51
|
Dai X, Zhang H, Han J, He Y, Zhang Y, Qi Y, Pang JJ. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration. PLoS One 2016; 11:e0156542. [PMID: 27228218 PMCID: PMC4882044 DOI: 10.1371/journal.pone.0156542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency.
Collapse
Affiliation(s)
- Xufeng Dai
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (XD); (JP)
| | - Hua Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Juanjuan Han
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ying He
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yangyang Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yan Qi
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ji-jing Pang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (XD); (JP)
| |
Collapse
|
52
|
Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage. Biochem Biophys Res Commun 2016; 472:425-31. [DOI: 10.1016/j.bbrc.2015.12.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023]
|
53
|
Neuro-protective Mechanisms of Lycium barbarum. Neuromolecular Med 2016; 18:253-63. [PMID: 27033360 DOI: 10.1007/s12017-016-8393-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
Neuronal diseases, including retinal disorders, stroke, Alzheimer's disease, Parkinson's disease and spinal cord injury, affect a large number of people worldwide and cause heavy social and economic burdens. Although many efforts have been made by scientists and clinicians to develop novel drug and healthcare strategies, few of them received satisfactory outcomes to date. Lycium barbarum is a traditional homology of medicine and food in Chinese medicine, with the capability to nourish the eyes, liver and kidneys. Recent studies have also explored its powerful neuro-protective effects on a number of neuronal diseases. In the current review, we collected key recent findings regarding the neuro-protective effects and mechanisms of L. barbarum derivatives, primarily its polysaccharide (LBP) , in some common diseases of the nervous system. A comprehensive comparison with currently available drugs has also been discussed. In general, LBP is a promising neuronal protector with potent ameliorative effects on key pathological events, such as oxidative stress, inflammation, apoptosis and cell death with minimal side effects.
Collapse
|
54
|
Butler MC, Sullivan JM. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System. Invest Ophthalmol Vis Sci 2016; 56:7159-68. [PMID: 26551329 DOI: 10.1167/iovs.14-16370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. METHODS Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. RESULTS The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. CONCLUSIONS A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.
Collapse
Affiliation(s)
- Mark C Butler
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, Ross Eye Institute, University at Buffalo-SUNY, Buffalo, New York, United States
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, Ross Eye Institute, University at Buffalo-SUNY, Buffalo, New York, United States 3Department of Pharmacology/Toxicology, University at
| |
Collapse
|
55
|
AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs. Mol Ther 2016; 24:867-76. [PMID: 26857842 DOI: 10.1038/mt.2016.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 11/08/2022] Open
Abstract
We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.
Collapse
|
56
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
57
|
Analysis of the Retinal Nerve Fiber Layer in Retinitis Pigmentosa Using Optic Coherence Tomography. J Ophthalmol 2015; 2015:157365. [PMID: 26351569 PMCID: PMC4553185 DOI: 10.1155/2015/157365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/23/2015] [Accepted: 07/05/2015] [Indexed: 11/18/2022] Open
Abstract
Aim. To evaluate the peripapillary retinal nerve fiber layer (RNFL) changes in retinitis pigmentosa (RP) patients using spectral domain optic coherence tomography (Sd-OCT). Methods. We retrospectively examined medical records of forty-four eyes of twenty-two RP patients. The results were also compared with those of previously reported forty-four eyes of twenty-two normal subjects (controls). Records of average and four quadrants peripapillary RNFL thickness measurements using Sd-OCT were assessed. Results. In RP patients the mean RNFL thickness was 97.57 ± 3.21 μm. The RNFL in the superior, temporal, nasal, and inferior quadrants was 119.18 ± 4.47 μm, 84.68 ± 2.31 μm, 75.09 ± 3.34 μm, and 113.88 ± 4.25 μm, respectively. While the thinning of RNFL was predominantly observed in the inferior quadrant, the thickening was mostly noted in temporal quadrant. The differences between mean, superior, and nasal quadrant RNFL thicknesses were not statistically significant when compared with control group. The RP patients had thinner inferior quadrant and thicker temporal quadrant than control group (p < 0.05). Conclusion. Sd-OCT is highly sensitive and effective instrument to detect RNFL changes in RP patients. RNFL measurements can provide information about the progression of retinitis pigmentosa and may provide prognostic indices for future treatment modalities.
Collapse
|
58
|
Qi Y, Dai X, Zhang H, He Y, Zhang Y, Han J, Zhu P, Zhang Y, Zheng Q, Li X, Zhao C, Pang J. Trans-Corneal Subretinal Injection in Mice and Its Effect on the Function and Morphology of the Retina. PLoS One 2015; 10:e0136523. [PMID: 26317758 PMCID: PMC4552822 DOI: 10.1371/journal.pone.0136523] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose To introduce a practical method of subretinal injection in mice and evaluate injection-induced retinal detachment (RD) and damage using a dynamic imaging system, electrophysiology, and histology. Methods After full dilation of a 2-month-old C57BL/6J mouse pupil, the cornea near the limbus was punctured with a 30 ½-gague disposable beveled needle. A 33 ½-gauge blunt needle was inserted through the corneal perforation into the anterior chamber, avoiding the lens before going deeper into the vitreous cavity, and penetrating the inner retina to reach the subretinal space. The mice were divided into four groups: in group 1, about 80–100% of the retina was filled with subretinally injected solution; in group 2, approximately 50–70% of the retina was filled with injected solution; in group 3, the procedures were stopped before solution injection; and non-injected eyes were used as the negative control in group 4. An optical coherence tomography (OCT) imaging system was used to monitor retinal reattachment during the first three days following the injections. Histological and functional changes were examined by light microscopy and electroretinography (ERG) at five weeks post-injection. Results After a short-term training, a 70% success rate with 50% or more coverage (i.e., retinal blebs occupied 50% or more retinal area and filled with the injected solution) with minimal injection-related damages can be achieved. Bleb formation was associated with retinal detachment (RD) between the neuroretina and the retinal pigment epithelium (RPE) layer. Partial RD could be observed at post-injection day 1, and by day 2 most of the retina had reattached. At 5 weeks post-injection, compared to uninjected control group 4, the b-wave amplitudes of ERG decreased 22% in group 1, 16% in group 2, and 7% in group 3; the b-wave amplitudes were statistically different between the uninjected group and the groups with either 50–70% or 80–100% coverage. The subretinal injection-induced RD reattached and became stable at five weeks post-injection, although some photoreceptor damage could still be observed in and around the injection sites, especially in 80–100% coverage group. Conclusions Trans-corneal subretinal injection is effective and practical, although subretinal injection-related damages can cause some morphological and functional loss.
Collapse
Affiliation(s)
- Yan Qi
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xufeng Dai
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Hua Zhang
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ying He
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yangyang Zhang
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Juanjuan Han
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
- Fenyang College of Shanxi Medical University, Fenyang, Shanxi, P. R. China
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yuxin Zhang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Qinxiang Zheng
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xia Li
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jijing Pang
- School of Ophthalmology & Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
59
|
Bennett J. My career path for developing gene therapy for blinding diseases: the importance of mentors, collaborators, and opportunities. Hum Gene Ther 2015; 25:663-70. [PMID: 25136912 DOI: 10.1089/hum.2014.2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jean Bennett
- Department of Ophthalmology and Center for Advanced Retinal and Ophthalmic Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA 19104
| |
Collapse
|
60
|
Abstract
Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present.
Collapse
|
61
|
Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179. Nat Commun 2015; 6:6006. [PMID: 25613321 PMCID: PMC4354202 DOI: 10.1038/ncomms7006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice.
Collapse
|
62
|
Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration. Sci Rep 2014; 4:7601. [PMID: 25535040 PMCID: PMC4274520 DOI: 10.1038/srep07601] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/03/2014] [Indexed: 12/03/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited disorders caused by mutations in a variety of genes that are mostly expressed by rod cells, which results in initial death of rod photoreceptors followed by gradual death of cone photoreceptors. RP is currently untreatable and usually leads to partial or complete blindness. Here, we explored the potential neuroprotective effects of polysaccharides of wolfberry, which are long known to possess primary beneficial properties in the eyes, on photoreceptor apoptosis in the rd10 mouse model of RP. We found that these polysaccharides provided long-term morphological and functional preservation of photoreceptors and improved visual behaviors in rd10 mice. Moreover, we demonstrated that polysaccharides exerted neuroprotective effects through antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Furthermore, we identified that polysaccharides modulated inflammation and apoptosis partly through inhibition of NF-κB and HIF-1α expressions, respectively. Overall, we demonstrated the synergistic protective effects of polysaccharides in preserving photoreceptors against degeneration in rd10 mice. Our study provides rationale and scientific support on using polysaccharides of wolfberry as one supplementary treatment of RP patients in the future.
Collapse
|
63
|
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43:108-28. [PMID: 25124745 PMCID: PMC4241499 DOI: 10.1016/j.preteyeres.2014.08.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Agostina Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
64
|
Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med 2014; 5:a017111. [PMID: 25324231 DOI: 10.1101/cshperspect.a017111] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances.
Collapse
Affiliation(s)
- José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Paris, F-75012, France INSERM, U968, Paris, F-75012, France CNRS, UMR 7210, Paris, F-75012, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France Fondation Ophtalmologique Adolphe de Rothschild, Paris, F-75019, France Académie des Sciences-Institut de France, Paris, F-75006, France Institute of Ophthalmology-University College London, London EC1V 9EL, United Kingdom
| | - Katia Marazova
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Paris, F-75012, France INSERM, U968, Paris, F-75012, France CNRS, UMR 7210, Paris, F-75012, France
| | - Isabelle Audo
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Paris, F-75012, France INSERM, U968, Paris, F-75012, France CNRS, UMR 7210, Paris, F-75012, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France Institute of Ophthalmology-University College London, London EC1V 9EL, United Kingdom
| |
Collapse
|
65
|
Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2014; 111:124-33. [PMID: 25094052 DOI: 10.1016/j.visres.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Collapse
Affiliation(s)
- Livia S Carvalho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
66
|
Fawzi AA, Chou JC, Kim GA, Rollins SD, Taylor JM, Farrow KN. Sildenafil attenuates vaso-obliteration and neovascularization in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2014; 55:1493-501. [PMID: 24519428 DOI: 10.1167/iovs.13-13207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE We sought to determine the effect of sildenafil on retinal vascular changes in a mouse model of oxygen-induced retinopathy (OIR). METHODS Vascular defects in OIR mice were quantified by measuring vaso-obliteration at postnatal days 12 and 17 (P12 and P17) and neovascularization at P17 to compare sildenafil-treated to dextrose-treated OIR mice. Retinal HIF1α protein expression was quantified by Western blotting and normalized to that of β-actin. Right ventricular hypertrophy was measured by Fulton's index as a surrogate for hyperoxia-induced pulmonary hypertension. RESULTS At P12, OIR mice treated with sildenafil demonstrated a 24% reduction in vaso-obliteration (P < 0.05), whereas at P17, treated animals showed a 50% reduction in neovascularization (P < 0.05) compared to dextrose-treated controls. Sildenafil-treated OIR mice had stabilization of retinal HIF1α at P12, immediately after hyperoxia. At P17, sildenafil-treated OIR mice had decreased HIF1α relative to untreated mice. OIR mice developed right ventricle hypertrophy that was significant compared to that in room air controls, which was abrogated by sildenafil. CONCLUSIONS Sildenafil treatment significantly decreased retinal vaso-obliteration and neovascularization in a mouse OIR model. These effects are likely due to sildenafil-induced HIF1α stabilization during hyperoxia exposure. Furthermore, we confirm disease overlap by showing that OIR mice also develop hyperoxia-induced right ventricular hypertrophy, which is prevented by sildenafil. This study is a first step toward delineating a potential therapeutic role for sildenafil in OIR and further suggests that there may be common pathophysiologic mechanisms underlying hyperoxia-induced retinal and pulmonary vascular disease.
Collapse
Affiliation(s)
- Amani A Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Colella P, Auricchio A. Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther 2013; 23:796-807. [PMID: 22734691 DOI: 10.1089/hum.2012.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inherited retinopathies (IRs) are common and untreatable blinding conditions inherited mostly as monogenic due to mutations in genes expressed in retinal photoreceptors (PRs) and in retinal pigment epithelium (RPE). Over the last two decades, the retina has emerged as one of the most favorable target tissues for gene therapy given its small size and its enclosed and immune-privileged environment. Different types of viral vectors have been developed, especially those based on the adeno-associated virus (AAV), which efficiently deliver therapeutic genes to PRs or RPE upon subretinal injections. Dozens of successful proofs of concept of the efficacy of gene therapy for recessive and dominant IRs have been generated in small and large models that have paved the way to the first clinical trials using AAV in patients with Leber congenital amaurosis, a severe form of childhood blindness. The results from these initial trials suggest that retinal gene therapy with AAV is safe in humans, that vision can be improved in patients that have suffered from severe impairment of visual function, in some cases for decades, and that readministration of AAV to the subretinal space is feasible, effective, and safe. However, none of the trials could match the levels of efficacy of gene therapy observed in a dog model of the disease, suggesting that there is room for improvement. In conclusion, these results bode well for further testing of AAV-mediated retinal gene therapy in patients with other monogenic and complex forms of blindness.
Collapse
|
69
|
Abstract
Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.
Collapse
Affiliation(s)
- José-Alain Sahel
- INSERM UMR_S 968, UPMC, University of Paris 06, Institut de la Vision, Paris, France.
| | | |
Collapse
|
70
|
Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. Mol Ther 2013; 21:1131-41. [PMID: 23568263 DOI: 10.1038/mt.2013.50] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Achromatopsia is a genetic disorder of cones, and one of the most common forms is a channelopathy caused by mutations in the β-subunit, CNGB3, of the cone cyclic nucleotide-gated (CNG) channel. Recombinant adeno-associated virus of serotype 5 (rAAV5)-mediated gene transfer of human CNGB3 cDNA to mutant dog cones results in functional and structural rescue in dogs <0.5 years of age, but treatment is minimally effective in dogs >1 year. We now test a new therapeutic concept by combining gene therapy with the administration of ciliary neurotrophic factor (CNTF). Intravitreal CNTF causes transient dedifferentiation of photoreceptors, a process called deconstruction, whereby visual cells become immature with short outer segments, and decreased retinal function and gene expression that subsequently return to normal. Cone function was successfully rescued in all mutant dogs treated between 14 and 42 months of age with this strategy. CNTF-mediated deconstruction and regeneration of the photoreceptor outer segments prepares the mutant cones optimally for gene augmentation therapy.
Collapse
|
71
|
Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:125-33. [PMID: 23393028 DOI: 10.1007/s11427-013-4443-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/28/2012] [Indexed: 12/26/2022]
Abstract
Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients' genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber's Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt's disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine.
Collapse
|
72
|
Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 2013; 110:E593-601. [PMID: 23359713 DOI: 10.1073/pnas.1108297110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.
Collapse
|
73
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
74
|
Bennett J, Maguire AM. Gene Therapy for Retinal Disease. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
75
|
Wert KJ, Davis RJ, Sancho-Pelluz J, Nishina PM, Tsang SH. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet 2012; 22:558-67. [PMID: 23108158 DOI: 10.1093/hmg/dds466] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 36 000 cases of simplex and familial retinitis pigmentosa (RP) worldwide are caused by a loss in phosphodiesterase (PDE6) function. In the preclinical Pde6α(nmf363) mouse model of this disease, defects in the α-subunit of PDE6 result in a progressive loss of photoreceptors and neuronal function. We hypothesized that increasing PDE6α levels using an AAV2/8 gene therapy vector could improve photoreceptor survival and retinal function. We utilized a vector with the cell-type-specific rhodopsin (RHO) promoter: AAV2/8(Y733F)-Rho-Pde6α, to transduce Pde6α(nmf363) retinas and monitored its effects over a 6-month period (a quarter of the mouse lifespan). We found that a single injection enhanced survival of photoreceptors and improved retinal function. At 6 months of age, the treated eyes retained photoreceptor cell bodies, while there were no detectable photoreceptors remaining in the untreated eyes. More importantly, the treated eyes demonstrated functional visual responses even after the untreated eyes had lost all vision. Despite focal rescue of the retinal structure adjacent to the injection site, global functional rescue of the entire retina was observed. These results suggest that RP due to PDE6α deficiency in humans, in addition to PDE6β deficiency, is also likely to be treatable by gene therapy.
Collapse
Affiliation(s)
- Katherine J Wert
- Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
76
|
Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy. Mol Ther 2012; 20:2019-30. [PMID: 22828504 DOI: 10.1038/mt.2012.134] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.
Collapse
|
77
|
Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Becirovic E, Koch F, Seide C, Beck SC, Seeliger MW, Biel M, Mühlfriedel R, Michalakis S. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 2012; 21:4486-96. [PMID: 22802073 DOI: 10.1093/hmg/dds290] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in the CNGB1 knockout (CNGB1(-/-)) mouse model. To enable efficient packaging and rod-specific expression of the relatively large CNGB1a cDNA (~4 kb), we used an AAV expression cassette with a short rod-specific promoter and short regulatory elements. After injection of therapeutic AAVs into the subretinal space of 2-week-old CNGB1(-/-) mice, we assessed the restoration of the visual system by analyzing (i) CNG channel expression and localization, (ii) retinal function and morphology and (iii) vision-guided behavior. We found that the treatment not only led to expression of full-length CNGB1a, but also restored normal levels of the previously degraded CNGA1 subunit of the rod CNG channel. Both proteins co-localized in rod outer segments and formed regular CNG channel complexes within the treated area of the CNGB1(-/-) retina, leading to significant morphological preservation and a delay of retinal degeneration. In the electroretinographic analysis, we also observed restoration of rod-driven light responses. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this work provides a proof-of-concept for the treatment of rod channelopathy-associated RP by AAV-mediated gene replacement.
Collapse
Affiliation(s)
- Susanne Koch
- Center for Integrated Protein Science Munich, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Pang JJ, Lei L, Dai X, Shi W, Liu X, Dinculescu A, McDowell JH. AAV-mediated gene therapy in mouse models of recessive retinal degeneration. Curr Mol Med 2012; 12:316-30. [PMID: 22300136 DOI: 10.2174/156652412799218877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023]
Abstract
In recent years, more and more mutant genes that cause retinal diseases have been detected. At the same time, many naturally occurring mouse models of retinal degeneration have also been found, which show similar changes to human retinal diseases. These, together with improved viral vector quality allow more and more traditionally incurable inherited retinal disorders to become potential candidates for gene therapy. Currently, the most common vehicle to deliver the therapeutic gene into target retinal cells is the adenoassociated viral vector (AAV). Following delivery to the immuno-privileged subretinal space, AAV-vectors can efficiently target both retinal pigment epithelium and photoreceptor cells, the origin of most retinal degenerations. This review focuses on the AAV-based gene therapy in mouse models of recessive retinal degenerations, especially those in which delivery of the correct copy of the wild-type gene has led to significant beneficial effects on visual function, as determined by morphological, biochemical, electroretinographic and behavioral analysis. The past studies in animal models and ongoing successful LCA2 clinical trials, predict a bright future for AAV gene replacement treatment for inherited recessive retinal diseases.
Collapse
Affiliation(s)
- J-J Pang
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
79
|
Nita M, Strzałka-Mrozik B, Grzybowski A, Romaniuk W, Mazurek U. Ophthalmic transplantology: posterior segment of the eye--part II. Med Sci Monit 2012; 18:RA97-103. [PMID: 22648265 PMCID: PMC3560715 DOI: 10.12659/msm.882868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Transplants of the retina are among the new strategies being used in the treatment of genetic and degenerative macular diseases. Moreover, various cell cultures are being tested to treat retinal disorders. Material/Methods Literature dated from 2004 to 2011 was comprehensively examined via Medline and PubMed searches for the following terms: auto-, homo-, heterologous transplantation, retina, stem cells, cultivated cells. Results Tissue and cell therapy of retinal diseases are reviewed, including full-thickness retina/retinal pigment epithelium (RPE)/choroid graft; full and partial thickness RPE/choroid complex grafts; RPE/Bruch membrane complex graft; and RPE, iris pigment epithelium and stem cell grafts. Recommendations for transplants, as well as the benefits and weaknesses of specific techniques in retina transplants, are discussed. Conclusions Auto- and allogenic transplants of a full or partial thickness retina/RPE/Bruch membrane/choroid complex represent an alternative treatment offered to patients with some macular diseases. Stem cell transplantation to reconstruct and regenerate the macula requires further biomolecular and animal research studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre Dilmed, Katowice, Poland
| | | | | | | | | |
Collapse
|
80
|
Tosi J, Davis RJ, Wang NK, Naumann M, Lin CS, Tsang SH. shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa. J Cell Mol Med 2012; 15:1778-87. [PMID: 20950332 PMCID: PMC3071858 DOI: 10.1111/j.1582-4934.2010.01201.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In vertebrate rods, dark and light conditions produce changes in guanosine 3′,5′-cyclic monophosphate (cGMP) and calcium (Ca2+) levels, which are regulated by the opposing function of several proteins. During the recovery of a bright flash, guanylate cyclase (GUCY) helps raise cGMP to levels that open cGMP-gated calcium sodium channels (CNG) to increase Na+ and Ca2+ influx in the outer segment. In contrast, light activates cGMP phosphodiesterase 6 (PDE6) causing rapid hydrolysis of cGMP, CNG closure, and reduced Na+ and Ca2+ levels. In Pde6b mouse models of retinitis pigmentosa (RP), photoreceptor death is preceded by abnormally high cGMP and Ca2+ levels, likely because of continued synthesis of cGMP by guanylate cyclases and unregulated influx of Ca2+ to toxic levels through CNG channels. To reverse the effects of Pde6b loss of function, we employed an shRNA knockdown approach to reduce the expression of Gucy2e or Cnga1 in Pde6bH620Q photoreceptors prior to degeneration. Gucy2e- or Cnga1-shRNA lentiviral-mediated knockdown GUCY2E and CNGA1 expression increase visual function and photoreceptor survival in Pde6bH620Q mice. We demonstrated that effective knockdown of GUCY2E and CNGA1 expression to counteract loss of PDE6 function may develop into a valuable approach for treating some patients with RP.
Collapse
Affiliation(s)
- Joaquin Tosi
- Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
With the recent progress in identifying disease-causing genes in humans and in animal models, there are more and more opportunities for using retinal gene transfer to learn more about retinal physiology and also to develop therapies for blinding disorders. Success in preclinical studies for one form of inherited blindness have led to testing in human clinical trials. This paves the way to consider a number of other retinal diseases as ultimate gene therapy targets in human studies. The information presented here is designed to assist scientists and clinicians to use gene transfer to probe the biology of the retina and/or to move appropriate gene-based treatment studies from the bench to the clinic.
Collapse
Affiliation(s)
- Jean Bennett
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
82
|
Smith AJ, Bainbridge JWB, Ali RR. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 2011; 19:154-61. [DOI: 10.1038/gt.2011.161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
Mocko JA, Kim M, Faulkner AE, Cao Y, Ciavatta VT, Pardue MT. Effects of subretinal electrical stimulation in mer-KO mice. Invest Ophthalmol Vis Sci 2011; 52:4223-30. [PMID: 21467171 DOI: 10.1167/iovs.10-6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether mer(kd) mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. METHODS Mer(kd) mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between mer(kd) mice and RCS rats from P28 to P42. RESULTS SES-treated mer(kd) mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated mer(kd) retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in mer(kd) mice than in RCS rats. CONCLUSIONS Although SES upregulated Fgf2 in mer(kd) retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from mer(kd) mice and RCS rats across different ages showed inner retinal dysfunction in mer(kd) mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in mer(kd) mice may produce a retinal environment that is not responsive to neuroprotection from SES.
Collapse
Affiliation(s)
- Julie A Mocko
- Rehabilitation Research and Development Service, Atlanta Department of Veterans Affairs, Decatur, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
84
|
Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci 2011; 52:3051-9. [PMID: 21558483 DOI: 10.1167/iovs.10-6916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gene therapy based on delivery of viral and nonviral vectors has shown great promise for the treatment of human ocular diseases; however, limitations have consistently prevented its widespread clinical application. Viral vectors have generally been better in terms of efficiency but have safety concerns. Nonviral vectors, on the other hand, offer safety but have often been disappointing in terms of efficiency of nuclear delivery and gene expression. Extensive animal studies have reported significant progress using both systems, but thus far only a few studies have shown promise in human clinical trials. This article reviews both viral and nonviral work with focus on two candidates for clinical ocular application--AAV and nanoparticles. Of particular interest are various requirements for successful clinical application of these technologies including vector trafficking, delivery, specific gene expression, and treatment safety, and tolerance.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | |
Collapse
|
85
|
Bramall AN, Wright AF, Jacobson SG, McInnes RR. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 2011; 33:441-72. [PMID: 20572772 DOI: 10.1146/annurev-neuro-060909-153227] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The association of more than 140 genes with human photoreceptor degenerations, together with studies of animal models of these monogenic diseases, has provided great insight into their pathogenesis. Here we review the responses of the retina to photoreceptor mutations, including mechanisms of photoreceptor death. We discuss the roles of oxidative metabolism, mitochondrial reactive oxygen species, metabolic stress, protein misfolding, and defects in ciliary proteins, as well as the responses of Müller glia, microglia, and the retinal vasculature. Finally, we report on potential pharmacologic and biologic therapies, the critical role of histopathology as a prerequisite to treatment, and the exciting promise of gene therapy in animal models and in phase 1 trials in humans.
Collapse
Affiliation(s)
- Alexa N Bramall
- Programs in Genetics and Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto M5G1L7, Canada.
| | | | | | | |
Collapse
|
86
|
Sakamoto K, Mori A, Nakahara T, Ishii K. [Cause of retinitis pigmentosa and new therapeutics under development]. Nihon Yakurigaku Zasshi 2011; 137:22-26. [PMID: 21233585 DOI: 10.1254/fpj.137.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
87
|
Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther 2010; 19:234-42. [PMID: 21139570 DOI: 10.1038/mt.2010.273] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The retinal degeneration 10 (rd10) mouse is a well-characterized model of autosomal recessive retinitis pigmentosa (RP), which carries a spontaneous mutation in the β subunit of rod cGMP-phosphodiesterase (PDEβ). Rd10 mouse exhibits photoreceptor dysfunction and rapid rod photoreceptor degeneration followed by cone degeneration and remodeling of the inner retina. Here, we evaluate whether gene replacement using the fast-acting tyrosine-capsid mutant AAV8 (Y733F) can provide long-term therapy in this model. AAV8 (Y733F)-smCBA-PDEβ was subretinally delivered to postnatal day 14 (P14) rd10 mice in one eye only. Six months after injection, spectral domain optical coherence tomography (SD-OCT), electroretinogram (ERG), optomotor behavior tests, and immunohistochemistry showed that AAV8 (Y733F)-mediated PDEβ expression restored retinal function and visual behavior and preserved retinal structure in treated rd10 eyes for at least 6 months. This is the first demonstration of long-term phenotypic rescue by gene therapy in an animal model of PDEβ-RP. It is also the first example of tyrosine-capsid mutant AAV8 (Y733F)-mediated correction of a retinal phenotype. These results lay the groundwork for the development of PDEβ-RP gene therapy trial and suggest that tyrosine-capsid mutant AAV vectors may be effective for treating other rapidly degenerating models of retinal degeneration.
Collapse
|
88
|
den Hollander AI, Black A, Bennett J, Cremers FPM. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 2010; 120:3042-53. [PMID: 20811160 DOI: 10.1172/jci42258] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nonsyndromic recessive retinal dystrophies cause severe visual impairment due to the death of photoreceptor and retinal pigment epithelium cells. These diseases until recently have been considered to be incurable. Molecular genetic studies in the last two decades have revealed the underlying molecular causes in approximately two-thirds of patients. The mammalian eye has been at the forefront of therapeutic trials based on gene augmentation in humans with an early-onset nonsyndromic recessive retinal dystrophy due to mutations in the retinal pigment epithelium-specific protein 65kDa (RPE65) gene. Tremendous challenges still lie ahead to extrapolate these studies to other retinal disease-causing genes, as human gene augmentation studies require testing in animal models for each individual gene and sufficiently large patient cohorts for clinical trials remain to be identified through cost-effective mutation screening protocols.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
89
|
|
90
|
Mellough CB, Steel DHW, Lako M. Genetic basis of inherited macular dystrophies and implications for stem cell therapy. Stem Cells 2009; 27:2833-45. [PMID: 19551904 PMCID: PMC2962903 DOI: 10.1002/stem.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 06/11/2009] [Indexed: 12/25/2022]
Abstract
Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD.
Collapse
Affiliation(s)
- Carla B Mellough
- Institute of Human Genetics andInternational Centre for LifeNewcastle Upon Tyne, United Kingdom
| | - David HW Steel
- Sunderland Eye InfirmaryQueen Alexandra Road, Sunderland, Tyne and Wear, United Kingdom
| | - Majlinda Lako
- North East Stem Cell Institute, Newcastle University, International Centre for LifeNewcastle Upon Tyne, United Kingdom
| |
Collapse
|
91
|
Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One 2009; 4:e7410. [PMID: 19823583 PMCID: PMC2756629 DOI: 10.1371/journal.pone.0007410] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/10/2009] [Indexed: 12/14/2022] Open
Abstract
Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions.
Collapse
Affiliation(s)
- Xi-Qin Ding
- The Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America.
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW Ocular gene therapy has made significant advances due to improvements in viral vector delivery methods. Recent clinical trials for the treatment of Leber's congenital amaurosis have provided evidence for successful in-vivo gene therapy in humans. RECENT FINDINGS Gene therapy for ocular disease has been under investigation just over 15 years. Recently, the first human gene therapy trials for retinal degeneration were undertaken with encouraging preliminary safety and efficacy findings. Building on previous success in reversing blindness in animal models of Leber's congenital amaurosis, several groups proceeded with adeno-associated virus-mediated gene replacement. Many of the humans demonstrated increases in light sensitivity and in visual acuity. Subjective improvements in vision were corroborated in some cases by objective tests such as pupillary light response and nystagmography. Although much of the work in ocular gene therapy has involved retinal applications, significant progress has been seen in other aspects of ophthalmology. SUMMARY Ongoing human clinical trials support the safety and efficacy of adeno-associated virus-mediated gene therapy for retinal disease. These and other studies will establish the foundation for methodology to treat additional ocular diseases using gene therapy strategies.
Collapse
|
93
|
Dutt K, Cao Y. Engineering retina from human retinal progenitors (cell lines). Tissue Eng Part A 2009; 15:1401-13. [PMID: 19113950 DOI: 10.1089/ten.tea.2007.0358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell-cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr(2)e(3), expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription-polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell line retains its capacity to differentiate into multiple cell types holds great promise for the use of tissue-specific adult stem cells for therapy.
Collapse
Affiliation(s)
- Kamla Dutt
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | |
Collapse
|
94
|
Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB, Basche M, McIntosh J, Tran HV, Nathwani A, Li T, Ali RR. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18:2099-114. [PMID: 19299492 PMCID: PMC2722233 DOI: 10.1093/hmg/ddp133] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/17/2009] [Indexed: 01/19/2023] Open
Abstract
Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200-208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2-3-fold. The Aipl1-/- mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1-/- mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor degeneration.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dependovirus/genetics
- Disease Models, Animal
- Genetic Therapy
- Genetic Vectors/genetics
- Humans
- Mice
- Mice, Transgenic
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Photoreceptor Cells, Vertebrate/metabolism
- Retinitis Pigmentosa/genetics
- Retinitis Pigmentosa/physiopathology
- Retinitis Pigmentosa/therapy
Collapse
Affiliation(s)
- Mei Hong Tan
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | - Alexander J. Smith
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | - Basil Pawlyk
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Xiaoyun Xu
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Xiaoqing Liu
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - James B. Bainbridge
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | - Mark Basche
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | - Jenny McIntosh
- Cancer Research Institute, University College London, London, UK
| | - Hoai Viet Tran
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | - Amit Nathwani
- Cancer Research Institute, University College London, London, UK
| | - Tiansen Li
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robin R. Ali
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| |
Collapse
|
95
|
Naturally occurring animal models with outer retina phenotypes. Vision Res 2009; 49:2636-52. [PMID: 19375447 DOI: 10.1016/j.visres.2009.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 01/28/2023]
Abstract
Naturally occurring and laboratory generated animal models serve as powerful tools with which to investigate the etiology of human retinal degenerations, especially retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), cone dystrophies (CD) and macular degeneration (MD). Much progress has been made in elucidating gene defects underlying disease, in understanding mechanisms leading to disease, and in designing molecules for translational research and gene-based therapy to interfere with the progression of disease. Key to this progress has been study of naturally occurring murine and canine retinal degeneration mutants. This article will review the history, phenotypes and gene defects of select animal models with outer retina (photoreceptor and retinal pigment epithelium) degeneration phenotypes.
Collapse
|
96
|
Smith AJ, Bainbridge JW, Ali RR. Prospects for retinal gene replacement therapy. Trends Genet 2009; 25:156-65. [DOI: 10.1016/j.tig.2009.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023]
|
97
|
Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB, Basche M, McIntosh J, Tran HV, Nathwani A, Li T, Ali RR. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009. [PMID: 19299492 DOI: 10.1093/hgm/ddp133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200-208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2-3-fold. The Aipl1-/- mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1-/- mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor degeneration.
Collapse
Affiliation(s)
- Mei Hong Tan
- Institute of Ophthalmology, NIHR Biomedical research Centre, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Osakada F, Hirami Y, Takahashi M. Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 2009; 26:297-334. [DOI: 10.5661/bger-26-297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
99
|
Tsang SH, Tsui I, Chou CL, Zernant J, Haamer E, Iranmanesh R, Tosi J, Allikmets R. A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am J Ophthalmol 2008; 146:780-8. [PMID: 18723146 PMCID: PMC2593460 DOI: 10.1016/j.ajo.2008.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/17/2022]
Abstract
PURPOSE To develop a systematic approach for the molecular diagnosis of retinitis pigmentosa (RP) and to report new genotype-phenotype correlations for phosphodiesterase 6 (PDE6)-based RP mutations. DESIGN Clinical and molecular studies on a retrospective case series. METHODS We screened 40 unrelated RP patients with an autosomal recessive RP microarray. Individuals with RP caused by PDE6 deficiency underwent genetic segregation and phenotype analysis. RESULTS A disease-associated allele was identified in 32% of patients. Two probands (5%) had PDE6 mutations. The first proband was a compound heterozygote for known R102C and N216S alleles in PDE6A (MIM#180071). Pedigree analysis determined that the N216S variant was benign and direct sequencing discovered a novel, S303C allele. The second proband had a homozygous D600N mutation in the PDE6B gene (MIM#180072). Visual acuities of PDE6-deficient patients ranged from 20/40 to 20/200. Clinical studies showed unusual vitreomacular traction, cystoid macular edema, macular atrophy, and ring hyperfluorescence in PDE6-deficient patients. Such extensive vitreoretinal degeneration is not characteristic of photoreceptor-specific enzyme deficiencies. CONCLUSION High-throughput deoxyribonucleic acid microarray chips can be used in combination with clinical imaging to precisely characterize patients with RP. Identifying the precise mutation in RP may become the standard of care as gene therapy emerges.
Collapse
Affiliation(s)
- Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Davis RJ, Tosi J, Janisch KM, Kasanuki JM, Wang NK, Kong J, Tsui I, Cilluffo M, Woodruff ML, Fain GL, Lin CS, Tsang SH. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q). Invest Ophthalmol Vis Sci 2008; 49:5067-76. [PMID: 18658088 PMCID: PMC2715364 DOI: 10.1167/iovs.07-1422] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Approximately 8% of autosomal recessive retinitis pigmentosa (RP) cases worldwide are due to defects in rod-specific phosphodiesterase PDE6, a tetramer consisting of catalytic (PDE6alpha and PDE6beta) and two regulatory (PDE6gamma) subunits. In mice homozygous for a nonsense Pde6b(rd1) allele, absence of PDE6 activity is associated with retinal disease similar to humans. Although studied for 80 years, the rapid degeneration Pde6b(rd1) phenotype has limited analyses and therapeutic modeling. Moreover, this model does not represent human RP involving PDE6B missense mutations. In the current study the mouse missense allele, Pde6b(H620Q) was characterized further. METHODS Photoreceptor degeneration in Pde6b(H620Q) homozygotes was documented by histochemistry, whereas PDE6beta expression and activity were monitored by immunoblotting and cGMP assays. To measure changes in rod physiology, electroretinograms and intracellular Ca(2+) recording were performed. To test the effectiveness of gene therapy, Opsin::Pde6b lentivirus was subretinally injected into Pde6b(H620Q) homozygotes. RESULTS Within 3 weeks of birth, the Pde6b(H620Q) homozygotes displayed relatively normal photoreceptors, but by 7 weeks degeneration was largely complete. Before degeneration, PDE6beta expression and PDE6 activity were reduced. Although light-/dark-adapted total cGMP levels appeared normal, Pde6b(H620Q) homozygotes exhibited depressed rod function and elevated outer segment Ca(2+). Transduction with Opsin::Pde6b lentivirus resulted in histologic and functional rescue of photoreceptors. CONCLUSIONS Pde6b(H620Q) homozygous mice exhibit a hypomorphic phenotype with partial PDE6 activity that may result in an increased Ca(2+) to promote photoreceptor death. As degeneration in Pde6b(H620Q) mutants is slower than in Pde6b(rd1) mice and can be suppressed by Pde6b transduction, this Pde6b(H620Q) model may provide an alternate means to explore new treatments of RP.
Collapse
Affiliation(s)
- Richard J. Davis
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Joaquin Tosi
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Kerstin M. Janisch
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - J. Mie Kasanuki
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Nan-Kai Wang
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jian Kong
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
- Edward S. Harkness Eye Institute, Columbia University, New York, New York
| | - Ilene Tsui
- Wellesley College, Wellesley, Massachusetts
| | | | - Michael L. Woodruff
- Department of Physiological Science, UCLA, Los Angeles, California
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California
| | - Gordon L. Fain
- Department of Physiological Science, UCLA, Los Angeles, California
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California
| | - Chyuan-Sheng Lin
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephen H. Tsang
- Brown Glaucoma Laboratory, Columbia University, New York, New York
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|