51
|
Yang YH, Morand E, Leech M. Annexin A1: potential for glucocorticoid sparing in RA. Nat Rev Rheumatol 2013; 9:595-603. [PMID: 23958797 DOI: 10.1038/nrrheum.2013.126] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids have broad-ranging and powerful anti-inflammatory and immunomodulatory effects. Unsurprisingly, therefore, glucocorticoids are widely and persistently used to treat a large number of inflammatory diseases, including rheumatoid arthritis (RA), despite the well-described adverse effects of these drugs. Annexin A1 is a glucocorticoid-induced molecule that is known to replicate many of the described anti-inflammatory effects of glucocorticoids. In addition to the well-documented roles of this protein in neutrophil function, emerging evidence suggests that annexin A1 is involved in the modulation of T-cell function and the adaptive immune responses relevant to RA. Interest in annexin A1 was renewed after the delineation of the receptors for this protein. This breakthrough also led to advances in our understanding of anti-inflammatory annexin A1 mimetic peptides and agonistic compounds targeting these receptors, particularly those specific for the receptor N-formyl peptide receptor 2 (FPR2). Herein, we review the current knowledge of the biological activities of annexin A1 and their relevance to RA pathogenesis. We also discuss the potential of annexin A1 mimics and strategies aimed at potentiating annexin A1 signalling to become viable approaches to minimizing glucocorticoid use in RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
52
|
Behrouz GF, Farzaneh GS, Leila J, Jaleh Z, Eskandar KS. Presence of auto-antibody against two placental proteins, annexin A1 and vitamin D binding protein, in sera of women with pre-eclampsia. J Reprod Immunol 2013; 99:10-6. [PMID: 23830177 DOI: 10.1016/j.jri.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/20/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Pre-eclampsia (PE) is one of the most complex and life-threatening pregnancy disorders. PE is characterized by maternal hypertension and proteinuria. There is much evidence to support an immunological etiology for PE and auto-immunity is considered a predisposing factor for PE. The aim of the present study was the investigation of placental proteins as targets for auto-antibodies in PE patients. 2D-PAGE technique was used for separation of the total human placental proteins. After separation, protein spots were transferred to the PVDF membranes and blotted with sera from 20 PE patients and compared with membranes blotted with 20 sera from normal women. MALDI TOF/TOF mass spectrometry technique was used for identification of differentially blotted spots. Moreover, the results of mass analysis were confirmed using western blot with commercial mAbs and RT-PCR technique. The results indicated that two placental proteins, annexin A1 and vitamin D binding protein (DBP), might be targeted by PE sera. The expression of annexin A1 and DBP was also confirmed at RNA level using the RT-PCR technique. Furthermore, the mass results were confirmed by western blotting with commercial mAbs against two targeted proteins. The data of the present study suggest two new placental proteins, annexin A1 and DBP, as placental immune targets. Considering the relation among vitamin D deficiency, increased risk of PE, and the role of annexin A1 in the resolution of inflammation, production of antibody against annexin A1 and DBP may be considered a new auto-immune hypothesis in pre-eclampsia that calls for further investigation in future work.
Collapse
Affiliation(s)
- Gharesi-Fard Behrouz
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
53
|
Chen CY, Shen JQ, Wang F, Wan R, Wang XP. Prognostic significance of annexin A1 expression in pancreatic ductal adenocarcinoma. Asian Pac J Cancer Prev 2013; 13:4707-12. [PMID: 23167407 DOI: 10.7314/apjcp.2012.13.9.4707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Annexin A1 is a 37-kDa calcium- and phospholipid-binding protein of the annexin superfamily considered to play an important role in tumorigenesis. However, associations with clinicopathological features in pancreatic ductal adenocarcinoma (PDAC) cases have yet to be fully defined. We therefore investigated the prognostic value of annexin A1 protein as a PDAC biomarker in 83 tumor and matched non-cancerous tissues or normal pancreas tissues. Expression was analyzed using real-time RT-PCR, Western blotting and immunohistochemistry. In non-tumor tissue, myoepithelial cells showed no or weak expression of annexin A1 while expression was strong and sometimes even located in the nuclei of endothelial cells in tumor tissue. High expression was significantly associated with advanced stage (P <0.05) and a worse overall survival (P <0.05). These results provide new insights to better understand the role of annexin A1 in PDAC survival, and might be relevant to prediction of prognosis and development of more effective therapeutic strategies aimed at improving survival.
Collapse
Affiliation(s)
- Cong-Ying Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
54
|
Dakin SG, Dudhia J, Smith RKW. Science in brief: Resolving tendon inflammation. A new perspective. Equine Vet J 2013; 45:398-400. [DOI: 10.1111/evj.12030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S. G. Dakin
- Department of Veterinary Clinical Sciences; Royal Veterinary College; UK
| | - J. Dudhia
- Department of Veterinary Clinical Sciences; Royal Veterinary College; UK
| | - R. K. W. Smith
- Department of Veterinary Clinical Sciences; Royal Veterinary College; UK
| |
Collapse
|
55
|
Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cells 2013; 2:330-48. [PMID: 24709704 PMCID: PMC3972676 DOI: 10.3390/cells2020330] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 12/25/2022] Open
Abstract
Resolution of acute inflammation is an active process that requires inhibition of further leukocyte recruitment and removal of leukocytes from inflamed sites. Emigrated neutrophils undergo apoptosis before being removed by scavenger macrophages. Recent studies using a variety of gene knockout, transgenic and pharmacological strategies in diverse models of inflammation established neutrophil apoptosis as a critical control point in resolving inflammation. Analysis of death mechanisms revealed distinct features in executing the death program in neutrophils, which can be exploited as targets for controlling the lifespan of neutrophils. Indeed, anti-inflammatory and pro-resolution lipid mediators derived from essential fatty acids, such as lipoxin A4 and resolvin E1, autacoids and proteins, such as annexin A1 and TRAIL, and cyclin-dependent kinase inhibitors, can enhance the resolution of inflammation through induction of neutrophil apoptosis and promoting their removal by efferocytosis. In this review, we discuss recent advances in understanding the molecular basis of these actions, highlighting the potential of therapeutic induction of neutrophil apoptosis for dampening neutrophil-mediated tissue injury and inflammation underlying a variety of diseases.
Collapse
|
56
|
Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med 2013; 5:661-74. [PMID: 23592557 PMCID: PMC3662311 DOI: 10.1002/emmm.201202382] [Citation(s) in RCA: 532] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
Resolution of inflammation is a coordinated and active process aimed at restoration of tissue integrity and function. This review integrates the key molecular and cellular mechanisms of resolution. We describe how abrogation of chemokine signalling blocks continued neutrophil tissue infiltration and how apoptotic neutrophils attract monocytes and macrophages to induce their clearance. Uptake of apoptotic neutrophils by macrophages reprograms macrophages towards a resolving phenotype, a key event to restore tissue homeostasis. Finally, we highlight the therapeutic potential that derives from understanding the mechanisms of resolution.
Collapse
Affiliation(s)
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of MedicineLondon, UK
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, LMUMunich, Germany
- Department of Pathology, AMCAmsterdam, The Netherlands
| |
Collapse
|
57
|
Peshavariya HM, Taylor CJ, Goh C, Liu GS, Jiang F, Chan EC, Dusting GJ. Annexin peptide Ac2-26 suppresses TNFα-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS One 2013; 8:e60790. [PMID: 23637767 PMCID: PMC3634803 DOI: 10.1371/journal.pone.0060790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/03/2013] [Indexed: 11/25/2022] Open
Abstract
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.
Collapse
Affiliation(s)
- Hitesh M. Peshavariya
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- * E-mail: (GJD); (HMP)
| | - Caroline J. Taylor
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Faculty of Health Sciences, The Australian Catholic University, Victoria, Australia
| | - Celeste Goh
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
| | - Guei-Sheung Liu
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Fan Jiang
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Elsa C. Chan
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- * E-mail: (GJD); (HMP)
| |
Collapse
|
58
|
|
59
|
Zhu DW, Yang X, Yang CZ, Ma J, Liu Y, Yan M, Wang LZ, Li J, Zhang CP, Zhang ZY, Zhong LP. Annexin A1 down-regulation in oral squamous cell carcinoma correlates to pathological differentiation grade. Oral Oncol 2013; 49:542-50. [PMID: 23403091 DOI: 10.1016/j.oraloncology.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/19/2012] [Accepted: 01/05/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Functional role of Annexin A1 in tumorigenesis is poorly understood. The aim of this study was to investigate the relationship between Annexin A1 protein expression and pathological differentiation grade in biopsy samples from a large cohort of patients with oral squamous cell carcinoma (OSCC); and to evaluate the potential role of Annexin A1 on cell proliferation and tumorigenesis of OSCC. MATERIALS AND METHODS We investigated the relationship between Annexin A1 expression by immunohistochemical staining and pathological differentiation grade of biopsy samples from 232 OSCC patients, and the relationship between Annexin A1 expression and cell proliferation as well as tumor formation using both in vitro and in vivo OSCC models. RESULTS Annexin A1 expression correlated significantly with pathological differentiation grade in OSCC patients, a lower Annexin A1 expression correlating with a poorer differentiation grade. Forced Annexin A1 overexpression in OSCC cell lines, CAL27 and Tca8113, significantly reduced the cell proliferation whereas down-regulation of Annexin A1 expression in OSCC cell line, HB96, significantly increased proliferation of HB96 cells. Tumors formed from CAL27 cells overexpressing Annexin A1 grown significantly slower compared to the parental CAL27 cells in nude mice and showed a significantly reduced nuclear Ki-67 labeling index. Interestingly, these tumors also showed a well differentiated histology pattern whereas the tumors formed from the parental cells were consistently moderately differentiated. CONCLUSIONS These data support a significant correlation between Annexin A1 expression and pathological differentiation grade, and a functional role of Annexin A1 in inhibiting cell proliferation and cell differentiation in OSCC.
Collapse
Affiliation(s)
- Dong-wang Zhu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Tsai WH, Lai SL, Li IT, Chien HY, Shih CH, Kou YR, Hsu HC. Annexin A1 mediates the anti-adhesive effects of dexamethasone during the cell-cell interaction between the all-trans retinoic acid-treated acute promyelocytic leukemic cells and endothelial cells. J Cell Biochem 2013; 114:551-7. [DOI: 10.1002/jcb.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/06/2012] [Indexed: 12/12/2022]
|
61
|
Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 2012; 3:354. [PMID: 23230437 PMCID: PMC3515881 DOI: 10.3389/fimmu.2012.00354] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022] Open
Abstract
Inflammation is the body’s way of defending itself against noxious stimuli and pathogens. Under normal circumstances, the body is able to eliminate the insult and subsequently promote the resolution of inflammation and the repair of damaged tissues. The concept of homeostasis is one that not only requires a fine balance between both pro-inflammatory mediators and pro-resolving/anti-inflammatory mediators, but also that this balance occurs in a time and space-specific manner. This review examines annexin A1, an anti-inflammatory protein that, when used as an exogenous therapeutic, has been shown to be very effective in limiting inflammation in a diverse range of experimental models, including myocardial ischemia/reperfusion injury, arthritis, stroke, multiple sclerosis, and sepsis. Notably, this glucocorticoid-inducible protein, along with another anti-inflammatory mediator, lipoxin A4, is starting to help explain and shape our understanding of the resolution phase of inflammation. In so doing, these molecules are carving the way for innovative drug discovery, based on the stimulation of endogenous pro-resolving pathways.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London London, UK
| | | |
Collapse
|
62
|
Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 2012; 7:e48246. [PMID: 23144744 PMCID: PMC3483218 DOI: 10.1371/journal.pone.0048246] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Annexin A1 (ANXA1, lipocortin-1) is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex) to cellular membranes in a Ca(2+)-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs) following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+) perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+). These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Luca Parente
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
- * E-mail:
| |
Collapse
|
63
|
Kosicka A, Cunliffe AD, Mackenzie R, Zariwala MG, Perretti M, Flower RJ, Renshaw D. Attenuation of plasma annexin A1 in human obesity. FASEB J 2012; 27:368-78. [PMID: 23038751 DOI: 10.1096/fj.12-213728] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity-related metabolic disorders are characterized by mild chronic inflammation, leukocyte infiltration, and tissue fibrosis as a result of adipocytokine production from the expanding white adipose tissue. Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein, which modulates systemic anti-inflammatory processes and, therefore, may be altered with increasing adiposity in humans. Paradoxically, we found that plasma AnxA1 concentrations inversely correlated with BMI, total percentage body fat, and waist-to-hip ratio in human subjects. Plasma AnxA1 was also inversely correlated with plasma concentrations of the acute-phase protein, C-reactive protein (CRP), and the adipocytokine leptin, suggesting that as systemic inflammation increases, anti-inflammatory AnxA1 is reduced. In addition, AnxA1 gene expression and protein were significantly up-regulated during adipogenesis in a human adipocyte cell line compared to vehicle alone, demonstrating for the first time that AnxA1 is expressed and excreted from human adipocytes. These data demonstrate a failure in the endogenous anti-inflammatory system to respond to increasing systemic inflammation resulting from expanding adipose tissue, a condition strongly linked to the development of type 2 diabetes and cardiovascular disease. These data raise the possibility that a reduction in plasma AnxA1 may contribute to the chronic inflammatory phenotype observed in human obesity.
Collapse
Affiliation(s)
- Anna Kosicka
- Department of Human and Health Sciences, School of Life Sciences, University of Westminster, London, UK
| | | | | | | | | | | | | |
Collapse
|
64
|
Gavins FNE, Hughes EL, Buss NAPS, Holloway PM, Getting SJ, Buckingham JC. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system. FASEB J 2012; 26:4977-89. [PMID: 22964301 DOI: 10.1096/fj.12-205971] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unregulated inflammation underlies many diseases, including sepsis. Much interest lies in targeting anti-inflammatory mechanisms to develop new treatments. One such target is the anti-inflammatory protein annexin A1 (AnxA1) and its receptor, FPR2/ALX. Using intravital videomicroscopy, we investigated the role of AnxA1 and FPR2/ALX in a murine model of endotoxin-induced cerebral inflammation [intraperitoneal injection of lipopolysaccharide (LPS)]. An inflammatory response was confirmed by elevations in proinflammatory serum cytokines, increased cerebrovascular permeability, elevation in brain myeloperoxidase, and increased leukocyte rolling and adhesion in cerebral venules of wild-type (WT) mice, which were further exacerbated in AnxA1-null mice. mRNA expression of TLR2, TLR4, MyD-88, and Ly96 was also assessed. The AnxA1-mimetic peptide, AnxA1(Ac2-26) (100 μg/mouse, ∼33 μmol) mitigated LPS-induced leukocyte adhesion in WT and AnxA1-null animals without affecting leukocyte rolling, in comparison to saline control. AnxA1(Ac2-26) effects were attenuated by Boc2 (pan-FPR antagonist, 10 μg/mouse, ∼12 nmol), and by minocycline (2.25 mg/mouse, ∼6.3 nmol). The nonselective Fpr agonists, fMLP (6 μg/mouse, ∼17 nmol) and AnxA1(Ac2-26), and the Fpr2-selective agonist ATLa (5 μg/mouse, ∼11 nmol) were without effect in Fpr2/3(-/-) mice. In summary, our novel results demonstrate that the AnxA1/FPR2 system has an important role in effecting the resolution of cerebral inflammation in sepsis and may, therefore, provide a novel therapeutic target.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Division of Brain Sciences, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Burlington Danes Bldg., Du Cane Rd., London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
65
|
Su TR, Lin JJ, Chiu CC, Chen JYF, Su JH, Cheng ZJ, Hwang WI, Huang HH, Wu YJ. Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells. Electrophoresis 2012; 33:1139-52. [PMID: 22539317 DOI: 10.1002/elps.201100462] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extracts from soft corals have been increasingly investigated for biomedical and therapeutic purposes. The aim of this study is to examine and analyze the anti-tumor effects of the genus Sinularia extract sinularin on A2058 melanoma cells using MTT assay, cell migration assay, wound healing assay, flow cytometric analysis, and proteomic analysis. Sinularin dose-dependently (1-5 μg/mL) inhibited melanoma cell proliferation while the treatment at identical concentrations suppressed cell migration. Sinularin dose-dependently enhanced apoptotic melanoma cells and caused tumor cell accumulation at G2/M phase, indicating that sinularin exerts apoptosis-induced and cell cycle-delayed activities in A2058 melanoma cells. Comparative proteomic analysis was conducted to investigate the effects of sinularin at the molecular level by comparison between the protein profiling of melanoma cells treated with sinularin and without the treatment. Thirty-five differential proteins (13 upregulated and 22 downregulated) concerning the treatment were identified by liquid chromatography-tandem mass spectrometry. Proteomic data and Western blot displayed the levels of several tumor inhibitory or apoptosis-associated proteins including annexin A1, voltage-dependent anion-selective channel protein 1 and prohibitin (upregulated), heat shock protein 60, heat shock protein beta-1, and peroxiredoxin-2 (downregulated) in A2058 melanoma cells exposed to sinularin. Increased expression of p53, cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, p21, and Bax and decreased expression of Bcl-2 in sinularin-treated melanoma cells suggest that the anti-tumor activities of sinularin against melanoma cells are particularly correlated with these pro-apoptotic factors. These data provide important information for the mechanisms of anti-tumor effects of sinularin on melanoma cells and may be helpful for drug development and progression monitoring of human melanoma.
Collapse
Affiliation(s)
- Tzu-Rong Su
- Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yazid S, Norling LV, Flower RJ. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat 2012; 98:94-100. [DOI: 10.1016/j.prostaglandins.2011.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/02/2023]
|
67
|
Tsai WH, Chien HY, Shih CH, Lai SL, Li IT, Hsu SC, Kou YR, Hsu HC. Annexin A1 mediates the anti-inflammatory effects during the granulocytic differentiation process in all-trans retinoic acid-treated acute promyelocytic leukemic cells. J Cell Physiol 2012; 227:3661-9. [DOI: 10.1002/jcp.24073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
68
|
Bizzarro V, Petrella A, Parente L. Annexin A1: novel roles in skeletal muscle biology. J Cell Physiol 2012; 227:3007-15. [PMID: 22213240 DOI: 10.1002/jcp.24032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Annexin A1 (ANXA1, lipocortin-1) is the first characterized member of the annexin superfamily of proteins, so called since their main property is to bind (i.e., to annex) to cellular membranes in a Ca(2+) -dependent manner. ANXA1 has been involved in a broad range of molecular and cellular processes, including anti-inflammatory signalling, kinase activities in signal transduction, maintenance of cytoskeleton and extracellular matrix integrity, tissue growth, apoptosis, and differentiation. New insights show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. This suggests that ANXA1 may contribute to the regeneration of skeletal muscle tissue and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano, Salerno, Italy
| | | | | |
Collapse
|
69
|
Chutipongtanate S, Fong-ngern K, Peerapen P, Thongboonkerd V. High Calcium Enhances Calcium Oxalate Crystal Binding Capacity of Renal Tubular Cells via Increased Surface Annexin A1 but Impairs Their Proliferation and Healing. J Proteome Res 2012; 11:3650-63. [DOI: 10.1021/pr3000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Somchai Chutipongtanate
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine, Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 10700 Bangkok, Thailand
| | - Kedsarin Fong-ngern
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine, Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 10700 Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine, Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 10700 Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine, Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 10700 Bangkok, Thailand
| |
Collapse
|
70
|
Dakin SG, Werling D, Hibbert A, Abayasekara DRE, Young NJ, Smith RKW, Dudhia J. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PLoS One 2012; 7:e32333. [PMID: 22384219 PMCID: PMC3284560 DOI: 10.1371/journal.pone.0032333] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/25/2012] [Indexed: 01/15/2023] Open
Abstract
Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ.
Collapse
Affiliation(s)
- Stephanie Georgina Dakin
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
We are using confocal intravital microscopy to understand the mechanisms behind leukocyte trafficking in the brain, thus providing potential therapeutic targets for neurovascular diseases, for example, stroke and multiple sclerosis.
Collapse
|
72
|
Nadkarni S, Cooper D, Brancaleone V, Bena S, Perretti M. Activation of the annexin A1 pathway underlies the protective effects exerted by estrogen in polymorphonuclear leukocytes. Arterioscler Thromb Vasc Biol 2012; 31:2749-59. [PMID: 21836070 DOI: 10.1161/atvbaha.111.235176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The anti-inflammatory properties of the female sex hormone estrogen have been linked to a reduced incidence of cardiovascular disease. In the present study, we addressed whether estrogen could activate vasculoprotective mechanisms via annexin A1 (AnxA1) mobilization in human polymorphonuclear cells (PMNs). METHODS AND RESULTS Using whole-blood flow cytometry, we demonstrated that premenopausal women expressed higher levels of surface AnxA1 on circulating PMNs compared with males. This correlated with high plasma estrogen during the menstrual cycle. The addition of estrogen in vitro to male PMNs induced rapid mobilization of AnxA1, optimal at 5 ng/mL and a 30-minute incubation period; this effect was abolished in the presence of the estrogen receptor antagonist ICI182780. Estrogen addition to human PMNs induced a distinct AnxA1(hi) CD62L(lo) CD11b(lo) phenotype, and this was associated with lower cell activation as measured by microparticle formation. Treatment of human PMNs with E(2) inhibited cell adhesion to an endothelial cell monolayer under shear, which was absent when endogenous AnxA1 was neutralized. Of interest, addition of estrogen to PMNs flowed over the endothelial monolayer amplified its upregulation of AnxA1 localization on the cell surface. Finally, in a model of intravital microscopy, estrogen inhibition of white blood cell adhesion to the postcapillary venule was absent in mice nullified for AnxA1. CONCLUSION We unveil a novel AnxA1-dependent mechanism behind the inhibitory properties of estrogen on PMN activation, describing a novel phenotype with a conceivable impact on the vasculoprotective effects of this hormone.
Collapse
|
73
|
Brooks AC, Rickards KJ, Cunningham FM. Modulation of equine neutrophil adherence and migration by the annexin-1 derived N-terminal peptide, Ac2-26. Vet Immunol Immunopathol 2012; 145:214-22. [DOI: 10.1016/j.vetimm.2011.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/06/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
|
74
|
Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A 2011; 108:19587-92. [PMID: 22114188 DOI: 10.1073/pnas.1105057108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs.
Collapse
|
75
|
Damazo AS, Sampaio AL, Nakata CM, Flower RJ, Perretti M, Oliani SM. Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis. BMC Immunol 2011; 12:59. [PMID: 22011168 PMCID: PMC3212807 DOI: 10.1186/1471-2172-12-59] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/19/2011] [Indexed: 12/31/2022] Open
Abstract
Background The balancing functions of pro/anti-inflammatory mediators of the complex innate responses have been investigated in a variety of experimental inflammatory settings. Annexin-A1 (AnxA1) is one mediator of endogenous anti-inflammation, affording regulation of leukocyte trafficking and activation in many contexts, yet its role in lung pathologies has been scarcely investigated, despite being highly expressed in lung cells. Here we have applied the bleomycin lung fibrosis model to AnxA1 null mice over a 21-day time-course, to monitor potential impact of this mediator on the control of the inflammatory and fibrotic phases. Results Analyses in wild-type mice revealed strict spatial and temporal regulation of the Anxa1 gene, e.g. up-regulation in epithelial cells and infiltrated granulocytes at day 7, followed by augmented protein levels in alveolar macrophages by day 21. Absence of AnxA1 caused increases in: i) the degree of inflammation at day 7; and ii) indexes of fibrosis (assessed by deposition of hydroxyproline in the lung) at day 7 and 21. These alterations in AnxA1 null mice were paralleled by augmented TGF-β1, IFN-γ and TNF-α generation compared to wild-type mice. Finally, treatment of wild type animals with an AnxA1 peptido-mimetic, given prophylactically (from day 0 to 21) or therapeutically (from day 14 onward), ameliorated both signs of inflammation and fibrosis. Conclusion Collectively these data reveal a pathophysiological relevance for endogenous AnxA1 in lung inflammation and, more importantly, fibrosis, and may open new insights for the pharmacological treatment of lung fibrosis.
Collapse
Affiliation(s)
- Amílcar S Damazo
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (UNESP), 15054-000, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Ng FSP, Wong KY, Guan SP, Mustafa FB, Kajiji TS, Bist P, Biswas SK, Wong WSF, Lim LHK. Annexin-1-deficient mice exhibit spontaneous airway hyperresponsiveness and exacerbated allergen-specific antibody responses in a mouse model of asthma. Clin Exp Allergy 2011; 41:1793-803. [PMID: 22092555 DOI: 10.1111/j.1365-2222.2011.03855.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glucocorticoids are the mainstream drugs used in the treatment and control of inflammatory diseases such as asthma. Annexin-1 (ANXA1) is an anti-inflammatory protein which has been described as an endogenous protein responsible for some anti-inflammatory glucocorticoid effects. Previous studies have identified its importance in other immune diseases such as rheumatoid arthritis and cystic fibrosis. ANXA1-deficient ((-/-)) mice are Th2 biased, and ANXA1 N-terminus peptide exhibits anti-inflammatory activity in a rat model of pulmonary inflammation. OBJECTIVE ANXA1 protein is found in bronchoalveolar lavage fluid from asthmatics. However, the function of ANXA1 in the pathological development of allergy or asthma is unclear. Thus, in this study we intended to examine the effect of ANXA1 deficiency on allergen-specific antibody responses and airway responses to methacholine (Mch). METHODS ANXA1(-/-) mice were sensitized with ovalbumin (OVA) and challenged with aerosolized OVA. Airway resistance, lung compliance and enhanced pause (PenH) were measured in naïve, sensitized and saline or allergen-challenged wild-type (WT) and ANXA1(-/-) mice. Total and allergen-specific antibodies were measured in the serum. RESULTS We show that allergen-specific and total IgE, IgG2a and IgG2b levels were significantly higher in ANXA1(-/-) mice. Furthermore, naïve ANXA1(-/-) mice displayed higher airway hypersensitivity to inhaled Mch, and significant differences were also observed in allergen-sensitized and allergen-challenged ANXA1(-/-) mice compared with WT mice. CONCLUSIONS In conclusion, ANXA1(-/-) mice possess multiple features characteristic to allergic asthma, such as airway hyperresponsiveness and enhanced antibody responses, suggesting that ANXA1 plays a critical regulatory role in the development of asthma. CLINICAL RELEVANCE We postulate that ANXA1 is an important regulatory factor in the development of allergic disease and dysregulation of its expression can lead to pathological changes which may affect disease progression.
Collapse
Affiliation(s)
- F S P Ng
- Department of Physiology, National University of Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Langereis JD, Franciosi L, Ulfman LH, Koenderman L. GM-CSF and TNFα modulate protein expression of human neutrophils visualized by fluorescence two-dimensional difference gel electrophoresis. Cytokine 2011; 56:422-9. [PMID: 21873076 DOI: 10.1016/j.cyto.2011.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 01/06/2023]
Abstract
Increased serum levels of TNFα and GM-CSF are found in various chronic inflammatory diseases and these cytokines affect the function of circulating and tissue neutrophils. TNFα- and GM-CSF-induced protein expression profiles could, therefore, serve as biomarker for the action of these cytokines in vivo. We stimulated human peripheral neutrophils with TNFα and GM-CSF in vitro and analyzed changes in their proteome by fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). We report the differential expression of 3 and 18 protein spots following TNFα and GM-CSF stimulation, respectively. Differences in protein expression induced by TNFα were limited and did not show discriminatory power in a principal component analysis, whereas the profile induced by GM-CSF did. TNFα- and GM-CSF-induced both de novo IL-1β and sIL-1Ra protein expression as detected by Western blot analysis, which confirmed proper neutrophil activation by these cytokines in vitro. Mass spectrometry analysis of cytokine-regulated protein spots resulted in the identification of 8 proteins. Among the identified proteins, enolase 1 and annexin A1 might function as markers for peripheral neutrophil activation. In conclusion, a proteomic analysis of neutrophils by 2D-DIGE provides proof-of-principle that cytokine-induced protein profiles can serve as biomarkers for the action of individual cytokines in vivo.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Respiratory Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
78
|
Hutchinson JL, Rajagopal SP, Sales KJ, Jabbour HN. Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system. Reproduction 2011; 142:15-28. [DOI: 10.1530/rep-11-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.
Collapse
|
79
|
Brancaleone V, Dalli J, Bena S, Flower RJ, Cirino G, Perretti M. Evidence for an anti-inflammatory loop centered on polymorphonuclear leukocyte formyl peptide receptor 2/lipoxin A4 receptor and operative in the inflamed microvasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4905-14. [PMID: 21398608 PMCID: PMC3175102 DOI: 10.4049/jimmunol.1003145] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of proresolving mediators in the overall context of the resolution of acute inflammation is well recognized, although little is known about whether these anti-inflammatory and proresolving molecules act in concert. In this article, we focused on lipoxin A(4) (LXA(4)) and annexin A1 (AnxA1) because these two very different mediators converge on a single receptor, formyl peptide receptor type 2 (FPR2/ALX). Addition of LXA(4) to human polymorphonuclear leukocytes (PMNs) provoked a concentration- and time-dependent mobilization of AnxA1 onto the plasma membrane, as determined by Western blotting and flow cytometry analyses. This property was shared by another FPR2/ALX agonist, antiflammin-2, and partly by fMLF or peptide Ac2-26 (an AnxA1 derivative that can activate all three members of the human FPR family). An FPR2/ALX antagonist blocked AnxA1 mobilization activated by LXA(4) and antiflammin-2. Analysis of PMN degranulation patterns and phospho-AnxA1 status suggested a model in which the two FPR2/ALX agonists mobilize the cytosolic (and not the granular) pool of AnxA1 through an intermediate phosphorylation step. Intravital microscopy investigations of the inflamed mesenteric microvasculature of wild-type and AnxA1(-/-) mice revealed that LXA(4) provoked leukocyte detachment from the postcapillary venule endothelium in the former (>50% within 10 min; p < 0.05), but not the latter genotype (∼15%; NS). Furthermore, recruitment of Gr1(+) cells into dorsal air-pouches, inflamed with IL-1β, was significantly attenuated by LXA(4) in wild-type, but not AnxA1(-/-), mice. Collectively, these data prompt us to propose the existence of an endogenous network in anti-inflammation centered on PMN AnxA1 and activated by selective FPR2/ALX agonists.
Collapse
Affiliation(s)
- Vincenzo Brancaleone
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- Dipartimento di Farmacologia Sperimentale, Universitá degli studi di Napoli, via Montesano 49, 80129 Napoli, Italy
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Stefania Bena
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Roderick J Flower
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Giuseppe Cirino
- Dipartimento di Farmacologia Sperimentale, Universitá degli studi di Napoli, via Montesano 49, 80129 Napoli, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
80
|
Design and characterization of a cleavage-resistant Annexin A1 mutant to control inflammation in the microvasculature. Blood 2010; 116:4288-96. [DOI: 10.1182/blood-2010-02-270520] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.
Collapse
|
81
|
Kang N, Won JH, Park YM. Annexin I stimulates insulin secretion through regulation of cytoskeleton and PKC activity. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2009.9647190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Na‐na Kang
- a Department of Biological Sciences and Institute for Basic Sciences , Sungkyunkwan University , Suwon, 440–746, Korea
| | - Jong Hak Won
- b Department of Pharmacology and Physiology , University of Rochester , Rochester, New York, 14642, USA
| | - Young Min Park
- c Department of Biological Sciences and Institute for Basic Sciences , Sungkyunkwan University , Suwon, 440–746, Korea Phone: Fax: E-mail:
| |
Collapse
|
82
|
Yazid S, Leoni G, Getting SJ, Cooper D, Solito E, Perretti M, Flower RJ. Antiallergic cromones inhibit neutrophil recruitment onto vascular endothelium via annexin-A1 mobilization. Arterioscler Thromb Vasc Biol 2010; 30:1718-24. [PMID: 20558817 PMCID: PMC4365443 DOI: 10.1161/atvbaha.110.209536] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether the inhibitory action of the antiallergic cromone "mast cell stabilizing" drugs on polymorphonuclear leukocyte (PMN) trafficking is mediated through an annexin-A1 (Anx-A1) dependent mechanism. METHODS AND RESULTS Intravital microscopy was used to monitor the actions of cromones in the inflamed microcirculation. Reperfusion injury provoked a dramatic increase in adherent and emigrated leukocytes in the mesenteric vascular bed, associated with augmented tissue levels of myeloperoxidase. Nedocromil, 2 to 20 mg/kg, significantly (P<0.05) inhibited cell adhesion and emigration, as well as myeloperoxidase release, in wild-type but not Anx-A1(-/-) mice. Short pretreatment of human PMNs with nedocromil, 10 nmol/L, inhibited cell adhesion (P<0.05) in the flow chamber assay, and this effect was reversed by specific anti-AnxA1 or a combination of antiformyl peptide receptors 1 and 2, but not irrelevant control, antibodies. Western blotting experiments revealed that cromones stimulate protein kinase C-dependent phosphorylation and release Anx-A1 in human PMNs. CONCLUSIONS We propose a novel mechanism to explain the antiinflammatory actions of cromones on PMN trafficking, an effect that has long puzzled investigators.
Collapse
Affiliation(s)
- Samia Yazid
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
83
|
Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, Khew-Goodall Y. A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:3057-63. [PMID: 20679535 DOI: 10.4049/jimmunol.1000119] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophil extravasation, a critical component of innate immunity must be tightly regulated to prevent inadvertent or prolonged inflammation and subsequent tissue damage. We have shown previously that endothelial ERK1/2 signaling essential for neutrophil transendothelial migration is induced by a soluble factor produced by activated neutrophils. In this study, we demonstrate that the soluble neutrophil factor is a truncated form of annexin A1 (AnxA1) that can be generated by calpain 1 cleavage of the N terminus, thus identifying a novel proinflammatory function to AnxA1. In contrast, neither the full-length protein nor the N-terminal 26 aa peptide, previously shown to be antiinflammatory, were able to activate Erk. Our data suggest that two different fragments of AnxA1 have opposing functions in inflammation. We also provide evidence that C-terminal AnxA1 functions by increasing ICAM1 clustering around adherent neutrophils to anchor them to the endothelium and promote transmigration through the transcellular route.
Collapse
Affiliation(s)
- Samantha L Williams
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
84
|
Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010; 10:427-39. [PMID: 20498669 DOI: 10.1038/nri2779] [Citation(s) in RCA: 769] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils, monocytes and macrophages are closely related phagocytic cells that cooperate during the onset, progression and resolution of inflammation. This Review highlights the mechanisms involved in the intimate partnership of phagocytes during each progressive phase of the inflammatory response. We describe how tissue-resident macrophages recognize tissue damage to promote the recruitment of neutrophils and the mechanisms by which infiltrating neutrophils can then promote monocyte recruitment. Furthermore, we discuss the phagocyte-derived signals that abrogate neutrophil recruitment and how the uptake of apoptotic neutrophils by macrophages leads to termination of the inflammatory response. Finally, we highlight the potential therapeutic relevance of these interactions.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
85
|
Gavins FNE. Are formyl peptide receptors novel targets for therapeutic intervention in ischaemia-reperfusion injury? Trends Pharmacol Sci 2010; 31:266-76. [PMID: 20483490 PMCID: PMC7112865 DOI: 10.1016/j.tips.2010.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 01/13/2023]
Abstract
Ischaemia-reperfusion (I/R) injury is a common feature of several diseases associated with high morbidity and mortality, such as stroke and myocardial infarction. The damaged tissue displays cardinal signs of inflammation and microvascular injury that, unless resolved, lead to long-term tissue damage with associated dysfunction. Current therapies are limited and are often associated with many side effects. Increasing evidence suggests that members of the formyl peptide receptor (FPR) family, in particular human FPR2/ALX, might have an important role in the pathophysiology of I/R injury. It was recently demonstrated that several peptides and non-peptidyl small-molecule compounds have anti-inflammatory and pro-resolving properties via their action on members of the FPR family. Here I review this evidence and suggest that FPR ligands, particularly in the brain, could be novel and exciting anti-inflammatory therapeutics for the treatment of a variety of clinical conditions, including stroke.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Wolfston Neuroscience Laboratories, Faculty of Medicine, Imperial College London, London W12 0NN, UK. <>
| |
Collapse
|
86
|
Dalli J, Rosignoli G, Hayhoe RPG, Edelman A, Perretti M. CFTR inhibition provokes an inflammatory response associated with an imbalance of the annexin A1 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:176-86. [PMID: 20489160 DOI: 10.2353/ajpath.2010.091149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, is characterized by chronic bacterial infections and inflammation in the lung. Having previously shown that deletion of CFTR is associated with lower expression of the endogenous anti-inflammatory protein Annexin A1 (AnxA1), we investigated further this possible functional connection using a validated CFTR inhibitor. Treatment of mice with the CFTR inhibitor-172 (CFTR(172)) augmented the acute peritonitis promoted by zymosan, an effect associated with lower AnxA1 levels in peritoneal cells. Similar results were obtained with another, chemically distinct, CFTR inhibitor. The pro-inflammatory effect of CFTR(172) was lost in AnxA1(-/-), as well as CFTR(-/-) mice. Importantly, administration of hrAnxA1 and its peptido-mimetic to CFTR(-/-) animals or to animals treated with CFTR(172) corrected the exaggerated leukocyte migration seen in these animals. In vitro assays with human Polymorphonuclear leukocyte (PMN) demonstrated that CFTR(172) reduced cell-associated AnxA1 by promoting release of the protein in microparticles. We propose that the reduced impact of the counterregulatory properties of AnxA1 in CF cells contributes to the inflammatory phenotype characteristic of this disease. Thus, these findings provide an important insight into the mechanism underlying the inflammatory disease associated with CFTR inhibition while, at the same time, providing a novel pharmacological target for controlling the inflammatory phenotype of CF.
Collapse
Affiliation(s)
- Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
87
|
Kalinec F, Webster P, Maricle A, Guerrero D, Chakravarti DN, Chakravarti B, Gellibolian R, Kalinec G. Glucocorticoid-stimulated, transcription-independent release of annexin A1 by cochlear Hensen cells. Br J Pharmacol 2010; 158:1820-34. [PMID: 19912231 DOI: 10.1111/j.1476-5381.2009.00473.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The current clinical strategy to protect the auditory organ against inflammatory damage by migrating leukocytes is the local delivery of glucocorticoids. However, the mechanism by which glucocorticoids confer this protection remains unknown. Therefore, we investigated the cellular and molecular targets of glucocorticoids in the cochlea that could be involved in preventing leukocyte migration. EXPERIMENTAL APPROACH We used microscopy as well as immunocytochemical and microfluidic techniques to elucidate the effect of dexamethasone, hydrocortisone and prednisolone on the cellular and intracellular distribution of annexin A1 (ANXA1) - a glucocorticoid target known to inhibit leukocyte migration by receptor-mediated signalling - in the cochlea and isolated cochlear cells of guinea pigs. KEY RESULTS All the cells lining the scala media - the cochlear compartment containing the auditory organ - express ANXA1 and the ANXA1 receptor FPR2/ALX is present in the scala media, as well as in other cochlear ducts. The majority of ANXA1 in the scala media is stored inside lipid droplets within cochlear Hensen cells. Glucocorticoids activate a myosin IIC-mediated mechanism that drives ANXA1 from the lipid droplets to the apical region of the Hensen cells, where ANXA1 is released to the external milieu by a process involving ABC transporters. CONCLUSIONS AND IMPLICATIONS These findings suggest that ANXA1 could be a major mediator of the anti-inflammatory effects of glucocorticoids in the cochlea and identify new molecular targets for prevention of sudden sensorineural hearing loss.
Collapse
Affiliation(s)
- F Kalinec
- Division of Cell Biology and Genetics, House Ear Institute, Los Angeles, CA 90057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 184:2611-2619. [PMID: 20107188 DOI: 10.4049/jimmunol.0903526] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human formyl-peptide receptor (FPR)-2 is a G protein-coupled receptor that transduces signals from lipoxin A(4), annexin A1, and serum amyloid A (SAA) to regulate inflammation. In this study, we report the creation of a novel mouse colony in which the murine FprL1 FPR2 homologue, Fpr2, has been deleted and describe its use to explore the biology of this receptor. Deletion of murine fpr2 was verified by Southern blot analysis and PCR, and the functional absence of the G protein-coupled receptor was confirmed by radioligand binding assays. In vitro, Fpr2(-/-) macrophages had a diminished response to formyl-Met-Leu-Phe itself and did not respond to SAA-induced chemotaxis. ERK phosphorylation triggered by SAA was unchanged, but that induced by the annexin A1-derived peptide Ac2-26 or other Fpr2 ligands, such as W-peptide and compound 43, was attenuated markedly. In vivo, the antimigratory properties of compound 43, lipoxin A(4), annexin A1, and dexamethasone were reduced notably in Fpr2(-/-) mice compared with those in wild-type littermates. In contrast, SAA stimulated neutrophil recruitment, but the promigratory effect was lost following Fpr2 deletion. Inflammation was more marked in Fpr2(-/-) mice, with a pronounced increase in cell adherence and emigration in the mesenteric microcirculation after an ischemia-reperfusion insult and an augmented acute response to carrageenan-induced paw edema, compared with that in wild-type controls. Finally, Fpr2(-/-) mice exhibited higher sensitivity to arthrogenic serum and were completely unable to resolve this chronic pathology. We conclude that Fpr2 is an anti-inflammatory receptor that serves varied regulatory functions during the host defense response. These data support the development of Fpr2 agonists as novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Robert Hannon
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Vincenzo Brancaleone
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Hetal B Patel
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Mohini Gray
- Medical Research Council Centre for Inflammation, Edinburgh, United Kingdom
| | - Fulvio D'Acquisto
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | | | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Roderick J Flower
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| |
Collapse
|
89
|
Xu LM, Jin SW, Zhou XY, Wu P, Li YS, Zhang L, Lin YY, Chen Y, Ye DY. Effects of exogenous annexin-1 on lipopolysaccharide-induced proliferation and reactive oxygen species production partially through modulation of CRAC channels but independent of NF-kappaB pathway. Inflamm Res 2009; 58:921-30. [PMID: 19685206 DOI: 10.1007/s00011-009-0066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/22/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To investigate the effects of exogenous annexin-1 (ANXA1) on lipopolysaccharide(LPS)-induced proliferation, reactive oxygen species (ROS) production, and calcium signal transduction in RAW264.7 macrophages. METHODS RAW264.7 macrophages were treated with or without LPS in the absence or presence of ANXA1. The proliferation effects were detected by Cell Counting Kit-8 assay. ROS were quantified by flow cytometry and fluorescence microscopy. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was analyzed by laser confocal scanning microscopy. IkappaBalpha degradation and NF-kappaB translocation were tested by Western blot. RESULTS Exogenous ANXA1 inhibited LPS-induced proliferation and ROS production in a dose-dependent manner. LPS evoked [Ca(2+)](i) increase through CRAC channels, and ANXA1 suppressed LPS-induced [Ca(2+)](i) increase in a dose-dependent manner. The CRAC channels were associated with LPS-induced proliferation and ROS production. Exogenous ANXA1 had no effect on LPS-induced IkappaB degradation and NF-kappaB translocation. CONCLUSIONS ANXA1 inhibited LPS-induced proliferation and ROS production in RAW264.7 macrophages partially through modulation of CRAC channels but independent of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Lei-Ming Xu
- Department of Pathophysiology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Perretti M, Dalli J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol 2009; 158:936-46. [PMID: 19845684 PMCID: PMC2785517 DOI: 10.1111/j.1476-5381.2009.00483.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/05/2009] [Accepted: 08/11/2009] [Indexed: 12/13/2022] Open
Abstract
The appreciation that the inflammatory reaction does not 'spontaneously' finish, but rather that inflammatory resolution is an active phenomenon brought about by endogenous anti-inflammatory agonists opens multiple opportunities for a reassessment of the complexity of inflammation and its main mediators. This review dwells on one of these pathways, the one centred around the glucocorticoid-regulated protein Annexin A1 and its G protein-coupled receptor. In recent years, much of the knowledge detailing the processes by which Annexin A1 expresses its anti-inflammatory role on innate immunity has been produced. Moreover, the generation of the Annexin A1 null mouse colony has provided important proof-of-concept experiments demonstrating the inhibitory properties of this mediator in the context of inflammatory and/or tissue-injury models. Therefore, Annexin A1 acts as a pivotal homeostatic mediator, where if absent, inflammation would overshoot and be prolonged. This new understanding scientific information could guide us onto the exploitation of the biological properties of Annexin A1 and its receptor to instigate novel drug discovery programmes for anti-inflammatory therapeutics. This line of research relies on the assumption that anti-inflammatory drugs designed upon endogenous anti-inflammatory mediators would be burdened by a lower degree of secondary effects as these agonists would be mimicking specific pathways activated in our body for safe disposal of inflammation. We believe that the next few years will produce examples of such new drugs and the validity of this speculation could then be assessed.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK.
| | | |
Collapse
|
91
|
Cilibrizzi A, Quinn MT, Kirpotina LN, Schepetkin IA, Holderness J, Ye RD, Rabiet MJ, Biancalani C, Cesari N, Graziano A, Vergelli C, Pieretti S, Dal Piaz V, Giovannoni MP. 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones: a novel class of small-molecule agonists for formyl peptide receptors. J Med Chem 2009; 52:5044-57. [PMID: 19639995 PMCID: PMC2888720 DOI: 10.1021/jm900592h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC(50) = 0.6 microM) was the mixed FPR/FPRL1 agonist 14h.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino 50019 Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
D'Acquisto F. On the adaptive nature of annexin-A1. Curr Opin Pharmacol 2009; 9:521-8. [PMID: 19481503 DOI: 10.1016/j.coph.2009.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/22/2009] [Indexed: 01/12/2023]
Abstract
Studies over the last decade have provided us with a wealth of evidence showing that Annexin-1 is a homeostatic endogenous anti-inflammatory mediator of the innate immune system. However, as in Robert Louis Stevenson's novel 'The Strange Case of Dr Jekyll and Mr Hyde', recent investigations on the role of this protein in the adaptive immune response have revealed a previous unknown 'dark side' as positive modulator of T cell activation. This review will be focusing on these recent findings providing further evidences for the promising therapeutic potential of drugs targeting Annexin-1.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
93
|
Nishiura H, Nonaka H, Revollo IS, Semba U, Li Y, Ota Y, Irie A, Harada K, Kehrl JH, Yamamoto T. Pro- and anti-apoptotic dual functions of the C5a receptor: involvement of regulator of G protein signaling 3 and extracellular signal-regulated kinase. J Transl Med 2009; 89:676-94. [PMID: 19333232 PMCID: PMC7503222 DOI: 10.1038/labinvest.2009.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
When apoptosis is initiated by manganese (II) loading, hyperthermia or thapsigargin treatment, human HL-60 and AsPC-1 cells initiate de novo synthesis of the C5a receptor (C5aR) and generation of its ligand, the ribosomal protein S19 (RP S19) homodimer. The ligand-receptor interaction, in an autocrine/paracrine fashion, promotes apoptosis, which can be bypassed by exogenous administration of C5a, another ligand. The proapoptotic function of the RP S19 dimer is reproduced by a C5a/RPS19 chimera that contains the body of C5a and the C-terminal region (Ile134-His145) of RP S19. The RP S19 dimer or C5a/RPS19 and C5a inversely regulate the expression of Regulator of G protein Signaling 3 (RGS3) gene in the apoptosis-initiated cells. Namely, the RP S19-type proteins upregulate RGS3 expression, whereas the C5a reduce it. Transformation of HL-60 cells to overexpress RGS3 promotes apoptosis in association with the downregulation of the Extracellular signal-Regulated Kinase (ERK) signal, and vice versa in the RGS3 knocked-down cells. Consistent with this result, an inhibitor of ERK phosphorylation effectively enhances the apoptotic rate in wild-type HL-60 cells. Moreover, a dominant negative effect on the RP S19 dimer production encourages apoptosis-initiated HL-60 cells with a longer lifespan in mouse than the natural effect. Our data indicate that, in apoptosis-initiated cells, the ligand-dependent C5aR-mediated dual signal affects the fate of cells, either apoptosis execution or survival, through regulation of RGS3 gene expression and subsequent modulation of ERK signal.
Collapse
Affiliation(s)
- Hiroshi Nishiura
- Department of Molecular Pathology, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Yazid S, Solito E, Christian H, McArthur S, Goulding N, Flower R. Cromoglycate drugs suppress eicosanoid generation in U937 cells by promoting the release of Anx-A1. Biochem Pharmacol 2009; 77:1814-26. [PMID: 19428336 PMCID: PMC2888050 DOI: 10.1016/j.bcp.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5 min) concentration-dependent activation of PKCα/β (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser27. Both phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised thereby inhibiting thromboxane (Tx) B2 generation. When administered alone, cromoglycate or nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking concentration-dependent enhancement of Anx-A1 and PKCα/β phosphorylation, membrane recruitment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB2 generation. GCs also stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1 trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the cromolyns, a group of drugs that have long puzzled investigators.
Collapse
Affiliation(s)
- Samia Yazid
- Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
95
|
Rondepierre F, Bouchon B, Papon J, Bonnet-Duquennoy M, Kintossou R, Moins N, Maublant J, Madelmont JC, D'Incan M, Degoul F. Proteomic studies of B16 lines: involvement of annexin A1 in melanoma dissemination. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:61-69. [PMID: 18952200 DOI: 10.1016/j.bbapap.2008.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/01/2008] [Accepted: 09/18/2008] [Indexed: 01/31/2023]
Abstract
To identify proteins involved in melanoma metastasis mechanisms, comparative proteomic studies were undertaken on B16F10 and B16Bl6 melanoma cell lines and their subsequent syngenic primary tumours as pulmonary metastases were present only in the mice bearing a B16Bl6 tumour. 2DE analyses followed by MALDI-TOF identification showed variations of 6 proteins in vitro and 13 proteins in vivo. Differential expressed proteins in tumours were related to energy production and storage. Two differentially expressed proteins which had not been previously associated to melanoma progression, annexin A1 (ANXA1) and creatine kinase B (CKB), were found both in cells and in tumours. To characterize ANXA1 involvement in melanoma B16 dissemination, we reduced ANXA1 protein level by siRNA and observed a significant decrease of B16Bl6 cell invasion through Matrigel coated chambers. We further demonstrated that the presence of several formyl peptide receptors (FPR1, FPRrs1 and 2) revealed by qRT-PCR, played a role in B16 invasion: incubation of B16Bl6 cells with the FPR agonist (fMLP) or antagonist (tBOC) enhanced or decreased Matrigel coated chamber invasion respectively, with a correlation of ANXA1 levels in both treatments. As ANXA1 could bind to FPRs, this should amplify invasion and enhance melanoma dissemination.
Collapse
MESH Headings
- Animals
- Annexin A1/metabolism
- Base Sequence
- Cell Line, Tumor
- Creatine Kinase/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Neoplasm Metastasis
- Proteomics
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fabien Rondepierre
- Imagerie Moléculaire et Thérapie Vectorisée, Rue Montalembert, 63005 Clermont-Ferrand Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Perretti M, D'Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009; 9:62-70. [PMID: 19104500 DOI: 10.1038/nri2470] [Citation(s) in RCA: 681] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucocorticoids are widely used for the management of inflammatory diseases. Their clinical application stems from our understanding of the inhibitory effect of the corticosteroid hormone cortisol on several components of the immune system. Endogenous and exogenous glucocorticoids mediate their multiple anti-inflammatory effects through many effector molecules. In this Opinion article, we focus on the role of one such effector molecule, annexin A1, and summarize the recent studies that provide insight into its molecular and pharmacological functions in immune responses. In addition, we propose a model in which glucocorticoids regulate the expression and function of annexin A1 in opposing ways in innate and adaptive immune cells to mediate the resolution of inflammation.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | | |
Collapse
|
97
|
Gastardelo TS, Damazo AS, Dalli J, Flower RJ, Perretti M, Oliani SM. Functional and ultrastructural analysis of annexin A1 and its receptor in extravasating neutrophils during acute inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:177-83. [PMID: 19095957 PMCID: PMC2631330 DOI: 10.2353/ajpath.2009.080342] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/07/2008] [Indexed: 01/13/2023]
Abstract
The purpose of this study was twofold: to reveal cellular events associated with the protective role of endogenous annexin A1 (AnxA1) in inflammation and to highlight the potential involvement of members of the formyl peptide receptor (Fpr) family in this process. We found that wild-type, AnxA1-null, and Fpr1-null mice all displayed an intense neutrophil recruitment into the peritoneal cavity as assessed 4 hours after carrageenin injection, and that this recruitment was most pronounced in AnxA1-null mice. In addition, this cell influx could be inhibited by the AnxA1 pharmacophore peptide, Ac2-26, in wild-type, AnxA1-null, and Fpr1-null mice, but was restored when co-treated with the pan-receptor antagonist Boc2. Using the LacZ gene reporter assay, an enhancement of AnxA1 gene promoter activity in extravasated neutrophils was evident in AnxA1-null mice; again this response was reduced after peptide treatment. The lack of functional involvement of Fpr1 prompted us to monitor the structurally related receptor Fpr2. We report, for the first time, the ultrastructural immunocytochemical co-localization of Fpr2 with AnxA1 in neutrophils that migrate into the mesenteric microcirculation and extravasate into the peritoneal fluid. Collectively, these data provide in vivo support to the hypothesis that endogenous AnxA1 is an essential effector of endogenous anti-inflammation and provide an ultrastructural indication that this mediator interacts with Fpr2 in murine neutrophils. We believe that these findings could significantly affect the development of novel therapeutics, which are modeled after the anti-migratory actions of AnxA1.
Collapse
Affiliation(s)
- Thaís Santana Gastardelo
- Post-Graduation in Morphology, Federal University of São Paulo, Paulista School of Medicine (EPM), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
98
|
D'Acquisto F, Perretti M, Flower RJ. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol 2008; 155:152-69. [PMID: 18641677 PMCID: PMC2538690 DOI: 10.1038/bjp.2008.252] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/29/2008] [Accepted: 05/29/2008] [Indexed: 12/28/2022] Open
Abstract
The glucocorticoids are the most potent anti-inflammatory drugs that we possess and are effective in a wide variety of diseases. Although their action is known to involve receptor mediated changes in gene transcription, the exact mechanisms whereby these bring about their pleiotropic action in inflammation are yet to be totally understood. Whilst many different genes are regulated by the glucocorticoids, we have identified one particular protein-annexin A1 (Anx-A1)-whose synthesis and release is strongly regulated by the glucocorticoids in many cell types. The biology of this protein, as revealed by studies using transgenic animals, peptide mimetics and neutralizing antibodies, speaks to its role as a key modulator of both of the innate and adaptive immune systems. The mechanism whereby this protein exerts its effects is likely to be through the FPR receptor family-a hitherto rather enigmatic family of G protein coupled receptors, which are increasingly implicated in the regulation of many inflammatory processes. Here we review some of the key findings that have led up to the elucidation of this key pathway in inflammatory resolution.
Collapse
Affiliation(s)
- F D'Acquisto
- Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry Charterhouse Square, London, UK
| | - M Perretti
- Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry Charterhouse Square, London, UK
| | - R J Flower
- Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry Charterhouse Square, London, UK
| |
Collapse
|
99
|
Abstract
Polymorphonuclear leukocyte (PMN)-derived microparticles display inhibitory properties on target cells as assessed in vitro; since PMNs contain abundant amounts of the endogenous anti-inflammatory protein annexin 1 (AnxA1), we tested here whether biologically active AnxA1 could be present in PMN-derived microparticles. PMN adhesion to human umbilical vein endothelial cell (HUVEC) monolayers led to the generation of microparticles that contained AnxA1, as detected by Western blotting, flow cytometry, and mass spectrometry analyses. Addition of these microparticles to recipient PMNs prior to flow over HUVEC monolayers significantly inhibited cell adhesion, an effect abrogated by a neutralizing anti-AnxA1 antibody, or an antibody raised against the AnxA1 receptor, that is termed lipoxin A(4) receptor or ALX. Intravenous delivery of human PMN-derived microparticles markedly inhibited PMN recruitment to an air pouch inflamed with IL-1beta. This anti-inflammatory effect was also dependent on endogenous AnxA1, since injection of microparticles produced from wild-type PMNs (bone marrow derived), but not from AnxA1-null PMNs, inhibited IL-1beta-induced leukocyte trafficking. In conclusion, PMN-derived microparticles contain functionally active AnxA1 that confers them anti-inflammatory properties; generation of these microparticles in the microcirculation could promote inflammatory resolution by time-dependent dampening of cell recruitment.
Collapse
|
100
|
Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RPG, Lewis SM, Heinsbroek SEM, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 2008; 22:741-51. [PMID: 17928360 DOI: 10.1096/fj.07-9435com] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain, suggesting a potential role in cell adhesion and signaling. Here, we demonstrate how the human-restricted adhesion-GPCR, EMR2 (epidermal growth factor-like module-containing mucin-like hormone receptor), regulates neutrophil responses by potentiating the effects of a number of proinflammatory mediators and show that the transmembrane region is critical for adhesion-GPCR function. Using an anti-EMR2 antibody, ligation of EMR2 increases neutrophil adhesion and migration, and augments superoxide production and proteolytic enzyme degranulation. On neutrophil activation, EMR2 is rapidly translocated to membrane ruffles and the leading edge of the cell. Further supporting the role in neutrophil activation, EMR2 expression on circulating neutrophils is significantly increased in patients with systemic inflammation. These data illustrate a definitive function for a human adhesion-GPCR within the innate immune system and suggest an important role in potentiating the inflammatory response. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function.
Collapse
Affiliation(s)
- Simon Yona
- Sir William Dunn School of Pathology, Oxford University, Oxford, OX1 3RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|