Transplant Proc 2006; 38:2258-60. [PMID: 16980058 DOI: 10.1016/j.transproceed.2006.06.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenotransplantation from pigs may offer a potential solution to the organ shortage. However, there remains the risk of xenoinfection by porcine endogenous retroviruses (PERVs) that cannot be eliminated by breeding pigs under specified pathogen-free conditions. RNA interference is a new method to inhibit the expression of a specific gene. Here, we designed two siRNAs from the long terminal repeat of PERV. Our results showed that these siRNAs had no inhibitory effects. The possible reasons for this are an off-target effect or a problem with specific sequence of RNAi. Future work should focus on siRNAs from conserved regions of other PERV genes.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
86
|
Dall AM, Zimmer J. Development of DARPP-32-positive parts of fetal pig ganglionic eminence and ventral mesencephalon in organotypic slice co-cultures. Exp Neurol 2006; 200:250-5. [PMID: 16529743 DOI: 10.1016/j.expneurol.2006.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 11/17/2022]
Abstract
Neurons from the fetal pig dopaminergic ventral mesencephalon (VM) and basal ganglia anlage (the ganglionic eminence) were co-cultured as organotypic slice cultures to study the development of the two interconnected brain areas. During a short developmental period (E35-E42), a groove separates the ganglionic eminence into a lateral and a medial part. This was used (a) to study the developmental expression of the striatal marker protein, dopamine and adenosine 3,5-monophosphate regulated phospho-protein (DARPP-32) in the two parts and (b) to compare innervations of the two parts by tyrosine hydroxylase (TH)-positive, dopaminergic fibers from co-cultured slices of the ventral mesencephalon. DARPP-32 expression was more extensive and dense in cultures of the lateral part of the striatal anlage than the medial part. The DARPP-32-positive areas moreover overlapped with areas rich in acetylcholine esterase (AChE) and were the preferred target areas for TH-positive fibers from the co-cultured VM.
Collapse
Affiliation(s)
- Annette Møller Dall
- Anatomy and Neurobiology, Institute of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | |
Collapse
|
87
|
Cho YH, Kim DS, Kim PG, Hwang YS, Cho MS, Moon SY, Kim DW, Chang JW. Dopamine neurons derived from embryonic stem cells efficiently induce behavioral recovery in a Parkinsonian rat model. Biochem Biophys Res Commun 2006; 341:6-12. [PMID: 16412382 DOI: 10.1016/j.bbrc.2005.12.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/20/2005] [Indexed: 11/30/2022]
Abstract
To test the in vivo effect of a high yield of dopaminergic (DA) neurons (90% of total neurons) which had been generated from a genetically modified mouse embryonic stem cell line, N2, the cells were transplanted into a rat model of Parkinson's disease (PD). The PD animals grafted with N2-derived cells showed significant behavior improvements compared with sham controls from 2 weeks posttransplantation, whereas animals with naïve D3-derived cells ( approximately 28% DA neurons of total neurons) showed only a modest recovery. Furthermore, hyperactivity observed in the subthalamic nucleus, pedunculopontine nucleus, and substantia nigra pars reticulata of PD rat models was dramatically reduced by the grafting of N2-derived cells. The number of DA neurons in the striatum which originated from N2 grafting was much higher compared to that from D3 grafting, and the neurons efficiently released DA in the brain, showing a good correlation with behavioral recovery.
Collapse
Affiliation(s)
- Yoon Hee Cho
- Brain Korea 21 Project for Medical Science and Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Harrower TP, Tyers P, Hooks Y, Barker RA. Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson's disease. Exp Neurol 2006; 197:56-69. [PMID: 16246328 DOI: 10.1016/j.expneurol.2005.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 06/30/2005] [Accepted: 07/26/2005] [Indexed: 11/24/2022]
Abstract
Porcine fetal neural tissue has been considered as an alternative source to human allografts for transplantation in neurodegenerative disorders by virtue of the fact that it can overcome the ethical and practical difficulties using human fetal neural tissue. However, primary porcine neural xenografts are rejected while porcine expanded neural precursor neural cells (PNPCs) seem to be less immunogenic and thus survive better [Armstrong, R.J., Harrower, T.P., Hurelbrink, C.B., McLaughin, M., Ratcliffe, E.L., Tyers, P., Richards, A., Dunnett, S.B., Rosser, A.E., Barker, R.A., 2001a. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience 106, 201-216]. In this study, we extended these observations to investigate the long-term survival of such transplants in immunosuppressed rats. Unilateral 6 OHDA lesioned rats received grafts into the dopamine denervated striatum of either primary porcine fetal neural tissue dissected from the E26 cortex or cortically derived neural stem cells which had been derived from the same source but expanded in vitro for 21 days. All cortically derived neural stem cell grafts survived up to 5 months in contrast to the poor survival of primary porcine xenografts. Histological analysis demonstrated good graft integration with fibers extending into the surrounding host tissue including white matter with synapse formation, and in addition there was evidence of host vascularization and myelinated fibers within the graft area. This study has therefore shown for the first time the reliable long-term survival of grafts derived from porcine expanded neural precursors in a rat model of PD, with maturation and integration into the host brain. This demonstrates that such xenografted cells may be able to recreate the damaged circuitry in PD although strategies for dopaminergic differentiation of the porcine neural precursor cell remain to be refined.
Collapse
Affiliation(s)
- T P Harrower
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | |
Collapse
|
89
|
Robichon R, Jaafar A, Terqui M, Brachet P, Peschanski M. Pig xenografts to the immunocompetent rat brain: Survival rates using distinct neurotoxic lesions in the nigrostriatal pathway and two rat strains. Exp Neurol 2005; 194:333-40. [PMID: 16022861 DOI: 10.1016/j.expneurol.2004.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 12/01/2004] [Accepted: 12/02/2004] [Indexed: 11/17/2022]
Abstract
Porcine foetal neurons for xenotransplantation in Parkinson's disease (PD) is an alternative source to human fetuses. One of the obstacles facing brain xenotransplantation is the existence of an immune response, which prevents long-term graft survival. Experimental results concerning the survival time of porcine foetal neurons implanted into the brain of immunocompetent rats have been quite different from one study to another, suggesting an effect on graft survival of uncontrolled experimental parameters. To identify such parameters, we have first analyzed the survival of porcine foetal nigral neurons at 5 and 10 weeks after implantation into the striatum of immunocompetent rats having different types of brain lesion affecting cells (quinolinic acid) or projections to the striatum (MPP+, 6-OHDA). In a second experiment, graft survival was analyzed in two strains of recipient rats (female Sprague-Dawley and male Lewis rats) in conditions of ipsilateral dopaminergic denervation using 6-OHDA. The characteristics of surviving grafts were assessed by measuring the graft volume, the number of TH+ neurons, the size of TH+ neurons soma, and CD5+ cell infiltration. Long-term survival (> or = 10 weeks) of porcine neurons could be observed in all experimental models. However, there was no significant difference in graft survival rates and characteristics of the surviving grafts between the lesioned groups, or between Sprague-Dawley and Lewis rats. Altogether, results were highly variable within groups of grafts exposed to similar experimental procedures at both 5 and 10 weeks post-grafting. We conclude that the distinct neurotoxins and host rat strains used in our experimental design are not major factors influencing the rejection time-course of primary neural xenografts.
Collapse
Affiliation(s)
- R Robichon
- INSERM/UPVM U 421, Plasticité cellulaire et Thérapeutique, Faculté de Médecine, 8 rue du General Sarrail, 94010 Créteil Cedex, France
| | | | | | | | | |
Collapse
|
90
|
Pellicer M, Giráldez F, Pumarola F, Barquinero J. [Stem cells for the treatment of hearing loss]. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2005; 56:227-32. [PMID: 15999787 DOI: 10.1016/s0001-6519(05)78606-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the greatest challenges in the treatment of inner ear disorders is to find a cure for the hearing loss caused by the loss of cochlear hair cells or spiral ganglion neurons. The recent discovery of stem cells in the adult inner ear that are capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be converted into hair cells, raise hope for the future development of stem-cell-based treatments.
Collapse
Affiliation(s)
- M Pellicer
- Sección de ORL Pediátrica, Hospital Universitari Vall d'Hebron. Barcelona.
| | | | | | | |
Collapse
|
91
|
Factors affecting neuronal cell xenotransplantation. Curr Opin Organ Transplant 2005. [DOI: 10.1097/01.mot.0000174043.67944.6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Abstract
Transplantation of cells and tissues to the mammalian brain and CNS has revived the interest in the immunological status of brain and its response to grafted tissue. The previously held view that the brain was an absolute "immunologically privileged site" allowing indefinite survival without rejection of grafts of cells has proven to be wrong. Thus, the brain should be regarded as a site where immune responses can occur, albeit in a modified form, and under certain circumstances these are as vigorous as those seen in other peripheral sites. Clinical cell transplant trials have now been performed in Parkinson's disease, Huntington's disease, demyelinating diseases, retinal disorders, stroke, epilepsy, and even deafness, and normally are designed as cell replacement strategies, although implantation of genetically modified cells for supplementation of growth factors has also been tried. In addition, some disorders of the CNS for which cell therapies are being considered have an immunological basis, such as multiple sclerosis, which further complicates the situation. Embryonic neural tissue allografted into the CNS of animals and patients with neurodegenerative conditions survives, makes and receives synapses, and ameliorates behavioral deficits. The use of aborted human tissue is logistically and ethically complicated, which has lead to the search for alternative sources of cells, including xenogeneic tissue, genetically modified cells, and stem cells, all of which can and will induce some level of immune reaction. We review some of the immunological factors involved in transplantation of cells to CNS.
Collapse
Affiliation(s)
- Roger A Barker
- Cambridge Center for Brain Repair and Department of Neurology, Cambridge CB2 6SP, United Kingdom
| | | |
Collapse
|
93
|
Fu YS, Cheng YC, Lin MYA, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 2005; 24:115-24. [PMID: 16099997 DOI: 10.1634/stemcells.2005-0053] [Citation(s) in RCA: 307] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells isolated from Wharton's jelly of the umbilical cord were induced to transform into dopaminergic neurons in vitro through stepwise culturing in neuron-conditioned medium, sonic hedgehog, and FGF8. The success rate was 12.7%, as characterized by positive staining for tyrosine hydroxylase (TH), the rate-limiting catecholaminergic synthesizing enzyme, and dopamine being released into the culture medium. Transplantation of such cells into the striatum of rats previously made Parkinsonian by unilateral striatal lesioning with the dopaminergic neurotoxin 6-hydroxydopamine partially corrected the lesion-induced amphetamine-evoked rotation. Viability of the transplanted cells at least 4 months after transplantation was identified by positive TH staining and migration of 1.4 mm both rostrally and caudally. These results suggest that human umbilical mesenchymal stem cells have the potential for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yu-Show Fu
- 155 Sec. 2, Li-Nung Street, 112, Department of Anatomy, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Martin C, Plat M, Nerriére-Daguin V, Coulon F, Uzbekova S, Venturi E, Condé F, Hermel JM, Hantraye P, Tesson L, Anegon I, Melchior B, Peschanski M, Le Mauff B, Boeffard F, Sergent-Tanguy S, Neveu I, Naveilhan P, Soulillou JP, Terqui M, Brachet P, Vanhove B. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 2005; 14:373-84. [PMID: 16201404 DOI: 10.1007/s11248-004-7268-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transplantation of fetal porcine neurons is a potential therapeutic strategy for the treatment of human neurodegenerative disorders. A major obstacle to xenotransplantation, however, is the immune-mediated rejection that is resistant to conventional immunosuppression. To determine whether genetically modified donor pig neurons could be used to deliver immunosuppressive proteins locally in the brain, transgenic pigs were developed that express the human T cell inhibitory molecule hCTLA4-Ig under the control of the neuron-specific enolase promoter. Expression was found in various areas of the brain of transgenic pigs, including the mesencephalon, hippocampus and cortex. Neurons from 28-day old embryos secreted hCTLA4-Ig in vitro and this resulted in a 50% reduction of the proliferative response of human T lymphocytes in xenogenic proliferation assays. Transgenic embryonic neurons also secreted hCTLA4-Ig and had developed normally in vivo several weeks after transplantation into the striatum of immunosuppressed rats that were used here to study the engraftment in the absence of immunity. In conclusion, these data show that neurons from our transgenic pigs express hCTLA4-Ig in situ and support the use of this material in future pre-clinical trials in neuron xenotransplantation.
Collapse
Affiliation(s)
- Caroline Martin
- Institut de Transplantation et de Recherche en Transplantation, INSERM U643, CHU Hôtel Dieu, 30, Bld J Monnet, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Currently, the number of patients awaiting transplantation is continuously increasing, and shortage of available deceased organ donors is the major limitation for organ and cell allotransplantation. Research to develop alternative sources of tissues is ongoing and xenogeneic organs or cells represent an attractive solution. This review focuses on recent progress achieved in this field, including the development of newly genetically modified animal donors and new immunosuppressive approaches. As xenotransplantation is moving closer to clinical application, future perspectives must establish guidelines to ensure that future clinical trials are carried out ethically and safely.
Collapse
Affiliation(s)
- Pascal Bucher
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Switzerland
| | | | | |
Collapse
|
96
|
Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of Fetal Porcine Cells in Patients with Basal Ganglia Infarcts: A Preliminary Safety and Feasibility Study. Cerebrovasc Dis 2005; 20:101-7. [PMID: 15976503 DOI: 10.1159/000086518] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/11/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cell transplantation is safe in animal models and enhances recovery from stroke in rats. METHODS We studied the safety and feasibility of fetal porcine transplantation in 5 patients with basal ganglia infarcts and stable neurological deficits. To prevent rejection, cells were pretreated with an anti-MHC1 antibody and no immunosuppressive drugs were given to the patients. RESULTS The first 3 patients had no adverse cell, procedure, or imaging-defined effects. The fourth patient had temporary worsening of motor deficits 3 weeks after transplantation, and the fifth patient developed seizures 1 week after transplantation. MRI in both patients demonstrated areas of enhancement remote from the transplant site, which resolved on subsequent imaging. Two patients showed improvement in speech, language, and/or motor impairments over several months and persisted at 4 years. The study was terminated by the FDA after the inclusion of 5 patients. CONCLUSION This is the first report on the transplantation of nontumor cells in ischemic stroke patients.
Collapse
Affiliation(s)
- Sean I Savitz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass. 02215, USA
| | | | | | | | | | | |
Collapse
|
97
|
Baker KA, Mendez I. Long distance selective fiber outgrowth of transplanted hNT neurons in white matter tracts of the adult rat brain. J Comp Neurol 2005; 486:318-30. [PMID: 15846787 DOI: 10.1002/cne.20477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminally differentiated neurons derived from a human teratocarcinoma cell line (NT2N or hNT neurons) are promising as a cell source for transplantation, as they have been shown to be safe for transplantation in humans. We have shown previously that hNT neurons can express a catecholaminergic phenotype in a rat Parkinson model. In this study, we investigated the long-term survival and ability of hNT neurons to express tyrosine hydroxylase and reconstruct the dopamine-denervated nigrostriatal pathway. Hemiparkinsonian rats received grafts of 400,000 viable hNT neurons into each of the denervated striatum and substantia nigra. Robust hNT grafts were detected up to 24 weeks posttransplantation, although few cells expressed tyrosine hydroxylase. Many hNT fibers were often associated with ipsilateral and contralateral white matter tracts--corpus callosum, rostral migratory stream, optic tract, and external capsule. Fewer fibers were associated with the superior cerebellar peduncle, medial lemniscus, and nigrostriatal pathway. Axons also projected into the frontal cortex and extended parallel to the surface of the brain in the superficial cortical layers. These pathways were seen in all grafted animals, suggesting that specific guidance cues exist in the adult brain governing hNT fiber outgrowth. Injured adult axons and transplanted embryonic neuronal axons rarely extend for such distances in the adult nervous system. We propose that elucidating the factors promoting and guiding hNT axonal outgrowth could provide important clues to enhancing regeneration and target reinnervation in the adult brain, two factors of critical importance for cell restoration strategies aimed at brain repair.
Collapse
Affiliation(s)
- K Adam Baker
- Neural Transplantation Laboratory, Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
98
|
Riaz SS, Bradford HF. Factors involved in the determination of the neurotransmitter phenotype of developing neurons of the CNS: Applications in cell replacement treatment for Parkinson's disease. Prog Neurobiol 2005; 76:257-78. [PMID: 16256257 DOI: 10.1016/j.pneurobio.2005.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 06/07/2005] [Accepted: 08/04/2005] [Indexed: 02/08/2023]
Abstract
The developmental stages involved in the conversion of stem cells to fully functional neurons of specific neurotransmitter phenotype are complex and not fully understood. Over the past decade many studies have been published that demonstrate that in vitro manipulation of the epigenetic environment of the stem cells allows experimental control of final neuronal phenotypic choice. This review presents the evidence for the involvement of a number of endogenous neurobiochemicals, which have been reported to potently influence DAergic (and other neurotransmitter) phenotype expression in vitro. They act at different stages on the pathway to neurotransmitter phenotype determination, and in different ways. Many are better known for their involvement in other aspects of development, and in other biochemical roles. Their proper place, and precise roles, in neurotransmitter phenotype determination in vivo will no doubt be determined in the future. Meanwhile, considerable medical benefits are offered from producing large, long-term, viable cryostores of self-regenerating multipotential neural precursor cells (i.e., brain stem cells), which can be used for cell replacement therapies in the treatment of degenerative brain diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- S S Riaz
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biochemistry Building, South Kensington Campus, Imperial College Road, SW7 2AZ London, UK
| | | |
Collapse
|
99
|
Abstract
The present historical review reports the clinical experiences of transplantations from animal to human. The first transplantation attempts were made without any knowledge of the species barrier. The pioneers of xenotransplantation realized xenotransfusions as early as the 16th century, then cell and tissue xenotransplantations in the 19th century. At the beginning of the 20th century, xenotransplantation of testicles became the latest craze. At the same time, and later in the 1960s, organ xenotransplantations were attempted, with disappointing results. Mathieu Jaboulay, Serge Voronoff, Keith Reemtsma, James Hardy, Denton Cooley, Thomas Starzl, Christiaan Barnard and Leonard Bailey were among the pionneers of xenotransplantation. Recent trials concerned above all tissue and cell xenotransplantations. Nowadays, with encapsulation, transgenesis, and cloning, great advances have been made for controlling xenograft rejection, but ethical questions linked to the risk of infections have become a major pre-occupation within the scientific community and the general population.
Collapse
Affiliation(s)
- Jack-Yves Deschamps
- Department of Cellular and Molecular Immuno-Endocrinology, University of Nantes/Veterinary School of Nantes, ENVN, Atlanpole, La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | |
Collapse
|
100
|
Subramanian T, Deogaonkar M, Brummer M, Bakay R. MRI guidance improves accuracy of stereotaxic targeting for cell transplantation in parkinsonian monkeys. Exp Neurol 2005; 193:172-80. [PMID: 15817276 DOI: 10.1016/j.expneurol.2004.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/30/2004] [Accepted: 11/24/2004] [Indexed: 01/05/2023]
Abstract
Accuracy of targeting is critical for the success of cell transplantation in the central nervous system. We compared the accuracy of conventional atlas-guided stereotaxis to magnetic resonance imaging (MRI)-guided stereotaxic targeting in various basal ganglia nuclei in parkinsonian monkeys. 28 monkeys underwent unilateral striatal transplantation. High-resolution 3D MR images of the brain were used in 15 monkeys fitted with a MRI-compatible stereotaxic frame for target localization. This was immediately followed by cranial surgery with the frame "in situ". 13 additional monkeys underwent stereotaxic atlas-guided cranial surgery for placement of cell transplants. Following extensive behavioral testing and microelectrode recordings, all animals were perfused. The brains were sectioned coronally and stained to determine the morphology of needle tracts as an accuracy measure of stereotaxic placements. MRI-guided stereotaxy was completely accurate in 80% as compared to 38.5% in atlas-guided stereotaxis. The chance of missing a target completely was as high as 38.5% in atlas-guided stereotaxis, which was reduced to 6.67% when MRI was used for guidance. Targeting error occurred mostly in the anterior caudate and posterior putamen as against better accuracy in the anterior putamen. These results suggest that accuracy of stereotaxic unilateral cranial targeting into the putamen and the caudate in monkeys can be improved with high-resolution 3D MR imaging.
Collapse
Affiliation(s)
- Thyagarajan Subramanian
- Department of Neurosciences, Cleveland Clinic Foundation, Mail-code NB 20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|