51
|
Zheng JD, Zhao YF, Hu H, Shen YH, Tan YF, Tong WY, Xiang PH, Zhong N, Yue FY, Duan CG. Ferroelectric control of pseudospin texture in CuInP 2S 6monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204001. [PMID: 35193130 DOI: 10.1088/1361-648x/ac577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Spin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInP2S6(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively. The chirality of helical pseudospin texture is coupled to the out-of-plane ferroelectric polarization. Furthermore, a large spin splitting due to the SOC effect can be found atKvalley, which can be regarded as the Zeeman effect under a valley-dependent pseudomagnetic field. The CIPS monolayer with Rashbaet aleffects provides a good platform for electrically controlled spin polarization physics.
Collapse
Affiliation(s)
- Jun-Ding Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yi-Feng Zhao
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - He Hu
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yu-Hao Shen
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yi-Fan Tan
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wen-Yi Tong
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Fang-Yu Yue
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
52
|
Lafalce E, Amerling E, Yu ZG, Sercel PC, Whittaker-Brooks L, Vardeny ZV. Rashba splitting in organic-inorganic lead-halide perovskites revealed through two-photon absorption spectroscopy. Nat Commun 2022; 13:483. [PMID: 35078984 PMCID: PMC8789784 DOI: 10.1038/s41467-022-28127-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
The Rashba splitting in hybrid organic-inorganic lead-halide perovskites (HOIP) is particularly promising and yet controversial, due to questions surrounding the presence or absence of inversion symmetry. Here we utilize two-photon absorption spectroscopy to study inversion symmetry breaking in different phases of these materials. This is an all-optical technique to observe and quantify the Rashba effect as it probes the bulk of the materials. In particular, we measure two-photon excitation spectra of the photoluminescence in 2D, 3D, and anionic mixed HOIP crystals, and show that an additional band above, but close to the optical gap is the signature of new two-photon transition channels that originate from the Rashba splitting. The inversion symmetry breaking is believed to arise from ionic impurities that induce local electric fields. The observation of the Rashba splitting in the bulk of HOIP has significant implications for the understanding of their spintronic and optoelectronic device properties.
Collapse
Affiliation(s)
- Evan Lafalce
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric Amerling
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhi-Gang Yu
- Sivananthan Laboratories, Bolingbrook, IL, 60440, USA
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | | | - Z Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
53
|
Deng H, Zhang C, Liang W, Zhang XX, Luo SN. Hot carrier dynamics of BiTeI with large Rashba spin splitting. RSC Adv 2022; 12:16479-16485. [PMID: 35754880 PMCID: PMC9167645 DOI: 10.1039/d2ra01978g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
We present a time-resolved ultrafast optical spectroscopy study on BiTeI, a noncentrosymmetric semiconductor with large spin–orbit splitting.
Collapse
Affiliation(s)
- Hongze Deng
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, People's Republic of China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Weizheng Liang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, People's Republic of China
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheng-Nian Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
54
|
Chen J, Wu K, Hu W, Yang J. Spin-Orbit Coupling in 2D Semiconductors: A Theoretical Perspective. J Phys Chem Lett 2021; 12:12256-12268. [PMID: 34929086 DOI: 10.1021/acs.jpclett.1c03662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This theoretical Perspective reviews spin-orbit coupling (SOC), including the Rashba effect and Dresselhaus effect, in two-dimensional (2D) semiconductors. We first introduce the origin of the Rashba effect and Dresselhaus effect using the Hamiltonian models; we then summarize 2D Rashba semiconductors predicted by first-principles density functional theory (DFT) calculations, including AB binary monolayers, Janus monolayers, 2D perovskites, and so on. We also review various manipulating techniques of the Rashba effect on 2D semiconductors, such as external electric field, strain engineering, charge doping, interlayer interactions, proximity effect of substrates, and external magnetic field. We then briefly summarize the applications of SOC, including the generation, detection, and manipulation of spin currents in spin Hall effect transistors and spin field effect transistors. Finally, we conclude this Perspective and propose three promising research fields of SOC in low-dimensional semiconductors, including the nonlinear SOC Hamiltonian model, 2D ferroelectric SOC semiconductors, and 1D Rashba model and semiconductors. This theoretical Perspective enriches the fundamental understanding of SOC in 2D semiconductors and will help in the design of new types of spintronic devices in future experiments.
Collapse
Affiliation(s)
- Jiajia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
55
|
Shikin AM, Rybkina AA, Estyunin DA, Klimovskikh II, Rybkin AG, Filnov SO, Koroleva AV, Shevchenko EV, Likholetova MV, Voroshnin VY, Petukhov AE, Kokh KA, Tereshchenko OE, Petaccia L, Di Santo G, Kumar S, Kimura A, Skirdkov PN, Zvezdin KA, Zvezdin AK. Non-monotonic variation of the Kramers point band gap with increasing magnetic doping in BiTeI. Sci Rep 2021; 11:23332. [PMID: 34857800 PMCID: PMC8639783 DOI: 10.1038/s41598-021-02493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.
Collapse
Affiliation(s)
- A M Shikin
- Saint Petersburg State University, Saint Petersburg, 198504, Russia.
| | - A A Rybkina
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - D A Estyunin
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - I I Klimovskikh
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - A G Rybkin
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - S O Filnov
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - A V Koroleva
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - E V Shevchenko
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - M V Likholetova
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - V Yu Voroshnin
- Saint Petersburg State University, Saint Petersburg, 198504, Russia.,Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, 12489, Berlin, Germany
| | - A E Petukhov
- Saint Petersburg State University, Saint Petersburg, 198504, Russia
| | - K A Kokh
- Saint Petersburg State University, Saint Petersburg, 198504, Russia.,Kemerovo State University, Kemerovo, 650000, Russia.,Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, 630090, Russia
| | - O E Tereshchenko
- Saint Petersburg State University, Saint Petersburg, 198504, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia.,A. V. Rzhanov Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
| | - L Petaccia
- Elettra Sincrotrone Trieste, 34149, Trieste, Italy
| | - G Di Santo
- Elettra Sincrotrone Trieste, 34149, Trieste, Italy
| | - S Kumar
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - A Kimura
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - P N Skirdkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - K A Zvezdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - A K Zvezdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.,P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
56
|
Tian Q, Zhang W, Qin Z, Qin G. Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. NANOSCALE 2021; 13:18032-18043. [PMID: 34586120 DOI: 10.1039/d1nr04323d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The energy problem has recently become increasingly more serious, therefore the rational use of heat energy and conversion into electrical energy is particularly important. The thermoelectric (TE) field is closely related to human life, as heat from automobiles, heat dissipation from high-power electrical appliances, or other electrical products that produce a lot of heat, can all be transformed with TE materials. The search for TE materials with an excellent performance and effective TE optimization strategies (STs) has attracted significant attention owing to the fact that thermal energy can be directly converted into electric energy. In contrast to the common TE-optimized STs, such as constructing point defects or reducing dimensionality, spin-related optimization STs have emerged from previous published research, such as the spin Seebeck effect or the Rashba effect, in which the Rashba effect shows an effective method to break through the bottleneck of ZT optimization. In this review, typical high ZT materials, common traditional optimized STs, Rashba-type TE materials and their corresponding ZT values are comprehensively discussed. The TE performance of Rashba-type materials is analysed, such as BiTeX (X = I, Br), GeTe, BiSbSeTe2, and the BiSb monolayer. Moreover, the TE optimization mechanisms (band engineering, phonon engineering, and Rashba spin-split engineering) are summarised. Finally, the development and challenges of Rashba spin-split combined with TE in breaking the bottleneck in ZT optimization are highlighted.
Collapse
Affiliation(s)
- Qikun Tian
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wenqi Zhang
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenzhen Qin
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
57
|
Freimuth F, Blügel S, Mokrousov Y. Theory of unidirectional magnetoresistance and nonlinear Hall effect. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:055301. [PMID: 34678787 DOI: 10.1088/1361-648x/ac327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal-Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to thef-sum rule.
Collapse
Affiliation(s)
- Frank Freimuth
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Stefan Blügel
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Yuriy Mokrousov
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
58
|
Mao X, Li J, Liu Z, Wang J, He F, Wang Y. Coexisting unconventional Rashba- and Zeeman-type spin splitting in Pb-adsorbed monolayer WSe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:035501. [PMID: 34592719 DOI: 10.1088/1361-648x/ac2bc5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Based on first-principles calculations, the unconventional Rashba- and Zeeman-type spin splitting can simultaneously coexist in the Pb-adsorbed monolayer WSe2system. The first two adsorption configurationst1andt2show remarkable features under the spin-orbit coupling, in which two split energy branches show same spin states at the left or right side of Γ, and the spin polarization is reversed for both Rashba band branches. For the second adsorption configuration, an energy gap was observed near the unconventional spin polarization caused by the repelled Rashba bands for avoid crossing, and this gap can produce non-dissipative spin current by applying the voltage. The results fort2configuration with spin reversal show that the repel band gap and Rashba parameter can be effectively regulated within the biaxial strain range of -8% to 6%. By changing the adsorption distancedbetween Pb and the neighboring Se atom layer, the reduceddcaused the transfer from Rashba-type to Zeeman-type spin splitting. This predicted adsorption system would be promising for spintronic applications.
Collapse
Affiliation(s)
- Xiujuan Mao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Jia Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Ze Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Jiaxi Wang
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Fuli He
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Yafan Wang
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| |
Collapse
|
59
|
Pal O, Dey B, Ghosh TK. Berry curvature induced magnetotransport in 3D noncentrosymmetric metals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:025702. [PMID: 34649225 DOI: 10.1088/1361-648x/ac2fd4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
We study the magnetoelectric and magnetothermal transport properties of noncentrosymmetric metals using semiclassical Boltzmann transport formalism by incorporating the effects of Berry curvature (BC) and orbital magnetic moment (OMM). These effects impart quadratic-Bdependence to the magnetoelectric and magnetothermal conductivities, leading to intriguing phenomena such as planar Hall effect, negative magnetoresistance (MR), planar Nernst effect and negative Seebeck effect. The transport coefficients associated with these effects show the usual oscillatory behavior with respect to the angle between the applied electric field and magnetic field. The bands of noncentrosymmetric metals are split by Rashba spin-orbit coupling except at a band touching point (BTP). For Fermi energy below (above) the BTP, giant (diminished) negative MR is observed. This difference in the nature of MR is related to the magnitudes of the velocities, BC and OMM on the respective Fermi surfaces, where the OMM plays the dominant role. The absolute MR and planar Hall conductivity show a decreasing (increasing) trend with Rashba coupling parameter for Fermi energy below (above) the BTP.
Collapse
Affiliation(s)
- Ojasvi Pal
- Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| | - Bashab Dey
- Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| | - Tarun Kanti Ghosh
- Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| |
Collapse
|
60
|
Lee S, Koike H, Goto M, Miwa S, Suzuki Y, Yamashita N, Ohshima R, Shigematsu E, Ando Y, Shiraishi M. Synthetic Rashba spin-orbit system using a silicon metal-oxide semiconductor. NATURE MATERIALS 2021; 20:1228-1232. [PMID: 34083776 DOI: 10.1038/s41563-021-01026-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The spin-orbit interaction (SOI), mainly manifesting itself in heavy elements and compound materials, has been attracting much attention as a means of manipulating and/or converting a spin degree of freedom. Here, we show that a Si metal-oxide- semiconductor (MOS) heterostructure possesses Rashba-type SOI, although Si is a light element and has lattice inversion symmetry resulting in inherently negligible SOI in bulk form. When a strong gate electric field is applied to the Si MOS, we observe spin lifetime anisotropy of propagating spins in the Si through the formation of an emergent effective magnetic field due to the SOI. Furthermore, the Rashba parameter α in the system increases linearly up to 9.8 × 10-16 eV m for a gate electric field of 0.5 V nm-1; that is, it is gate tuneable and the spin splitting of 0.6 μeV is relatively large. Our finding establishes a family of spin-orbit systems.
Collapse
Affiliation(s)
- Soobeom Lee
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan
| | - Hayato Koike
- Advanced Products Development Center, TDK Corporation, Ichikawa, Chiba, Japan
| | - Minori Goto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shinji Miwa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshishige Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Naoto Yamashita
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan
| | - Ryo Ohshima
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan
| | - Ei Shigematsu
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuichiro Ando
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama, Japan
| | - Masashi Shiraishi
- Department of Electronic Science and Engineering, Kyoto University, Kyoto, Kyoto, Japan.
| |
Collapse
|
61
|
Mohanta MK, Is F, Kishore A, De Sarkar A. Spin-Current Modulation in Hexagonal Buckled ZnTe and CdTe Monolayers for Self-Powered Flexible-Piezo-Spintronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40872-40879. [PMID: 34470109 DOI: 10.1021/acsami.1c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The next-generation spintronic device demands the gated control of spin transport across the semiconducting channel through the replacement of the external gate voltage source by the piezo potential, as experimentally demonstrated in Zhu et al. ACS Nano, 2018, 12 (2), 1811-1820. Consequently, a high level of out-of-plane piezoelectricity together with a large Rashba spin splitting is sought after in semiconducting channel materials. Inspired by this experiment, a new hexagonal buckled two-dimensional (2D) semiconductor, ZnTe, and its iso-electronic partner, CdTe, are proposed herewith. These 2D materials show a strong spin-orbit coupling (SOC), which is evidenced by a large Rashba constant of 1.06 and 1.27 eV·Å, respectively, in ZnTe and CdTe monolayers. Moreover, these Rashba semiconductors exhibit a giant out-of-plane piezoelectric coefficient (d33) = 88.68 and 172.61 pm/V, and can thereby generate a high piezo potential for gating purposes in spin field-effect transistors (spin-FETs). While the low elastic stiffness implies the mechanical flexibility or stretchability in these monolayers. The Rashba constants are found to be effectively modulated via external perturbations, such as strain and electric field. The wide band gap provides ample room for modulation in its electronic properties via external perturbations. Such scope is severely limited in previously reported narrow band gap Rashba semiconductors. The fascinating results found in this work indicate their great potential for applications in next-generation self-powered flexible-piezo-spintronic devices. Moreover, a new class of hexagonal buckled ZnX (X: S, Se, or Te) monolayers is proposed herein based on their previously synthesized bulk counterparts, while their electronic, mechanical, piezoelectric, and thermal properties have been thoroughly investigated using the state-of-art density functional theory (DFT).
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Fathima Is
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amal Kishore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
62
|
Xie YM, Gao XJ, Xu XY, Zhang CP, Hu JX, Gao JZ, Law KT. Kramers nodal line metals. Nat Commun 2021; 12:3064. [PMID: 34031382 PMCID: PMC8144424 DOI: 10.1038/s41467-021-22903-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with SOC can be a new class of topological materials, which we term Kramers nodal line metals (KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines (KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians. These materials support quantized optical conductance in thin films. We further show that KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.
Collapse
Affiliation(s)
- Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xue-Jian Gao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiao Yan Xu
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Cheng-Ping Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin-Xin Hu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jason Z Gao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
63
|
Sheng F, Hua C, Cheng M, Hu J, Sun X, Tao Q, Lu H, Lu Y, Zhong M, Watanabe K, Taniguchi T, Xia Q, Xu ZA, Zheng Y. Rashba valleys and quantum Hall states in few-layer black arsenic. Nature 2021; 593:56-60. [PMID: 33953409 DOI: 10.1038/s41586-021-03449-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Exciting phenomena may emerge in non-centrosymmetric two-dimensional electronic systems when spin-orbit coupling (SOC)1 interplays dynamically with Coulomb interactions2,3, band topology4,5 and external modulating forces6-8. Here we report synergetic effects between SOC and the Stark effect in centrosymmetric few-layer black arsenic, which manifest as particle-hole asymmetric Rashba valley formation and exotic quantum Hall states that are reversibly controlled by electrostatic gating. The unusual findings are rooted in the puckering square lattice of black arsenic, in which heavy 4p orbitals form a Brillouin zone-centred Γ valley with pz symmetry, coexisting with doubly degenerate D valleys of px origin near the time-reversal-invariant momenta of the X points. When a perpendicular electric field breaks the structure inversion symmetry, strong Rashba SOC is activated for the px bands, which produces spin-valley-flavoured D± valleys paired by time-reversal symmetry, whereas Rashba splitting of the Γ valley is constrained by the pz symmetry. Intriguingly, the giant Stark effect shows the same px-orbital selectiveness, collectively shifting the valence band maximum of the D± Rashba valleys to exceed the Γ Rashba top. Such an orchestrating effect allows us to realize gate-tunable Rashba valley manipulations for two-dimensional hole gases, hallmarked by unconventional even-to-odd transitions in quantum Hall states due to the formation of a flavour-dependent Landau level spectrum. For two-dimensional electron gases, the quantization of the Γ Rashba valley is characterized by peculiar density-dependent transitions in the band topology from trivial parabolic pockets to helical Dirac fermions.
Collapse
Affiliation(s)
- Feng Sheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Chenqiang Hua
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Man Cheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Xikang Sun
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Tao
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Hengzhe Lu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunhao Lu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China
| | - Mianzeng Zhong
- School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, People's Republic of China
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Qinglin Xia
- School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, People's Republic of China.
| | - Zhu-An Xu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China. .,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, People's Republic of China.
| | - Yi Zheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China. .,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
64
|
Mohanta MK, Arora A, De Sarkar A. Conflux of tunable Rashba effect and piezoelectricity in flexible magnesium monochalcogenide monolayers for next-generation spintronic devices. NANOSCALE 2021; 13:8210-8223. [PMID: 33885124 DOI: 10.1039/d1nr00149c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling of piezoelectric properties with Rashba spin-orbit coupling (SOC) has proven to be the limit breaker that paves the way for a self-powered spintronic device (ACS Nano, 2018, 12, 1811-1820). For further advancement in next-generation devices, a new class of buckled, hexagonal magnesium-based chalcogenide monolayers (MgX; X = S, Se, Te) have been predicted which are direct band gap semiconductors satisfying all the stability criteria. The MgTe monolayer shows a strong SOC with a Rashba constant of 0.63 eV Å that is tunable to the extent of ±0.2 eV Å via biaxial strain. Also, owing to its broken inversion symmetry and buckling geometry, MgTe has a very large in-plane as well as out-of-plane piezoelectric coefficient. These results indicate its prospects for serving as a channel semiconducting material in self-powered piezo-spintronic devices. Furthermore, a prototype for a digital logic device can be envisioned using the ac pulsed technology via a perpendicular electric field. Heat transport is significantly suppressed in these monolayers as observed from their intrinsic low lattice thermal conductivity at room temperature: MgS (9.32 W m-1 K-1), MgSe (4.93 W m-1 K-1) and MgTe (2.02 W m-1 K-1). Further studies indicate that these monolayers can be used as photocatalytic materials for the simultaneous production of hydrogen and oxygen on account of having suitable band edge alignment and high charge carrier mobility. This work provides significant theoretical insights into both the fundamental and applied properties of these new buckled MgX monolayers, which are highly suitable for futuristic applications at the nanoscale in low-power, self-powered multifunctional electronic and spintronic devices and solar energy harvesting.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Anu Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| |
Collapse
|
65
|
Bouaziz J, Ishida H, Lounis S, Blügel S. Transverse Transport in Two-Dimensional Relativistic Systems with Nontrivial Spin Textures. PHYSICAL REVIEW LETTERS 2021; 126:147203. [PMID: 33891449 DOI: 10.1103/physrevlett.126.147203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Using multiple scattering theory, we show that the generally accepted expression of transverse resistivity in magnetic systems that host skyrmions, given by the linear superposition of the ordinary, the anomalous, and the topological Hall effect, is incomplete and must be amended by an additional term, the "noncollinear" Hall effect (NHE). Its angular form is determined by the magnetic texture, the spin-orbit field of the electrons, and the underlying crystal structure, allowing us to disentangle the NHE from the various other Hall contributions. Its magnitude is proportional to the spin-orbit interaction strength. The NHE is an essential term required for decoding two- and three-dimensional spin textures from transport experiments.
Collapse
Affiliation(s)
- Juba Bouaziz
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany
| | - Hiroshi Ishida
- College of Humanities and Sciences, Nihon University, Sakura-josui, Tokyo 156-8550, Japan
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany
- Faculty of Physics, University of Duisburg-Essen, 47053 Duisburg, Germany
| | - Stefan Blügel
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany
| |
Collapse
|
66
|
Ahmadov EJ, Aliev ZS, Babanly DM, Imamaliyeva SZ, Gasymov VA, Babanly MB. The Quasi-Ternary System Bi2S3–Bi2Te3–BiI3. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Yim CM, Chakraborti D, Rhodes LC, Khim S, Mackenzie AP, Wahl P. Quasiparticle interference and quantum confinement in a correlated Rashba spin-split 2D electron liquid. SCIENCE ADVANCES 2021; 7:7/15/eabd7361. [PMID: 33837075 PMCID: PMC8034857 DOI: 10.1126/sciadv.abd7361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Exploiting inversion symmetry breaking (ISB) in systems with strong spin-orbit coupling promises control of spin through electric fields-crucial to achieve miniaturization in spintronic devices. Delivering on this promise requires a two-dimensional electron gas with a spin precession length shorter than the spin coherence length and a large spin splitting so that spin manipulation can be achieved over length scales of nanometers. Recently, the transition metal oxide terminations of delafossite oxides were found to exhibit a large Rashba spin splitting dominated by ISB. In this limit, the Fermi surface exhibits the same spin texture as for weak ISB, but the orbital texture is completely different, raising questions about the effect on quasiparticle scattering. We demonstrate that the spin-orbital selection rules relevant for conventional Rashba system are obeyed as true spin selection rules in this correlated electron liquid and determine its spin coherence length from quasiparticle interference imaging.
Collapse
Affiliation(s)
- Chi Ming Yim
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK.
- Tsung Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dibyashree Chakraborti
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Luke C Rhodes
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Seunghyun Khim
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Andrew P Mackenzie
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK.
| |
Collapse
|
68
|
King PDC, Picozzi S, Egdell RG, Panaccione G. Angle, Spin, and Depth Resolved Photoelectron Spectroscopy on Quantum Materials. Chem Rev 2021; 121:2816-2856. [PMID: 33346644 DOI: 10.1021/acs.chemrev.0c00616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal "hidden" spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.
Collapse
Affiliation(s)
- Phil D C King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Silvia Picozzi
- Consiglio Nazionale delle Ricerche, CNR-SPIN, Via dei Vestini 31, Chieti 66100, Italy
| | - Russell G Egdell
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Giancarlo Panaccione
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| |
Collapse
|
69
|
Fei R, Yu S, Lu Y, Zhu L, Yang L. Switchable Enhanced Spin Photocurrent in Rashba and Cubic Dresselhaus Ferroelectric Semiconductors. NANO LETTERS 2021; 21:2265-2271. [PMID: 33645230 DOI: 10.1021/acs.nanolett.1c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Generating and controlling spin current (SC) are of central interest in spin physics and applications. To date, the spin-orbit interaction (SOI) is an established pathway to generate SC through the spin-charge current conversion. We predict an efficient spin-light conversion via the Rashba and higher-order cubic Dresselhaus SOIs in ferroelectrics. Different from the known Edelstein effect, where SC is created by the nonequilibrium spin density, our predicted spin-polarized current is from direct interactions between light and unique spin textures generated by SOI in ferroelectrics. Using first-principles simulations, we demonstrate these concepts by calculating the DC spin photocurrent in a prototypical Rashba ferroelectric, α-GeTe. The photoinduced SC is about 2 orders of magnitude larger than the charge photocurrent. More importantly, we can conveniently switch the direction of SC by an applied electric field via inverting the spin textures. These predictions give hope to generating and controlling light-driven SC via a nonvolatile electric field.
Collapse
Affiliation(s)
- Ruixiang Fei
- Department of Physics, Washington University in St Louis, St. Louis, Missouri 63130, United States
| | - Shuaiqin Yu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
| | - Yan Lu
- Department of Physics, Washington University in St Louis, St. Louis, Missouri 63130, United States
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Linghan Zhu
- Department of Physics, Washington University in St Louis, St. Louis, Missouri 63130, United States
| | - Li Yang
- Department of Physics, Washington University in St Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
70
|
Li D, Liu X, Wu W, Peng Y, Zhao S, Li L, Hong M, Luo J. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
71
|
Li D, Liu X, Wu W, Peng Y, Zhao S, Li L, Hong M, Luo J. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2021; 60:8415-8418. [DOI: 10.1002/anie.202013947] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
72
|
Fang D, Chen S, Li Y, Monserrat B. Direct band gap and strong Rashba effect in van der Waals heterostructures of InSe and Sb single layers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:155001. [PMID: 33418556 DOI: 10.1088/1361-648x/abd9ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Van der Waals heterostructures formed by stacking different types of 2D materials are attracting increasing attention due to new emergent physical properties such as interlayer excitons. Recently synthesized atomically thin indium selenide (InSe) and antimony (Sb) individually exhibit interesting electronic properties such as high electron mobility in the former and high hole mobility in the latter. In this work, we present a first-principles investigation on the stability and electronic properties of ultrathin bilayer heterostructures composed of InSe and Sb single layers. The calculated electronic band structures reveal a direct band gap semiconducting nature of the InSe/Sb heterostructures independent of stacking pattern. Taking spin-orbit coupling (SOC) into account, we find a large Rashba spin splitting at the bottom of conduction band, which originates from the atomic SOC with the symmetry breaking in the heterostructure. The strength of the Rashba spin splitting can be tuned by applying in-plane biaxial strain or an out-of-plane external electric field. The presence of large Rashba spin splitting together with a suitable band gap in InSe/Sb bilayer heterostructures make them promising candidates for spin field-effect transistor and optoelectronic device applications.
Collapse
Affiliation(s)
- Dangqi Fang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Siyu Chen
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Yaqi Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Bartomeu Monserrat
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
73
|
Ganguly S, Maiti SK. A new prescription to achieve a high degree of spin polarization in a spin-orbit coupled quantum ring: efficient engineering by irradiation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:145305. [PMID: 33498014 DOI: 10.1088/1361-648x/abdffe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The present work discusses the possibility to achieve a high degree of spin polarization in a three-terminal quantum system. Irradiating the system, subjected to Rashba spin-orbit (SO) interaction, we find high degree of spin polarization under a suitable input condition along with different magnitudes and phases at the two output leads. The system is described within a tight-binding (TB) framework and the effect of irradiation is incorporated following the Floquet-Bloch (FB) ansatz. All the spin-dependent transmission probabilities are evaluated through Green's function technique using Landauer-Büttiker formalism. Several possible aspects are included to make the system more realistic and examined rigorously in the present work. To name a few, the effects of irradiation, SO interaction, interface sensitivity, system size, system temperature are investigated, and finally, the role of correlated impurities are studied. Despite having numerous proposals available to generate and manipulate spin-selective transmissions, such a prescription exploiting the irradiation effect is relatively new to the best of our concern.
Collapse
Affiliation(s)
- Sudin Ganguly
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Santanu K Maiti
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| |
Collapse
|
74
|
Sattar S, Larsson JA. Rashba Effect and Raman Spectra of Tl 2O/PtS 2 Heterostructure. ACS OMEGA 2021; 6:4044-4050. [PMID: 33585779 PMCID: PMC7876842 DOI: 10.1021/acsomega.0c06043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The possibility to achieve charge-to-spin conversion via Rashba spin-orbit effects provides stimulating opportunities toward the development of nanoscale spintronics. Here, we use first-principles calculations to study the electronic and spintronic properties of Tl2O/PtS2 heterostructure, for which we have confirmed the dynamical stability by its positive phonon frequencies. An unexpectedly high binding energy of -0.38 eV per unit cell depicts strong interlayer interactions between Tl2O and PtS2. Interestingly, we discover Rashba spin-splittings (with a large α R value) in the valence band of Tl2O stemming from interfacial spin-orbit effects caused by PtS2. The role of van der Waals binding on the orbital rearrangements has been studied using the electron localization function and atomic orbital projections, which explains in detail the electronic dispersion near the Fermi level. Moreover, we explain the distinct band structure alignment in momentum space but separation in real space of Tl2O/PtS2 heterostructure. Since two-dimensional (2D) Tl2O still awaits experimental confirmation, we calculate, for the first time, the Raman spectra of pristine Tl2O and the Tl2O/PtS2 heterostructure and discuss peak positions corresponding to vibrational modes of the atoms. These findings offer a promising avenue to explore spin physics for potential spintronics applications via 2D heterostructures.
Collapse
|
75
|
Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe. Nat Commun 2021; 12:540. [PMID: 33483483 PMCID: PMC7822853 DOI: 10.1038/s41467-020-20840-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
Nonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin-orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.
Collapse
|
76
|
Affiliation(s)
- Alex Zunger
- Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Oleksandr I. Malyi
- Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
77
|
Yang X, Li XM, Li Y, Li Y, Sun R, Liu JN, Bai X, Li N, Xie ZK, Su L, Gong ZZ, Zhang XQ, He W, Cheng Z. Three-Dimensional Limit of Bulk Rashba Effect in Ferroelectric Semiconductor GeTe. NANO LETTERS 2021; 21:77-83. [PMID: 33263408 DOI: 10.1021/acs.nanolett.0c03161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferroelectric Rashba semiconductors (FERSCs) have recently attracted intensive attention due to their giant bulk Rashba parameter, αR, which results in a locking between the spin degrees of freedom and the switchable electric polarization. However, the integration of FERSCs into microelectronic devices has provoked questions concerning whether the Rashba effect can persist when the material thickness is reduced to several nanometers. Here we find that αR can keep a large value of 2.12 eV Å in the 5.0 nm thick GeTe film. The behavior of αR with thickness can be expressed by the scaling law and provides a 3D thickness limit of the bulk Rashba effect, dc = 2.1 ± 0.5 nm. Finally, we find that the thickness can modify the Berry curvature as well, which influences the polarization and consequently alters the αR. Our results give insight into understanding the factors influencing αR in FERSCs and pave a novel route for designing Rashba-type quantum materials.
Collapse
Affiliation(s)
- Xu Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Mei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Nan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Na Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Kai Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Zhao Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Qun Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaohua Cheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
78
|
Wu K, Chen J, Ma H, Wan L, Hu W, Yang J. Two-Dimensional Giant Tunable Rashba Semiconductors with Two-Atom-Thick Buckled Honeycomb Structure. NANO LETTERS 2021; 21:740-746. [PMID: 33356331 DOI: 10.1021/acs.nanolett.0c04429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Spin field-effect transistors (SFETs) based on the Rashba effect could manipulate the spin of electrons electrically, while seeking desirable Rashba semiconductors with large Rashba constant and strong electric-field response, to preserve spin coherence remains a key challenge. Herein, we propose a series of 2D Rashba semiconductors with two-atom-thick buckled honeycomb structure (BHS) according to high-throughput first-principles density functional theory calculations. BHS semiconductors show large Rashba constants that are favorable to be integrated into nanodevices superior to conventional bulk materials, and they can be fabricated by mechanical exfoliation or chemical vapor deposition. In particular, 2D AlBi monolayer has the largest Rashba constant (2.77 eVÅ) of all 2D Rashba materials. Furthermore, 2D BiSb monolayer is a promising candidate for SFETs due to its large Rashba constant (1.94 eVÅ) and strong electric field response (0.92 eÅ2). Our designed 2D-BiSb-SFET shows shorter spin channel length (42 nm with strain) than conventional SFETs (2-5 μm).
Collapse
Affiliation(s)
- Kai Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huanhuan Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
79
|
Yang W, Guan Z, Wang H, Li J. Ideal strength and strain engineering of the Rashba effect in two-dimensional BiTeBr. Phys Chem Chem Phys 2021; 23:6552-6560. [DOI: 10.1039/d0cp05890d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strain engineering can lead to enhanced charge transfer and therefore, can effectively tune Rashba effect.
Collapse
Affiliation(s)
- Wei Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials
- Department of Modern Mechanics
- CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China
- Hefei
- China
| | - Zhizi Guan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials
- Department of Modern Mechanics
- CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China
- Hefei
- China
| | - Hailong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials
- Department of Modern Mechanics
- CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China
- Hefei
- China
| | | |
Collapse
|
80
|
Wu N, Zhang XJ, Liu BG. Strain-enhanced giant Rashba spin splitting in ultrathin KTaO 3 films for spin-polarized photocurrents. RSC Adv 2020; 10:44088-44095. [PMID: 35517182 PMCID: PMC9058490 DOI: 10.1039/d0ra08745a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Strong Rashba effects at semiconductor surfaces and interfaces have attracted great attention for basic scientific exploration and practical applications. Here, we show through first-principles investigation that applying biaxial stress can cause tunable and giant Rashba effects in ultrathin KTaO3 (KTO) (001) films with the most stable surfaces. When increasing the in-plane compressive strain to −5%, the Rashba spin splitting energy reaches ER = 140 meV, corresponding to the Rashba coupling constant αR = 1.3 eV Å. We investigate its strain-dependent crystal structures, energy bands, and related properties, and thereby elucidate the mechanism for the giant Rashba effects. Further calculations show that the giant Rashba spin splitting can remain or be enhanced when capping layer and/or Si substrate are added, and a SrTiO3 capping can make the Rashba spin splitting energy reach the record 190 meV. Furthermore, it is elucidated that strong circular photogalvanic effect can be achieved for spin-polarized photocurrents in the KTO thin films or related heterostructures, which is promising for future spintronic and optoelectronic applications. Strong Rashba effects at semiconductor surfaces and interfaces have attracted attention for exploration and applications. We show with first-principles investigation that applying biaxial stress can cause tunable and giant Rashba effects in ultrathin KTaO3 (KTO) (001) films.![]()
Collapse
Affiliation(s)
- Ning Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China .,School of Physical Sciences, University of Chinese Academy of Sciences Beijing 100190 China
| | - Xue-Jing Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China .,School of Physical Sciences, University of Chinese Academy of Sciences Beijing 100190 China
| | - Bang-Gui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China .,School of Physical Sciences, University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
81
|
Koo HC, Kim SB, Kim H, Park TE, Choi JW, Kim KW, Go G, Oh JH, Lee DK, Park ES, Hong IS, Lee KJ. Rashba Effect in Functional Spintronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002117. [PMID: 32930418 DOI: 10.1002/adma.202002117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Exploiting spin transport increases the functionality of electronic devices and enables such devices to overcome physical limitations related to speed and power. Utilizing the Rashba effect at the interface of heterostructures provides promising opportunities toward the development of high-performance devices because it enables electrical control of the spin information. Herein, the focus is mainly on progress related to the two most compelling devices that exploit the Rashba effect: spin transistors and spin-orbit torque devices. For spin field-effect transistors, the gate-voltage manipulation of the Rashba effect and subsequent control of the spin precession are discussed, including for all-electric spin field-effect transistors. For spin-orbit torque devices, recent theories and experiments on interface-generated spin current are discussed. The future directions of manipulating the Rashba effect to realize fully integrated spin logic and memory devices are also discussed.
Collapse
Affiliation(s)
- Hyun Cheol Koo
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong Been Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Hansung Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Tae-Eon Park
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jun Woo Choi
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyoung-Whan Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Gyungchoon Go
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jung Hyun Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Dong-Kyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Eun-Sang Park
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Ik-Sun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Kyung-Jin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
82
|
Trivedi DB, Turgut G, Qin Y, Sayyad MY, Hajra D, Howell M, Liu L, Yang S, Patoary NH, Li H, Petrić MM, Meyer M, Kremser M, Barbone M, Soavi G, Stier AV, Müller K, Yang S, Esqueda IS, Zhuang H, Finley JJ, Tongay S. Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2006320. [PMID: 33175433 DOI: 10.1002/adma.202006320] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin-orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2 . However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room-temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low-energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room-temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.
Collapse
Affiliation(s)
- Dipesh B Trivedi
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Guven Turgut
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Ying Qin
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Mohammed Y Sayyad
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Debarati Hajra
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Madeleine Howell
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Lei Liu
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Sijie Yang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Naim Hossain Patoary
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Han Li
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Marko M Petrić
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Moritz Meyer
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Malte Kremser
- Walter Schottky Institut, Physik Department and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Matteo Barbone
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Giancarlo Soavi
- Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, Jena, 07743, Germany
| | - Andreas V Stier
- Walter Schottky Institut, Physik Department and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Kai Müller
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Shize Yang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Ivan Sanchez Esqueda
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Houlong Zhuang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jonathan J Finley
- Walter Schottky Institut, Physik Department and MCQST, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - Sefaattin Tongay
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
83
|
Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S. Epitaxial Synthesis of Highly Oriented 2D Janus Rashba Semiconductor BiTeCl and BiTeBr Layers. ACS NANO 2020; 14:15626-15632. [PMID: 33090763 DOI: 10.1021/acsnano.0c06434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The family of layered BiTeX (X = Cl, Br, I) compounds are intrinsic Janus semiconductors with giant Rashba-splitting and many exotic surface and bulk physical properties. To date, studies on these materials required mechanical exfoliation from bulk crystals which yielded thick sheets in nonscalable sizes. Here, we report epitaxial synthesis of Janus BiTeCl and BiTeBr sheets through a nanoconversion technique that can produce few triple layers of Rashba semiconductors (<10 nm) on sapphire substrates. The process starts with van der Waals epitaxy of Bi2Te3 sheets on sapphire and converts these sheets to BiTeCl or BiTeBr layers at high temperatures in the presence of chemically reactive BiCl3/BiBr3 inorganic vapor. Systematic Raman, XRD, SEM, EDX, and other studies show that highly crystalline BiTeCl and BiTeBr sheets can be produced on demand. Atomic level growth mechanism is also proposed and discussed to offer further insights into growth process steps. Overall, this work marks the direct deposition of 2D Janus Rashba materials and offers pathways to synthesize other Janus compounds belonging to MXY family members.
Collapse
Affiliation(s)
- Debarati Hajra
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Renee Sailus
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Mark Blei
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Kentaro Yumigeta
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuxia Shen
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Sefaattin Tongay
- Materials Science and Engineering, School for Engineering of Matter Transport of Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
84
|
Zhao HJ, Nakamura H, Arras R, Paillard C, Chen P, Gosteau J, Li X, Yang Y, Bellaiche L. Purely Cubic Spin Splittings with Persistent Spin Textures. PHYSICAL REVIEW LETTERS 2020; 125:216405. [PMID: 33275000 DOI: 10.1103/physrevlett.125.216405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Purely cubic spin splittings in the band structure of bulk insulators have not been extensively investigated yet despite the fact that they may pave the way for novel spin-orbitronic applications and can also result in a variety of promising spin phenomena. By symmetry analysis and first-principles simulations, we report symmetry-enforced purely cubic spin splittings (SEPCSS) that can even lead to persistent spin textures. In particular, these SEPCSS can be thought to be complementary to the cubic Rashba and cubic Dresselhaus types of spin splittings. Strikingly, the presently discovered SEPCSS are expected to exist in the large family of materials crystallizing in the 6[over ¯]m2 and 6[over ¯] point groups, including the Ge_{3}Pb_{5}O_{11}, Pb_{7}Br_{2}F_{12}, and Pb_{7}Cl_{2}F_{12} compounds.
Collapse
Affiliation(s)
- Hong Jian Zhao
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Hiro Nakamura
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Rémi Arras
- CEMES, Université de Toulouse, CNRS, UPS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
| | - Charles Paillard
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Laboratoire SPMS, CentraleSuplec/CNRS UMR8580, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Peng Chen
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Julien Gosteau
- CEMES, Université de Toulouse, CNRS, UPS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
| | - Xu Li
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Laurent Bellaiche
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
85
|
Rong K, Wang B, Reuven A, Maguid E, Cohn B, Kleiner V, Katznelson S, Koren E, Hasman E. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. NATURE NANOTECHNOLOGY 2020; 15:927-933. [PMID: 32839591 DOI: 10.1038/s41565-020-0758-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Heterostructures combining a thin layer of quantum emitters and planar nanostructures enable custom-tailored photoluminescence in an integrated fashion. Here, we demonstrate a photonic Rashba effect from valley excitons in a WSe2 monolayer, which is incorporated into a photonic crystal slab with geometric phase defects, that is, into a Berry-phase defective photonic crystal. This phenomenon of spin-split dispersion in momentum space arises from a coherent geometric phase pickup assisted by the Berry-phase defect mode. The valley excitons effectively interact with the defects for site-controlled excitation, photoluminescence enhancement and spin-dependent manipulation. Specifically, the spin-dependent branches of photoluminescence in momentum space originate from valley excitons with opposite helicities and evidence the valley separation at room temperature. To further demonstrate the versatility of the Berry-phase defective photonic crystals, we use this concept to separate opposite spin states of quantum dot emission. This spin-enabled manipulation of quantum emitters may enable highly efficient metasurfaces for customized planar sources with spin-polarized directional emission.
Collapse
Affiliation(s)
- Kexiu Rong
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bo Wang
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Reuven
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elhanan Maguid
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bar Cohn
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vladimir Kleiner
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shaul Katznelson
- Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elad Koren
- Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Erez Hasman
- Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
86
|
Wang D, Ju W, Li T, Zhou Q, Zhang Y, Gao Z, Kang D, Li H, Gong S. Dipole control of Rashba spin splitting in a type-II Sb/InSe van der Waals heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:045501. [PMID: 32987372 DOI: 10.1088/1361-648x/abbc35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
InSe monolayer, belonging to group III-VI chalcogenide family, has shown promising performance in the realm of spintronic. Nevertheless, the out-of-plane mirror symmetry in InSe monolayer constrains the electrons' degrees of freedom, and this will confine its spin-related applications. Herein, we construct Sb/InSe van der Waals heterostructure to extend the electronic and spintronic properties of InSe. The density functional theory is utilized to verify the tunable electronic properties and Rashba spin splitting (RSS) of Sb/InSe heterostructure. According to the obtained results, the Sb/InSe heterostructure can be considered as a direct band gap semiconductor with typical type-II band alignment, where the electrons and holes are localized in the InSe and Sb layers, respectively. The RSS is recognized at conduction band minimum around Γ point in Sb/InSe, which is induced by the spontaneous internal electric field with electric dipole moment of 0.016 e Å from Sb to InSe. The vertical strain, in-plane strain, and external electric field are employed to modulate the strength of RSS. The Rashba coefficient and dipole moment exhibit the similar variation tendency, suggesting the strength of RSS depends on the magnitude of dipole moment. The controllable RSS makes Sb/InSe heterostructure become an appropriate candidate material for spintronic devices.
Collapse
Affiliation(s)
- Donghui Wang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Weiwei Ju
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongwei Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Qingxiao Zhou
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Yi Zhang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Zijian Gao
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Dawei Kang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Haisheng Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Shijing Gong
- Department of optoelectrics, East China Normal University, Shanghai 200062, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
87
|
Jana MK, Song R, Liu H, Khanal DR, Janke SM, Zhao R, Liu C, Valy Vardeny Z, Blum V, Mitzi DB. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat Commun 2020; 11:4699. [PMID: 32943625 PMCID: PMC7499302 DOI: 10.1038/s41467-020-18485-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic-inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations, R-(+)- or S-(-)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures between R- and S-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.
Collapse
Affiliation(s)
- Manoj K Jana
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Haoliang Liu
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Dipak Raj Khanal
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Svenja M Janke
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Rundong Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Chi Liu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Z Valy Vardeny
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Volker Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
88
|
Abstract
Nonlinear optical and electrical effects associated with a lack of spatial inversion symmetry allow direction-selective propagation and transport of quantum particles, such as photons1 and electrons2-9. The most common example of such nonreciprocal phenomena is a semiconductor diode with a p-n junction, with a low resistance in one direction and a high resistance in the other. Although the diode effect forms the basis of numerous electronic components, such as rectifiers, alternating-direct-current converters and photodetectors, it introduces an inevitable energy loss due to the finite resistance. Therefore, a worthwhile goal is to realize a superconducting diode that has zero resistance in only one direction. Here we demonstrate a magnetically controllable superconducting diode in an artificial superlattice [Nb/V/Ta]n without a centre of inversion. The nonreciprocal resistance versus current curve at the superconducting-to-normal transition was clearly observed by a direct-current measurement, and the difference of the critical current is considered to be related to the magnetochiral anisotropy caused by breaking of the spatial-inversion and time-reversal symmetries10-13. Owing to the nonreciprocal critical current, the [Nb/V/Ta]n superlattice exhibits zero resistance in only one direction. This superconducting diode effect enables phase-coherent and direction-selective charge transport, paving the way for the construction of non-dissipative electronic circuits.
Collapse
|
89
|
Jnawali G, Xiang Y, Linser SM, Shojaei IA, Wang R, Qiu G, Lian C, Wong BM, Wu W, Ye PD, Leng Y, Jackson HE, Smith LM. Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat Commun 2020; 11:3991. [PMID: 32778660 PMCID: PMC7417742 DOI: 10.1038/s41467-020-17766-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split H4 and H5 and the degenerate H6 valence bands (VB) and the lowest degenerate H6 conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of the H6 CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties. The complex band structure and carrier decay response upon photoexcitation of the chiral semiconductor tellurium remain to be unveiled. Here, the authors report unusual dynamic band modifications in Te near band-edge structure due to photoinduced symmetry breaking and strong anisotropy in carrier decay dynamics.
Collapse
Affiliation(s)
- Giriraj Jnawali
- Department of Physics and Astronomy, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, D.C., 20052, USA
| | - Samuel M Linser
- Department of Physics and Astronomy, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Iraj Abbasian Shojaei
- Department of Physics and Astronomy, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Gang Qiu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Lian
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, University of California, Riverside, Riverside, CA, 92521, USA
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, University of California, Riverside, Riverside, CA, 92521, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Peide D Ye
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, D.C., 20052, USA
| | - Howard E Jackson
- Department of Physics and Astronomy, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Leigh M Smith
- Department of Physics and Astronomy, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
90
|
Li C, Han X, Zi Y, Hao D, Wu J, Wang F, Niu CY, Cho JH, Jia Y. Realization of asymmetric spin splitting Dirac cones in antiferromagnetic graphene/CrAs 2/graphene heterotrilayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:435503. [PMID: 32677626 DOI: 10.1088/1361-648x/aba6e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Nonmagnetic graphene-based van der Waals heterotrilayers exhibit peculiar electronic features such as energetically and/or spatially resolved Dirac rings/cones. Here, using first-principles calculations we study the effect of magnetic proximity effect and mirror symmetry of antiferromagnetic CrAs2monolayer sandwiched between graphene on the Dirac cones. We clearly identify the common vertical shift of the Dirac bands in the spin up channel. While in the spin down channel, we surprisingly observe the remarkable transverse splitting Dirac cones. The underling mechanism can be attributed to the static electric field caused by the charge transfer between the interlayers, and the polarized field arising from the weakly magnetized graphene. Both fields collectively give rise to an inequivalent space inversion broken between graphene and CrAs2layers. Such unique Dirac states are absent in its nonmagnetic or ferromagnetic counterpart, ferromagnetic heterotrilayer with the glide symmetry, and graphene/CrAs2heterobilayer. Our findings would provide a new insight into the correlation between Dirac cones and magnetic monolayer sandwiched between graphene.
Collapse
Affiliation(s)
- Chong Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xiaoyu Han
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Yanbo Zi
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dongfeng Hao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Junhui Wu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fei Wang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Chun-Yao Niu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jun-Hyung Cho
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Physics and Research Institute for National Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | - Yu Jia
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
91
|
Li H, Qin Y, Ko B, Trivedi DB, Hajra D, Sayyad MY, Liu L, Shim SH, Zhuang H, Tongay S. Anomalous Behavior of 2D Janus Excitonic Layers under Extreme Pressures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002401. [PMID: 32627918 DOI: 10.1002/adma.202002401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Newly discovered 2D Janus transition metal dichalcogenides layers have gained much attention from a theory perspective owing to their unique atomic structure and exotic materials properties, but little to no experimental data are available on these materials. Here, experimental and theoretical studies establish the vibrational and optical behavior of 2D Janus S-W-Se and S-Mo-Se monolayers under high pressures for the first time. Chemical vapor deposition (CVD)-grown classical transition metal dichalcogenides (TMD) monolayers are first transferred onto van der Waals (vdW) mica substrates and converted to 2D Janus sheets by surface plasma technique, and then integrated into a 500 µm size diamond anvil cell for high-pressure studies. The results show that 2D Janus layers do not undergo phase transition up to 15 GPa, and in this pressure regime, their vibrational modes exhibit a nonmonotonic response to the applied pressures (dω/dP). Interestingly, these 2D Janus monolayers exhibit unique blueshift in photoluminescence (PL) upon compression, which is in contrast to many other traditional semiconductor materials. Overall theoretical simulations offer in-depth insights and reveal that the overall optical response is a result of competition between the ab-plane (blueshift) and c-axis (redshift) compression. The overall findings shed the very first light on how 2D Janus monolayers respond under extreme pressures and expand the fundamental understanding of these materials.
Collapse
Affiliation(s)
- Han Li
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Ying Qin
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Dipesh B Trivedi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Debarati Hajra
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Mohammed Yasir Sayyad
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Lei Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sang-Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Houlong Zhuang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
92
|
Kovács-Krausz Z, Hoque AM, Makk P, Szentpéteri B, Kocsis M, Fülöp B, Yakushev MV, Kuznetsova TV, Tereshchenko OE, Kokh KA, Lukács I, Taniguchi T, Watanabe K, Dash SP, Csonka S. Electrically Controlled Spin Injection from Giant Rashba Spin-Orbit Conductor BiTeBr. NANO LETTERS 2020; 20:4782-4791. [PMID: 32511931 PMCID: PMC7660945 DOI: 10.1021/acs.nanolett.0c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Indexed: 05/31/2023]
Abstract
Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Because of its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.
Collapse
Affiliation(s)
- Zoltán Kovács-Krausz
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Anamul Md Hoque
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | - Péter Makk
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Bálint Szentpéteri
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Mátyás Kocsis
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Bálint Fülöp
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Michael Vasilievich Yakushev
- M.N.
Miheev Institute of Metal Physics, Ural
Branch of the Russian Academy of Science, 620108, Ekaterinburg, Russia
- Ural
Federal University, Ekaterinburg, 620002, Russia
- Institute
of Solid State Chemistry, Ural Branch of
the Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Tatyana Vladimirovna Kuznetsova
- M.N.
Miheev Institute of Metal Physics, Ural
Branch of the Russian Academy of Science, 620108, Ekaterinburg, Russia
- Ural
Federal University, Ekaterinburg, 620002, Russia
| | - Oleg Evgenevich Tereshchenko
- St.
Petersburg State University, 198504, St. Petersburg, Russia
- A.
V. Rzhanov Institute of Semiconductor Physics, 630090, Novosibirsk, Russia
- Novosibirsk
State University, 630090, Novosibirsk, Russia
| | - Konstantin Aleksandrovich Kokh
- St.
Petersburg State University, 198504, St. Petersburg, Russia
- Novosibirsk
State University, 630090, Novosibirsk, Russia
- V.
S. Sobolev Institute of Geology and Mineralogy, 630090, Novosibirsk, Russia
| | - István
Endre Lukács
- Center
for Energy Research, Institute of Technical
Physics and Material Science, H-1121 Budapest, Hungary
| | - Takashi Taniguchi
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Saroj Prasad Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | - Szabolcs Csonka
- Department
of Physics, Budapest University of Technology
and Economics and Nanoelectronics ‘Momentum’ Research
Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| |
Collapse
|
93
|
Cavill SA, Huang C, Offidani M, Lin YH, Cazalilla MA, Ferreira A. Proposal for Unambiguous Electrical Detection of Spin-Charge Conversion in Lateral Spin Valves. PHYSICAL REVIEW LETTERS 2020; 124:236803. [PMID: 32603148 DOI: 10.1103/physrevlett.124.236803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/09/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient detection of spin-charge conversion is crucial for advancing our understanding of emergent phenomena in spin-orbit-coupled nanostructures. Here, we provide a proof of principle of an electrical detection scheme of spin-charge conversion that enables full disentanglement of competing spin-orbit coupling (SOC) transport phenomena in diffusive lateral channels, i.e., the inverse spin Hall effect and the spin galvanic effect. A suitable geometry in an applied oblique magnetic field is shown to provide direct access to SOC transport coefficients through a symmetry analysis of the output nonlocal resistance. The scheme is robust against tilting of the spin-injector magnetization, disorder, and spurious non-spin-related contributions to the nonlocal signal and can be used to probe spin-charge conversion effects in both spin-valve and hybrid optospintronic devices.
Collapse
Affiliation(s)
- Stuart A Cavill
- Department of Physics, University of York, YO10 5DD York, United Kingdom
| | - Chunli Huang
- Department of Physics, National Tsing Hua University and National Center for Theoretical Sciences (NCTS), Hsinchu 30013, Taiwan
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Manuel Offidani
- Department of Physics, University of York, YO10 5DD York, United Kingdom
| | - Yu-Hsuan Lin
- Department of Physics, National Tsing Hua University and National Center for Theoretical Sciences (NCTS), Hsinchu 30013, Taiwan
| | - Miguel A Cazalilla
- Department of Physics, National Tsing Hua University and National Center for Theoretical Sciences (NCTS), Hsinchu 30013, Taiwan
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, 20018 Donostia, Spain
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Aires Ferreira
- Department of Physics, University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
94
|
Han J, Zhang A, Chen M, Gao W, Jiang Q. Giant Rashba splitting in one-dimensional atomic tellurium chains. NANOSCALE 2020; 12:10277-10283. [PMID: 32363363 DOI: 10.1039/d0nr00443j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The search for a one-dimensional (1D) system with purely 1D bands and strong Rashba spin splitting is essential for the realization of Majorana fermions and spin transport but presents a fundamental challenge to date. Herein, using first-principles calculations, we demonstrated that atomic Tellurium (Te) chains exhibit purely 1D bands and giant Rashba spin splitting, and their splitting parameters depend strongly on strain and structure distortion. This phenomenon stems from the helical structure of atomic Te chains, which can not only sustain significant strain but also realize the synergy of orbital angular momentum and in-chain potential gradient in enhancing spin splitting. The structure distortion of stretched helical Te chains is critical to execute this synergy, generating a large Rashba spin splitting among the known systems. Our findings proposed a potential 1D giant Rashba splitting system for exploring spintronics and Majorana fermions, and provide routes for engineering spin splitting in other materials.
Collapse
Affiliation(s)
- Jie Han
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University 130022, Changchun, China.
| | | | | | | | | |
Collapse
|
95
|
Ünzelmann M, Bentmann H, Eck P, Kißlinger T, Geldiyev B, Rieger J, Moser S, Vidal RC, Kißner K, Hammer L, Schneider MA, Fauster T, Sangiovanni G, Di Sante D, Reinert F. Orbital-Driven Rashba Effect in a Binary Honeycomb Monolayer AgTe. PHYSICAL REVIEW LETTERS 2020; 124:176401. [PMID: 32412286 DOI: 10.1103/physrevlett.124.176401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence of orbital angular momentum (OAM) in the Bloch wave functions. Here, we present detailed experimental evidence for this OAM-based origin of the Rashba effect by angle-resolved photoemission (ARPES) and two-photon photoemission experiments for a monolayer AgTe on Ag(111). Using quantitative low-energy electron diffraction analysis, we determine the structural parameters and the stacking of the honeycomb overlayer with picometer precision. Based on an orbital-symmetry analysis in ARPES and supported by first-principles calculations, we unequivocally relate the presence and absence of Rashba-type spin splittings in different bands of AgTe to the existence of OAM.
Collapse
Affiliation(s)
- Maximilian Ünzelmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Hendrik Bentmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Philipp Eck
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Tilman Kißlinger
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Begmuhammet Geldiyev
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Janek Rieger
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Simon Moser
- Experimentelle Physik IV and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Raphael C Vidal
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Katharina Kißner
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lutz Hammer
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - M Alexander Schneider
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Thomas Fauster
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Giorgio Sangiovanni
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Domenico Di Sante
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Friedrich Reinert
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
96
|
Ju W, Wang D, Li T, Zhang Y, Gao Z, Ren L, Li H, Gong S. Remarkable Rashba spin splitting induced by an asymmetrical internal electric field in polar III-VI chalcogenides. Phys Chem Chem Phys 2020; 22:9148-9156. [PMID: 32301938 DOI: 10.1039/d0cp00627k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the Rashba spin orbit coupling (SOC) of polar group III-VI chalcogenide XABY (A, B = Ga, In; X ≠ Y = S, Se, Te) monolayers is investigated based on density functional theory. The different electronegativities of X and Y atoms lead to an asymmetrical internal electric field in the XABY monolayer; this implies that the internal electric field between A and X is not equal to that between B and Y. Mirror symmetry breaking in the XABY monolayer induces a remarkable Rashba spin splitting (RSS) at the conduction band minimum (CBM). Moreover, it is demonstrated that an external electric field and an in-plane biaxial strain can affect the internal electric field by varying the charge distribution, and this further manipulates the RSS. Under a positive external electric field and tensile strain, the RSS at the CBM exhibits a near-linear increasing behavior, whereas under a negative external electric field and compressive strain, the RSS displays a monotonous decreasing pattern. In addition, we explored the influence of interlayer coupling and substrate on the RSS. The stacking pattern of bilayer structures has a significant impact on the RSS. The investigation of SInGaSe on the Si(111) substrate suggests that the Rashba band is situated inside the large band gap of the substrate. Overall, our investigations suggest that the polar group III-VI chalcogenides are promising candidates for future spintronic applications.
Collapse
Affiliation(s)
- Weiwei Ju
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China. and State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Donghui Wang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Tongwei Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Yi Zhang
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Zijian Gao
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Lixian Ren
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Haisheng Li
- College of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Shijing Gong
- Department of Optoelectrics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
97
|
Ju W, Wang D, Li T, Wang H, Zhou Q, Xu Y, Li H, Gong S. Electric field control of Rashba spin splitting in 2D N IIIX VI (N = Ga, In; X = S, Se, Te) monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:175503. [PMID: 31935706 DOI: 10.1088/1361-648x/ab6b88] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spin splitting of the nonmagnetic two dimensional (2D) layered NIIIXVI (N = Ga, In; X = S, Se, Te) monolayer is investigated based on the density functional theory. Due to the mirror symmetry, there is no Rashba spin splitting (RSS) in the freestanding NX plane. It is found that applying the external electric field perpendicular to the NX plane can result in sizable RSS around the Γ point due to the mirror symmetry breaking. The induced RSS is mainly influenced by the anions X and gradually strengthens with the increase of external electric field. The considerable RSS is observed in NTe systems. Moreover, the influence of in-plane biaxial strain on RSS is explored, and the tensile strain can enhance the RSS, especially for those bands around the Fermi level. Our theoretical investigation provides a deep insight in spin splitting behaviors in NX monolayers and agrees well with the experimental report.
Collapse
Affiliation(s)
- Weiwei Ju
- College of Physics and Engineering and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471023, People's Republic of China. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Sakano M, Hirayama M, Takahashi T, Akebi S, Nakayama M, Kuroda K, Taguchi K, Yoshikawa T, Miyamoto K, Okuda T, Ono K, Kumigashira H, Ideue T, Iwasa Y, Mitsuishi N, Ishizaka K, Shin S, Miyake T, Murakami S, Sasagawa T, Kondo T. Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure. PHYSICAL REVIEW LETTERS 2020; 124:136404. [PMID: 32302163 DOI: 10.1103/physrevlett.124.136404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The chiral crystal is characterized by a lack of mirror symmetry and inversion center, resulting in the inequivalent right- and left-handed structures. In the noncentrosymmetric crystal structure, the spin and momentum of electrons are expected to be locked in the reciprocal space with the help of the spin-orbit interaction. To reveal the spin textures of chiral crystals, we investigate the spin and electronic structure in a p-type semiconductor, elemental tellurium, with the simplest chiral structure by using spin- and angle-resolved photoemission spectroscopy. Our data demonstrate that the highest valence band crossing the Fermi level has a spin component parallel to the electron momentum around the Brillouin zone corners. Significantly, we have also confirmed that the spin polarization is reversed in the crystal with the opposite chirality. The results indicate that the spin textures of the right- and left-handed chiral crystals are hedgehoglike, leading to unconventional magnetoelectric effects and nonreciprocal phenomena.
Collapse
Affiliation(s)
- M Sakano
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - M Hirayama
- Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Tokodai Institute for Element Strategy (TIES), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - T Takahashi
- Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - S Akebi
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - M Nakayama
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - K Kuroda
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - K Taguchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - T Yoshikawa
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - K Miyamoto
- Hiroshima Synchrotron Radiation Center (HiSOR), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - T Okuda
- Hiroshima Synchrotron Radiation Center (HiSOR), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - K Ono
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - H Kumigashira
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - T Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Y Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - N Mitsuishi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - K Ishizaka
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - S Shin
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - T Miyake
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), AIST, Tsukuba, Ibaraki 305-8568, Japan
| | - S Murakami
- Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Tokodai Institute for Element Strategy (TIES), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - T Sasagawa
- Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Kondo
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Chiba 277-8581, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
99
|
Li Z, Zhang S, Xing W, Lin Z, Yao J, Wu Y. Ba 8SrPb 24O 24Cl 18: the first alkali-earth metal lead(ii) oxyhalide with an intriguing multimember-ring layer. Dalton Trans 2020; 49:3667-3671. [PMID: 31478537 DOI: 10.1039/c9dt02839k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first alkali-earth metal lead(ii) oxyhalide Ba8SrPb24O24Cl18 characterized by fascinating multimember-ring layers has been discovered. Theoretical and experimental investigations illustrate that Ba8SrPb24O24Cl18 exhibits a moderate band gap of 3.09 eV, incongruent melting behavior and birefringence of 0.014@1064 nm. This discovery may offer new ideas for regulating the optical properties of oxyhalides and broadening their structural diversity.
Collapse
Affiliation(s)
- Zhuang Li
- Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | |
Collapse
|
100
|
Zhou B. Ferroelectric Rashba semiconductors, AgBiP 2X 6 (X = S, Se and Te), with valley polarization: an avenue towards electric and nonvolatile control of spintronic devices. NANOSCALE 2020; 12:5533-5542. [PMID: 32091050 DOI: 10.1039/c9nr10865c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electric and nonvolatile control of spin in semiconductors represents a fundamental step towards novel electronic devices. In this work, using first-principles calculations we investigate the electronic properties of AgBiP2X6 (X = S, Se, and Te) monolayers, which may be a new member of ferroelectric Rashba semiconductors due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the electric control of spin. The AgBiP2X6 monolayers are dynamically and thermodynamically stable up to room temperature. In the AgBiP2Te6 monolayer, the calculated band structure reveals the direct band-gap semiconducting nature in the presence of highly mobile two-dimensional electron gas near the Fermi level. The inclusion of spin-orbit coupling yields the giant Rashba-type spin splitting with a Rashba parameter of 6.5 eV Å, which is even comparable to that of some known bulk Rashba semiconductors. Except for the Rashba-type spin splitting, spin-orbit coupling together with inversion symmetry breaking also gives rise to valley polarization located at the edge of the conduction bands. The strength of the Rashba-type spin splitting and location of the conduction band minimum can be significantly tuned by applying the in-plane biaxial strain. Also, we demonstrate that these remarkable features can be retained in the presence of the BN substrate. The coexistence of the Rashba-type spin splitting (in-plane spin direction) and band splitting at the K/K' valleys (out-of-plane spin direction) makes the AgBiP2Te6 monolayer interesting for spintronics and valleytronics.
Collapse
Affiliation(s)
- Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|