51
|
Kadkhodazadeh S, Cavalca FC, Miller BJ, Zhang L, Wagner JB, Crozier PA, Hansen TW. In Situ TEM under Optical Excitation for Catalysis Research. Top Curr Chem (Cham) 2022; 380:52. [PMID: 36207646 DOI: 10.1007/s41061-022-00408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
In situ characterization of materials in their operational state is a highly active field of research. Investigating the structure and response of materials under stimuli that simulate real working environments for technological applications can provide new insight and unique input to the synthesis and design of novel materials. Over recent decades, experimental setups that allow different stimuli to be applied to a sample inside an electron microscope have been devised, built, and commercialized. In this review, we focus on the in situ investigation of optically active materials using transmission electron microscopy. We illustrate two different approaches for exposing samples to light inside the microscope column, explaining the importance of different aspects of their mechanical construction and choice of light source and materials. We focus on the technical challenges of the setups and provide details of the construction, providing the reader with input on deciding which setup will be more useful for a specific experiment. The use of these setups is illustrated using examples from the literature of relevance to photocatalysis and nanoparticle synthesis.
Collapse
Affiliation(s)
| | - Filippo C Cavalca
- DTU Nanolab, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ben J Miller
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Liuxian Zhang
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Jakob B Wagner
- DTU Nanolab, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Thomas W Hansen
- DTU Nanolab, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
52
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
53
|
Han Y, Li XY, Zhu B, Gao Y. Unveiling the Au Surface Reconstruction in a CO Environment by Surface Dynamics and Ab Initio Thermodynamics. J Phys Chem A 2022; 126:6538-6547. [PMID: 36099447 DOI: 10.1021/acs.jpca.2c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface reconstruction changes the atomic configuration of the metal surface and thus alters its intrinsic physical and chemical properties. Recent in situ experiments have shown a variety of surface reconstructions under reaction conditions, but how to effectively predict and characterize these structures remains challenging. Herein, we combine a DFT-based kinetic Monte Carlo simulation method and ab initio thermodynamics to explore the low-energy configurations of metal surface reconstructions, which takes the surface dynamics under the reactive environment into account. We systematically simulate 13 Au surfaces ((100), (110), (111), (210), (211), (221), (310), (311), (320), (321), (322), (331), and (332)) in the CO environment and identify 19 candidate reconstruction patterns driven by CO adsorption. The breakup of the original surfaces is attributed to the lateral interactions among the nearest-neighboring adsorbates. This work provides an efficient approach to unveil the reconstructed metal surface structures in reactive environments for guiding the experiments.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
54
|
García-Martínez F, Rämisch L, Ali K, Waluyo I, Bodero RC, Pfaff S, Villar-García IJ, Walter AL, Hunt A, Pérez-Dieste V, Zetterberg J, Lundgren E, Schiller F, Ortega JE. Structure Matters: Asymmetric CO Oxidation at Rh Steps with Different Atomic Packing. J Am Chem Soc 2022; 144:15363-15371. [PMID: 35960901 PMCID: PMC9413197 DOI: 10.1021/jacs.2c06733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Curved crystals are a simple but powerful approach to
bridge the
gap between single crystal surfaces and nanoparticle catalysts, by
allowing a rational assessment of the role of active step sites in
gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate
the effect of A-type (square geometry) and B-type (triangular geometry)
atomic packing of steps on the catalytic CO oxidation on Rh at millibar
pressures. Imaging the crystal during reaction ignition with laser-induced
CO2 fluorescence demonstrates a two-step process, where
B-steps ignite at lower temperature than A-steps. Such fundamental
dissimilarity is explained in ambient pressure X-ray photoemission
(AP-XPS) experiments, which reveal partial CO desorption and oxygen
buildup only at B-steps. AP-XPS also proves that A-B step asymmetries
extend to the active stage: at A-steps, low-active O–Rh–O
trilayers buildup immediately after ignition, while highly active
chemisorbed O is the dominant species on B-type steps. We conclude
that B-steps are more efficient than A-steps for the CO oxidation.
Collapse
Affiliation(s)
| | - Lisa Rämisch
- Department of Physics, Lund University, Lund 221 000, Sweden
| | - Khadiza Ali
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizábal 5, San Sebastián 20018, Spain
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rodrigo Castrillo Bodero
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizábal 5, San Sebastián 20018, Spain
| | - Sebastian Pfaff
- Department of Physics, Lund University, Lund 221 000, Sweden
| | - Ignacio J Villar-García
- NAPP Station, CIRCE Beamline, ALBA synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès 08290, Spain
| | - Andrew Leigh Walter
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Virginia Pérez-Dieste
- NAPP Station, CIRCE Beamline, ALBA synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès 08290, Spain
| | | | - Edvin Lundgren
- Department of Physics, Lund University, Lund 221 000, Sweden
| | - Frederik Schiller
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizábal 5, San Sebastián 20018, Spain
| | - J Enrique Ortega
- Departamento Física Aplicada, Universidad del País Vasco, San Sebastián 20018, Spain.,Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizábal 5, San Sebastián 20018, Spain.,Donostia International Physics Centre, Manuel Lardizábal 4, San Sebastián 20018, Spain
| |
Collapse
|
55
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
56
|
Wang Y, Ren X, Jiang B, Deng M, Zhao X, Pang R, Li SF. Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-C 3N 4/CeO 2(111) Heterojunction for CO Oxidization. J Phys Chem Lett 2022; 13:6367-6375. [PMID: 35796604 DOI: 10.1021/acs.jpclett.2c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic single-atom catalysts (MSAC), due to the intrinsic spin degree of freedom, are of particular importance relative to other conventional SAC for applications in various catalytic processes, especially in those cases that involve spin-triplet O2. However, the bottleneck issue in this field is the clustering of the SAC during the processes. Here using first-principles calculations we predict that Mn atoms can be readily confined in the interface of the porous g-C3N4/CeO2(111) heterostructure, forming high-performance MSAC for O2 activation via a delicate synergetic mechanism of charge transfer, mainly provided by the p-block g-C3N4 overlayer mediated by the d-block Mn active site, and spin selection, preserved mainly through active participation of the f-block Ce atoms and/or g-C3N4, which effectively promotes the CO oxidization. Such a recipe is also demonstrated to be valid for V- and Nb-MSACs, which may shed new light on the design of highly efficient MSACs for various important chemical processes wherein spin-selection matters.
Collapse
Affiliation(s)
- Yueyang Wang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Bojie Jiang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Deng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - S F Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
57
|
Abstract
Due to the complexity of heterogeneous reactions and heterogeneities of individual catalyst particles in size, morphology, and the surrounding medium, it is very important to characterize the structure of nanocatalysts and measure the reaction process of nanocatalysis at the single-particle level. Traditional ensemble measurements, however, only provide averaged results of billions of nanoparticles (NPs), which do not help reveal structure–activity relationships and may overlook a few NPs with high activity. The advent of dark-field microscopy (DFM) combined with plasmonic resonance Rayleigh scattering (PRRS) spectroscopy provides a powerful means for directly recording the localized surface plasmon resonance (LSPR) spectrum of single plasmonic nanoparticles (PNPs), which also enables quantitative measurements. In recent years, DFM has developed rapidly for a series of single-particle catalytic reactions such as redox reactions, electrocatalytic reactions, and DNAzyme catalysis, with the ability to monitor the catalytic reaction process in real time and reveal the catalytic mechanism. This review provides a comprehensive overview of the fundamental principles and practical applications of DFM in measuring various kinds of catalysis (including chemocatalysis, electrocatalysis, photocatalysis, and biocatalysis) at the single-particle level. Perspectives on the remaining challenges and future trends in this field are also proposed.
Collapse
|
58
|
Zhang L, Li Y, Zhang L, Wang K, Li Y, Wang L, Zhang X, Yang F, Zheng Z. Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200592. [PMID: 35508897 PMCID: PMC9284138 DOI: 10.1002/advs.202200592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Transition metal single-atom catalysts (SACs) are of immense interest, but how exactly they are evolved upon pyrolysis of the corresponding precursors remains unclear as transition metal ions in the complex precursor undergo a series of morphological changes accompanied with changes in oxidation state as a result of the interactions with the carbon support. Herein, the authors record the complete evolution process of Co SAC during the pyrolysis a Co/Zn-containing zeolitic imidazolate framework. Aberration-corrected environmental TEM coupled with in-situ EELS is used for direct visualization of the evolution process at 200-1000 °C. Dissolution of carbon into the nanoparticles of Co is found to be key to modulating the wetting behavior of nanoparticles on the carbon support; melting of Co nanoparticles and their motion within the zeolitic architecture leads to the etching of the framework structure, yielding porous C/N support onto which Co-single atoms reside. This uniquely structured Co SAC is found to be effective for the oxidation of a series of aromatic alkanes to produce selective ketones among other possible products. The carbon dissolution and melting/sublimation-driven structural dynamics of transition metal revealed here will expand the methodology in synthesizing SACs and other high-temperature processes.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yanyan Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Kun Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yingbo Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Xinyu Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Feng Yang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Zhiping Zheng
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
59
|
Ghosh T, Liu X, Sun W, Chen M, Liu Y, Li Y, Mirsaidov U. Revealing the Origin of Low-Temperature Activity of Ni-Rh Nanostructures during CO Oxidation Reaction with Operando TEM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105599. [PMID: 35514057 PMCID: PMC9189651 DOI: 10.1002/advs.202105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In bimetallic heterostructured nanoparticles (NPs), the synergistic effect between their different metallic components leads to higher catalytic activity compared to the activity of the individual components. However, how the dynamic changes through which these NPs adopt catalytically active structures during a reaction and how the restructuring affects their activity are largely unknown. Here, using operando transmission electron microscopy, structural changes are studied in bimetallic Ni-Rh NPs, comprising of a Ni core whose surface is decorated with smaller Rh NPs, during a CO oxidation reaction. The direct atomic-scale imaging reveals that, under O2 -rich conditions, Ni core partially transforms into NiO, forming a (Ni+NiO)-Rh hollow nanocatalyst with high catalytic activity. Under O2 -poor conditions, Rh NPs alloy with the surface of the core to form a NiRh-alloy surface, and the NPs display significantly lower activity. The theoretical calculations indicate that NiO component that forms only under O2 -rich conditions enhances the activity by preventing the CO poisoning of the nanocatalysts. The results demonstrate that visualizing the structural changes during reactions is indispensable in identifying the origin of catalytic activity. These insights into the dynamic restructuring of NP catalysts under a reactive environment are critical for the rational design of high-performance nanocatalysts.
Collapse
Affiliation(s)
- Tanmay Ghosh
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
| | - Xiangwen Liu
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
- Institute of Analysis and TestingBeijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis)Beijing100094P. R. China
| | - Wenming Sun
- College of ScienceChina Agricultural UniversityBeijing100193P. R. China
| | - Meiqi Chen
- College of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Yuxi Liu
- College of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Yadong Li
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Utkur Mirsaidov
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117546Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
60
|
Dupraz M, Li N, Carnis J, Wu L, Labat S, Chatelier C, van de Poll R, Hofmann JP, Almog E, Leake SJ, Watier Y, Lazarev S, Westermeier F, Sprung M, Hensen EJM, Thomas O, Rabkin E, Richard MI. Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction. Nat Commun 2022; 13:3003. [PMID: 35637233 PMCID: PMC9151645 DOI: 10.1038/s41467-022-30592-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Collapse
|
61
|
Data Synchronization in Operando Gas and Heating TEM. Ultramicroscopy 2022; 238:113549. [DOI: 10.1016/j.ultramic.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
|
62
|
Makgae O, Moya A, Phaahlamohlaka T, Huang C, Coville N, Kirkland A, Liberti E. Direct visualisation of the surface atomic active sites of carbon-supported Co3O4 nanocrystals via high-resolution phase restoration. Chemphyschem 2022; 23:e202200031. [PMID: 35476226 PMCID: PMC9401059 DOI: 10.1002/cphc.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Indexed: 11/30/2022]
Abstract
The atomic arrangement of the terminating facets on spinel Co3O4 nanocrystals is strongly linked to their catalytic performance. However, the spinel crystal structure offers multiple possible surface terminations depending on the synthesis. Thus, understanding the terminating surface atomic structure is essential in developing high‐performance Co3O4 nanocrystals. In this work, we present direct atomic‐scale observation of the surface terminations of Co3O4 nanoparticles supported on hollow carbon spheres (HCSs) using exit wavefunction reconstruction from aberration‐corrected transmission electron microscopy focal‐series. The restored high‐resolution phases show distinct resolved oxygen and cobalt atomic columns. The data show that the structure of {100}, {110}, and {111} facets of spinel Co3O4 exhibit characteristic active sites for carbon monoxide (CO) adsorption, in agreement with density functional theory calculations. Of these facets, the {100} and {110} surface terminations are better suited for CO adsorption than the {111}. However, the presence of oxygen on the {111} surface termination indicates this facet also plays an essential role in CO adsorption. Our results demonstrate direct evidence of the surface termination atomic structure beyond the assumed stoichiometry of the surface.
Collapse
Affiliation(s)
- Ofentse Makgae
- Lund University, Centre for Analysis and Synthesis, Naturvetarvägen 14, P.O. Box 124, 221 00, Lund, SWEDEN
| | - Arthur Moya
- Oxford University: University of Oxford, Materials, UNITED KINGDOM
| | | | - Chen Huang
- Oxford University: University of Oxford, Materials, UNITED KINGDOM
| | - Neil Coville
- Wits University: University of the Witwatersrand, chemistry, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa, 2050, Johannesburg, South Africa, SOUTH AFRICA
| | - Angus Kirkland
- Oxford University: University of Oxford, Materials, 16 Parks Road, Oxford, University of Oxford, Oxford, OX1 3PH, Oxford, UNITED KINGDOM
| | - Emanuela Liberti
- Oxford University: University of Oxford, Materials, UNITED KINGDOM
| |
Collapse
|
63
|
Kang B, Vincent JL, Lee Y, Ke L, Crozier PA, Zhu Q. Modeling surface spin polarization on ceria-supported Pt nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255002. [PMID: 35354123 DOI: 10.1088/1361-648x/ac62a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO2-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO2-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.
Collapse
Affiliation(s)
- Byungkyun Kang
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Joshua L Vincent
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Yongbin Lee
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Liqin Ke
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Qiang Zhu
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| |
Collapse
|
64
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
65
|
Fujita M, Yamamoto A, Tsuchiya N, Yoshida H. Hydrogen Adsorption/Desorption Isotherms on Supported Platinum Nanoparticles Determined by in‐situ XAS and ΔXANES Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Masami Fujita
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Akira Yamamoto
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies #219 Building 2, Yoshida South Campus, Yoshida-Nihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Naoki Tsuchiya
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Hisao Yoshida
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| |
Collapse
|
66
|
Yue S, Shen Y, Deng Z, Yuan W, Xi W. Coalescence and shape oscillation of Au nanoparticles in CO 2 hydrogenation to methanol. NANOSCALE 2021; 13:18218-18225. [PMID: 34709260 DOI: 10.1039/d1nr01272j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, there has been renewed interest in Au nanoparticle (Au NP) catalysts owing to their high selectivity for CO2 hydrogenation to methanol. However, there is still limited knowledge on the main factors of the catalytic activity and product selectivity of Au NPs. To address this issue, we utilized in situ transmission electron microscopy to observe the evolution of Au NP catalysts during CO2 hydrogenation to methanol at 260 °C under ambient pressure. During the reaction, Au NPs sized ≤5 nm coalesced rapidly, forming stable Au NPs sized 5-10 nm with oscillating shapes. The first-principles calculations demonstrated that the adsorption of the reactant gas CO2 is the main factor in inducing the coalescence of Au NPs, and CO and/or H2O adsorption generated by the reaction caused the oscillation of the Au NP shape. Furthermore, the adsorption of various gas molecules resulted in continuous changes in the structure of the catalyst active center. In this study, the in situ observation of the dynamic evolution of the Au NP morphology is important in understanding the structural transformation of Au NP catalysts at the nanometer scale and determining the active site motifs under the reaction conditions. Moreover, this would allow us to further understand the size effect and the dynamic evolution behavior of the active center of Au NP catalysts, thereby providing a new idea for the development and application of new catalysts and strong theoretical support for heterogeneous catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
67
|
Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging. Nat Commun 2021; 12:6117. [PMID: 34675205 PMCID: PMC8531341 DOI: 10.1038/s41467-021-26372-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide. To follow in situ and in real time how catalyst surfaces respond to gas composition changes is a challenge. This study reports on an eventaveraging method, based on cyclic gas pulsing and software-based image recognition, that overcomes the challenge for large photoelectron spectroscopy datasets.
Collapse
|
68
|
Atomic level fluxional behavior and activity of CeO 2-supported Pt catalysts for CO oxidation. Nat Commun 2021; 12:5789. [PMID: 34608153 PMCID: PMC8490411 DOI: 10.1038/s41467-021-26047-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e., fluxional behavior) of the interface during catalysis. Here, we employ aberration-corrected operando electron microscopy to visualize the structural dynamics occurring at and near Pt/CeO2 interfaces during CO oxidation. We show that the catalytic turnover frequency correlates with fluxional behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the CeO2 support surface. Overall, the results implicate the interfacial Pt-O-Ce bonds anchoring the Pt to the support as being involved also in the catalytically-driven oxygen transfer process, and they suggest that oxygen reduction takes place on the highly reduced CeO2 surface before migrating to the interfacial perimeter for reaction with CO.
Collapse
|
69
|
Kim YY, Keller TF, Goncalves TJ, Abuin M, Runge H, Gelisio L, Carnis J, Vonk V, Plessow PN, Vartaniants IA, Stierle A. Single alloy nanoparticle x-ray imaging during a catalytic reaction. SCIENCE ADVANCES 2021; 7:eabh0757. [PMID: 34597137 PMCID: PMC10938497 DOI: 10.1126/sciadv.abh0757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts’ dynamics. We report the facet-resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment–dependent chemical composition. We find that the initially Pt-terminated nanoparticle surface gets Rh-enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent, and the Rh enrichment is nonreversible under subsequent CO reduction. Tracking facet-resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity, and lifetime.
Collapse
Affiliation(s)
- Young Yong Kim
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Thomas F. Keller
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- University of Hamburg, Physics Department, D-20355 Hamburg, Germany
| | - Tiago J. Goncalves
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Abuin
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Henning Runge
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Jerome Carnis
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Vedran Vonk
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ivan A. Vartaniants
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- University of Hamburg, Physics Department, D-20355 Hamburg, Germany
| |
Collapse
|
70
|
Carnis J, Kshirsagar AR, Wu L, Dupraz M, Labat S, Texier M, Favre L, Gao L, Oropeza FE, Gazit N, Almog E, Campos A, Micha JS, Hensen EJM, Leake SJ, Schülli TU, Rabkin E, Thomas O, Poloni R, Hofmann JP, Richard MI. Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation. Nat Commun 2021; 12:5385. [PMID: 34508094 PMCID: PMC8433154 DOI: 10.1038/s41467-021-25625-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.
Collapse
Affiliation(s)
- Jérôme Carnis
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France ,grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France ,grid.7683.a0000 0004 0492 0453Present Address: Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Aseem Rajan Kshirsagar
- grid.5676.20000000417654326Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, Grenoble, France
| | - Longfei Wu
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France ,grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France
| | - Maxime Dupraz
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France ,grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France
| | - Stéphane Labat
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Michaël Texier
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Luc Favre
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Lu Gao
- grid.6852.90000 0004 0398 8763Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Freddy E. Oropeza
- grid.6852.90000 0004 0398 8763Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nimrod Gazit
- grid.6451.60000000121102151Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ehud Almog
- grid.6451.60000000121102151Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrea Campos
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, CNRS, Centrale Marseille, FSCM (FR1739), CP2M, Marseille, France
| | - Jean-Sébastien Micha
- CRG-IF BM32 beamline at the European Synchrotron (ESRF), CS40220, Grenoble Cedex 9, France
| | - Emiel J. M. Hensen
- grid.6852.90000 0004 0398 8763Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steven J. Leake
- grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France
| | - Tobias U. Schülli
- grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France
| | - Eugen Rabkin
- grid.6451.60000000121102151Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olivier Thomas
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Roberta Poloni
- grid.5676.20000000417654326Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, Grenoble, France
| | - Jan P. Hofmann
- grid.6852.90000 0004 0398 8763Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.6546.10000 0001 0940 1669Present Address: Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Marie-Ingrid Richard
- grid.496914.70000 0004 0385 8635Aix Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France ,grid.5398.70000 0004 0641 6373ID01/ESRF, The European Synchrotron, Grenoble, France ,grid.457348.9Present Address: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, Grenoble, France
| |
Collapse
|
71
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
72
|
Huang X, Jones T, Fedorov A, Farra R, Copéret C, Schlögl R, Willinger M. Phase Coexistence and Structural Dynamics of Redox Metal Catalysts Revealed by Operando TEM. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101772. [PMID: 34117665 PMCID: PMC11469237 DOI: 10.1002/adma.202101772] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Indexed: 05/12/2023]
Abstract
Metal catalysts play an important role in industrial redox reactions. Although extensively studied, the state of these catalysts under operating conditions is largely unknown, and assignments of active sites remain speculative. Herein, an operando transmission electron microscopy study is presented, which interrelates the structural dynamics of redox metal catalysts to their activity. Using hydrogen oxidation on copper as an elementary redox reaction, it is revealed how the interaction between metal and the surrounding gas phase induces complex structural transformations and drives the system from a thermodynamic equilibrium toward a state controlled by the chemical dynamics. Direct imaging combined with the simultaneous detection of catalytic activity provides unparalleled structure-activity insights that identify distinct mechanisms for water formation and reveal the means by which the system self-adjusts to changes of the gas-phase chemical potential. Density functional theory calculations show that surface phase transitions are driven by chemical dynamics even when the system is far from a thermodynamic phase boundary. In a bottom-up approach, the dynamic behavior observed here for an elementary reaction is finally extended to more relevant redox reactions and other metal catalysts, which underlines the importance of chemical dynamics for the formation and constant re-generation of transient active sites during catalysis.
Collapse
Affiliation(s)
- Xing Huang
- Scientific Center for Optical and Electron MicroscopyETH ZurichOtto‐Stern‐Weg 3Zurich8093Switzerland
- College of ChemistryFuzhou UniversityFuzhou350116P. R. China
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 1‐5Zurich8093Switzerland
- Fritz‐Haber Institute of Max‐Planck SocietyFaradayweg 4‐614195BerlinGermany
| | - Travis Jones
- Fritz‐Haber Institute of Max‐Planck SocietyFaradayweg 4‐614195BerlinGermany
| | - Alexey Fedorov
- Department of Mechanical and Process EngineeringETH ZurichLeonhardstrasse 218092ZurichSwitzerland
| | - Ramzi Farra
- Fritz‐Haber Institute of Max‐Planck SocietyFaradayweg 4‐614195BerlinGermany
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 1‐5Zurich8093Switzerland
| | - Robert Schlögl
- Fritz‐Haber Institute of Max‐Planck SocietyFaradayweg 4‐614195BerlinGermany
- Department Heterogeneous ReactionsMax Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Marc‐Georg Willinger
- Scientific Center for Optical and Electron MicroscopyETH ZurichOtto‐Stern‐Weg 3Zurich8093Switzerland
- Fritz‐Haber Institute of Max‐Planck SocietyFaradayweg 4‐614195BerlinGermany
| |
Collapse
|
73
|
Li M, Xie DG, Zhang XX, Yang JC, Shan ZW. Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:758-766. [PMID: 34018478 DOI: 10.1017/s1431927621000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.
Collapse
Affiliation(s)
- Meng Li
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - De-Gang Xie
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Xiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Zhi-Wei Shan
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
74
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
75
|
Bao X, Behrens M, Ertl G, Fu Q, Knop-Gericke A, Lunkenbein T, Muhler M, Schmidt CM, Trunschke A. A Career in Catalysis: Robert Schlögl. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Malte Behrens
- Institute of Inorganic Chemistry, Solid State Chemistry and Catalysis, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Gerhard Ertl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Muhler
- Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christoph M. Schmidt
- RWI - Leibniz-Institut für Wirtschaftsforschung, Hohenzollernstraße 1-3, 45128 Essen, Germany
| | - Annette Trunschke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
76
|
Meng J, Zhu B, Gao Y. Structure reconstruction of metal/alloy in reaction conditions: a volcano curve? Faraday Discuss 2021; 229:62-74. [PMID: 33634798 DOI: 10.1039/c9fd00128j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent in situ works have shown extensive evidence of the dramatic and reversible structure reconstructions of metal and alloy materials in reaction conditions. The reconstructions are of primary interest because they could lead to alternative catalytic mechanisms during real reactions. However, how the catalyst structure evolves under the pressures relevant to industrial applications (>1 atm) is so far unexplored. In our recent works, we have developed multiscale theoretical models to give reliable and precise predictions of the equilibrium shapes of metal nanoparticles and of the segregation properties of alloy surfaces at a given temperature and gas pressure. The theoretical predictions have been successfully used in interoperations of various in situ experimental observations. In this work, we applied these methods to study the detailed structural information of metal NPs and of bimetallic alloys at the temperature from 300 to 1000 K and the gas pressure from 10 to 107 Pa. The results show, in some cases, both the gas-induced shape change and the gas-induced segregation change are maximized when the gas adsorption is 'just right'. The fraction of the low-coordinated sites of the metal NP shows a volcano-like curve with pressure at a constant temperature. A similar volcano shape could also be found in the plot of the environmental segregation energy as functions of temperature and pressure. The similar gas effects at low pressure and at high pressure indicate the structural information obtained in laboratory environments (<1 atm) could be of use to understanding the catalysts structure reconstruction in industrial conditions (>1 atm).
Collapse
Affiliation(s)
- Jun Meng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beien Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Yi Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
77
|
Ek M, Arnarson L, Georg Moses P, Rasmussen SB, Skoglundh M, Olsson E, Helveg S. Probing surface-sensitive redox properties of VO x/TiO 2 catalyst nanoparticles. NANOSCALE 2021; 13:7266-7272. [PMID: 33889890 DOI: 10.1039/d0nr08943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Redox processes of oxide materials are fundamental in catalysis. These processes depend on the surface structure and stoichiometry of the oxide and are therefore expected to vary between surface facets. However, there is a lack of direct measurements of redox properties on the nanoscale for analysing the importance of such faceting effects in technical materials. Here, we address the facet-dependent redox properties of vanadium-oxide-covered anatase nanoparticles of relevance to, e.g., selective catalytic reduction of nitrogen oxides. The vanadium oxidation states at individual nanoscale facets are resolved in situ under catalytically relevant conditions by combining transmission electron microscopy imaging and electron energy loss spectroscopy. The measurements reveal that vanadium on {001} facets consistently retain higher oxidation states than on {10l} facets. Insight into such structure-sensitivity of surface redox processes opens prospects of tailoring oxide nanoparticles with enhanced catalytic functionalities.
Collapse
Affiliation(s)
- Martin Ek
- Haldor Topsoe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
78
|
Ren M, Zhang L, Zhu Y, Shi J, Zhao X, Ren X, Li S. Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honeycomb borophene/Al(111) heterostructure via a dual charge transfer effect. NANOSCALE 2021; 13:5875-5882. [PMID: 33724280 DOI: 10.1039/d0nr08065a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theoretical design and experimental fabrication of highly efficient single-atom catalysts (SACs) containing isolated metal atoms monodispersed on appropriate substrates have surged to the forefront of heterogeneous catalysis in recent years. Nevertheless, the instability of SACs, i.e., preferential clustering in chemical reaction processes, dramatically hinders their practical applications. In this paper, using first-principles calculations, we predict that a honeycomb borophene/Al(111) heterostructure can be an ideal candidate to stabilize and enhance the catalysis of many transition metal (TM) SACs via a dual charge transfer mechanism. The Al(111) substrate donates electrons to the pre-covered two-dimensional honeycomb borophene (h-B) to stabilize the latter, and the deposited TM atoms further provide electrons to the h-B, enhancing the covalent binding between the h-B and the Al(111) substrate. Intriguingly, during CO oxidation, the h-B/Al(111) heterostructure can in turn serve as an efficient electron reservoir to accept electrons from or donate electrons to the deposited TM-SACs and the reactants. Such a flexible dual charge transfer mechanism not only facilitates stabilizing the TM-SACs rather than clustering, but also effectively reduces the reaction barriers. Particularly, in contrast to expensive noble metal atoms such as Pd and Pt, low-cost Sc- and Fe-SACs are found to be the most promising SAC candidates that can be stabilized on h-B/Al(111) for O2 activation and CO oxidation, with fairly low reaction barriers (around 0.50-0.65 eV). The present findings may provide important theoretical guidance for the experimental fabrication of highly stable, efficient, and economic SACs stabilized on various heterostructure substrates.
Collapse
Affiliation(s)
- Mengru Ren
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | | | | | | | | | | | | |
Collapse
|
79
|
Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situand operandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:153001. [PMID: 33825698 DOI: 10.1088/1361-648x/abddfd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45413 Mülheim an der Ruhr, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
80
|
Peng M, Dong C, Gao R, Xiao D, Liu H, Ma D. Fully Exposed Cluster Catalyst (FECC): Toward Rich Surface Sites and Full Atom Utilization Efficiency. ACS CENTRAL SCIENCE 2021; 7:262-273. [PMID: 33655065 PMCID: PMC7908029 DOI: 10.1021/acscentsci.0c01486] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 05/17/2023]
Abstract
Increasing attention has been paid to single-atom catalysts (SACs) in heterogeneous catalysis because of their unique electronic properties, maximized atomic utilization efficiency, and potential to serve as a bridge between the heterogeneous and homogeneous catalysis. However, SACs can have limited advantages or even constrained applications for the reactions that require designated metallic states with multiple atoms or surface sites with metal-metal bonds. As a cross-dimensional extension to the concept of SACs, fully exposed cluster catalysts (FECCs) offer diverse surface sites formed by an ensemble of metal atoms, for the adsorption and transformation of reactants/intermediates. More importantly, FECCs have the advantage of maximized atom utilization efficiency. Thus, FECCs provide a novel platform to design effective and efficient catalysts for certain chemical processes. This outlook summarizes recent advances and proposes prospective research directions in the design of catalysts and characterizations of FECCs, together with potential challenges.
Collapse
Affiliation(s)
- Mi Peng
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Chunyang Dong
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Rui Gao
- School
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot 010021, P. R. China
| | - Dequan Xiao
- Chemistry
and Chemical Engineering Department, University
of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- Shenyang
National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Ding Ma
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
81
|
Zhdanov VP. Nanocrystallites, adsorption, surface tension, and Wulff rule. Phys Rev E 2021; 103:012802. [PMID: 33601602 DOI: 10.1103/physreve.103.012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Chemisorption on the surface of metal nanocrystallites (NCs) sometimes induces their reshaping. This interesting phenomenon was observed experimentally in various systems. Related theoretical studies imply that it can be described using the Wulff rule with the surface tension dependent on the coverage of the NC facets by adsorbate. There is, however, no agreement as to how the surface tension should be calculated in this case. Relying on the laws of statistical physics, I clarify the situation in this area in general and also in the framework of the mean-field approximation in three situations: (i) with adsorption-desorption equilibrium, (ii) with a fixed amount of adsorbate at a NC, and (iii) with a fixed amount of adsorbate at facets of a NC. Under these conditions, the surface tension is shown to be described by the same expressions.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
82
|
Albinsson D, Bartling S, Nilsson S, Ström H, Fritzsche J, Langhammer C. Shedding Light on CO Oxidation Surface Chemistry on Single Pt Catalyst Nanoparticles Inside a Nanofluidic Model Pore. ACS Catal 2021; 11:2021-2033. [PMID: 33643681 PMCID: PMC7901062 DOI: 10.1021/acscatal.0c04955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Investigating a catalyst under relevant application conditions is experimentally challenging and parameters like reaction conditions in terms of temperature, pressure, and reactant mixing ratios, as well as catalyst design, may significantly impact the obtained experimental results. For Pt catalysts widely used for the oxidation of carbon monoxide, there is keen debate on the oxidation state of the surface at high temperatures and at/above atmospheric pressure, as well as on the most active surface state under these conditions. Here, we employ a nanoreactor in combination with single-particle plasmonic nanospectroscopy to investigate individual Pt catalyst nanoparticles localized inside a nanofluidic model pore during carbon monoxide oxidation at 2 bar in the 450-550 K temperature range. As a main finding, we demonstrate that our single-particle measurements effectively resolve a kinetic phase transition during the reaction and that each individual particle has a unique response. Based on spatially resolved measurements, we furthermore observe how reactant concentration gradients formed due to conversion inside the model pore give rise to position-dependent kinetic phase transitions of the individual particles. Finally, employing extensive electrodynamics simulations, we unravel the surface chemistry of the individual Pt nanoparticles as a function of reactant composition and find strongly temperature-dependent Pt-oxide formation and oxygen spillover to the SiO2 support as the main processes. These results therefore support the existence of a Pt surface oxide in the regime of high catalyst activity and demonstrate the possibility to use plasmonic nanospectroscopy in combination with nanofluidics as a tool for in situ studies of individual catalyst particles.
Collapse
Affiliation(s)
- David Albinsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Stephan Bartling
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Henrik Ström
- Department
of Mechanics and Maritime Sciences, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- Department
of Energy and Process Engineering, Norwegian
University of Science and Technology, 7491 Trondheim, Norway
| | - Joachim Fritzsche
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
83
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|
84
|
Yuan W, Zhu B, Fang K, Li XY, Hansen TW, Ou Y, Yang H, Wagner JB, Gao Y, Wang Y, Zhang Z. In situ manipulation of the active Au-TiO
2
interface with atomic precision during CO oxidation. Science 2021; 371:517-521. [DOI: 10.1126/science.abe3558] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
85
|
Miller BK, Crozier PA. Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin K. Miller
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Peter A. Crozier
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
86
|
van der Wal LI, Turner SJ, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments and advances in in situ TEM have raised the possibility to study every step during the catalysts' lifecycle. This review discusses the current state, opportunities and challenges of in situ TEM in the realm of catalysis.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Savannah J. Turner
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Jovana Zečević
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
87
|
Wu N, Ji X, Li L, Zhu J, Lu X. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: A mini review and perspective. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Dembélé K, Bahri M, Hirlimann C, Moldovan S, Berliet A, Maury S, Gay A, Ersen O. Operando
Electron Microscopy Study of Cobalt‐based Fischer‐Tropsch Nanocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kassiogé Dembélé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Simona Moldovan
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Adrien Berliet
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Sylvie Maury
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Anne‐Sophie Gay
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- Institut Universitaire de France (IUF) 1 Rue Descartes Paris 75231 France
| |
Collapse
|
89
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
90
|
Boniface M, Plodinec M, Schlögl R, Lunkenbein T. Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope? Top Catal 2020. [DOI: 10.1007/s11244-020-01398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractDuring the last decade, modern micro-electro-mechanical systems (MEMS) technology has been used to create cells that can act as catalytic nanoreactors and fit into the sample holders of transmission electron microscopes. These nanoreactors can maintain atmospheric or higher pressures inside the cells as they seal gases or liquids from the vacuum of the TEM column and can reach temperatures exceeding 1000 °C. This has led to a paradigm shift in electron microscopy, which facilitates the local characterization of structural and morphological changes of solid catalysts under working conditions. In this review, we outline the development of state-of-the-art nanoreactor setups that are commercially available and are currently applied to study catalytic reactions in situ or operando in gaseous or liquid environments. We also discuss challenges that are associated with the use of environmental cells. In catalysis studies, one of the major challenge is the interpretation of the results while considering the discrepancies in kinetics between MEMS based gas cells and fixed bed reactors, the interactions of the electron beam with the sample, as well as support effects. Finally, we critically analyze the general role of MEMS based nanoreactors in electron microscopy and catalysis communities and present possible future directions.
Collapse
|
91
|
Passos AR, Rochet A, Manente LM, Suzana AF, Harder R, Cha W, Meneau F. Three-dimensional strain dynamics govern the hysteresis in heterogeneous catalysis. Nat Commun 2020; 11:4733. [PMID: 32948780 PMCID: PMC7501851 DOI: 10.1038/s41467-020-18622-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding catalysts strain dynamic behaviours is crucial for the development of cost-effective, efficient, stable and long-lasting catalysts. Here, we reveal in situ three-dimensional strain evolution of single gold nanocrystals during a catalytic CO oxidation reaction under operando conditions with coherent X-ray diffractive imaging. We report direct observation of anisotropic strain dynamics at the nanoscale, where identically crystallographically-oriented facets are qualitatively differently affected by strain leading to preferential active sites formation. Interestingly, the single nanoparticle elastic energy landscape, which we map with attojoule precision, depends on heating versus cooling cycles. The hysteresis observed at the single particle level is following the normal/inverse hysteresis loops of the catalytic performances. This approach opens a powerful avenue for studying, at the single particle level, catalytic nanomaterials and deactivation processes under operando conditions that will enable profound insights into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Aline R Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Amélie Rochet
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Luiza M Manente
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Ana F Suzana
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
- Instituto de Química, UNESP, Rua Professor Francisco Degni, 14800-900, Araraquara, SP, Brazil
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Florian Meneau
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
92
|
Fedorov A, Saraev A, Kremneva A, Selivanova A, Vorokhta M, Šmíd B, Bulavchenko O, Yakovlev V, Kaichev V. Kinetic and mechanistic study of CO oxidation over nanocomposite Cu−Fe−Al oxide catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandr Fedorov
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| | - Andrey Saraev
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| | - Anna Kremneva
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| | | | - Mykhailo Vorokhta
- Department of Surface and Plasma Science Faculty of Mathematics and Physics Charles University V Holešovičkách 2 180 00 Prague Czech Republic
| | - Bretislav Šmíd
- Department of Surface and Plasma Science Faculty of Mathematics and Physics Charles University V Holešovičkách 2 180 00 Prague Czech Republic
| | - Olga Bulavchenko
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| | - Vadim Yakovlev
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| | - Vasily Kaichev
- Boreskov Institute of Catalysis (BIC) Lavrentiev Ave., 5 630090 Novosibirsk Russia
| |
Collapse
|
93
|
Surface oxygenation of multicomponent nanoparticles toward active and stable oxidation catalysts. Nat Commun 2020; 11:4201. [PMID: 32826920 PMCID: PMC7443134 DOI: 10.1038/s41467-020-18017-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 11/08/2022] Open
Abstract
The need for active and stable oxidation catalysts is driven by the demands in production of valuable chemicals, remediation of hydrocarbon pollutants and energy sustainability. Traditional approaches focus on oxygen-activating oxides as support which provides the oxygen activation at the catalyst-support peripheral interface. Here we report a new approach to oxidation catalysts for total oxidation of hydrocarbons (e.g., propane) by surface oxygenation of platinum (Pt)-alloyed multicomponent nanoparticles (e.g., platinum-nickel cobalt (Pt-NiCo)). The in-situ/operando time-resolved studies, including high-energy synchrotron X-ray diffraction and diffuse reflectance infrared Fourier transform spectroscopy, demonstrate the formation of oxygenated Pt-NiOCoO surface layer and disordered ternary alloy core. The results reveal largely-irregular oscillatory kinetics associated with the dynamic lattice expansion/shrinking, ordering/disordering, and formation of surface-oxygenated sites and intermediates. The catalytic synergy is responsible for reduction of the oxidation temperature by ~100 °C and the high stability under 800 °C hydrothermal aging in comparison with Pt, and may represent a paradigm shift in the design of self-supported catalysts.
Collapse
|
94
|
In situ observation of oscillatory redox dynamics of copper. Nat Commun 2020; 11:3554. [PMID: 32678088 PMCID: PMC7366672 DOI: 10.1038/s41467-020-17346-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022] Open
Abstract
How a catalyst behaves microscopically under reaction conditions, and what kinds of active sites transiently exist on its surface, is still very much a mystery to the scientific community. Here we present an in situ study on the red-ox behaviour of copper in the model reaction of hydrogen oxidation. Direct imaging combined with on-line mass spectroscopy shows that activity emerges near a phase boundary, where complex spatio-temporal dynamics are induced by the competing action of simultaneously present oxidizing and reducing agents. Using a combination of in situ imaging with in situ X-ray absorption spectroscopy and scanning photoemission microscopy, we reveal the relation between chemical and morphological dynamics and demonstrate that a static picture of active sites is insufficient to describe catalytic function of redox-active metal catalysts. The observed oscillatory redox dynamics provide a unique insight on phase-cooperation and a convenient and general mechanism for constant re-generation of transient active sites. How a catalyst behaves microscopically under reaction conditions, and what kinds of active sites transiently exist on its surface, is still very much a mystery to the scientific community. Here the authors report on in situ observation of a redox active copper catalyst by a combination of in situ imaging and spectroscopy tools.
Collapse
|
95
|
Abstract
For decades, differentially pumped environmental transmission electron microscopy has been a powerful tool to study dynamic structural evolution of catalysts under a gaseous environment. With the advancement of micro-electromechanical system-based technologies, windowed gas cell became increasingly popular due to its ability to achieve high pressure and its compatibility to a wide range of microscopes with minimal modification. This enables a series of imaging and analytical technologies such as atomic resolution imaging, spectroscopy, and operando, revealing details that were unprecedented before. By reviewing some of the recent work, we demonstrate that the windowed gas cell has the unique ability to solve complicated catalysis problems. We also discuss what technical difficulties need to be addressed and provide an outlook for the future of in situ environmental transmission electron microscopy (TEM) technologies and their application to the field of catalysis development.
Collapse
|
96
|
Gu B, Peron DV, Barrios AJ, Bahri M, Ersen O, Vorokhta M, Šmíd B, Banerjee D, Virginie M, Marceau E, Wojcieszak R, Ordomsky VV, Khodakov AY. Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas. Chem Sci 2020; 11:6167-6182. [PMID: 32953012 PMCID: PMC7480519 DOI: 10.1039/d0sc01600d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer-Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron-bismuth core-shell structures. In the working catalysts, during Fischer-Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.
Collapse
Affiliation(s)
- Bang Gu
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Deizi V Peron
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Alan J Barrios
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Mounib Bahri
- IPCMS-UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess, BP 43-67034 Strasbourg Cedex 2 , France
| | - Ovidiu Ersen
- IPCMS-UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess, BP 43-67034 Strasbourg Cedex 2 , France
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science , Faculty of Mathematics and Physics , Charles University , V Holešovičkách 747/2, 180 00 Praha 8 , Czechia
| | - Břetislav Šmíd
- Department of Surface and Plasma Science , Faculty of Mathematics and Physics , Charles University , V Holešovičkách 747/2, 180 00 Praha 8 , Czechia
| | - Dipanjan Banerjee
- Dutch-Belgian Beamline (DUBBLE) , European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France.,Department of Chemistry , KU Leuven , Celestijnenlaan 200F Box 2404 , 3001 Leuven , Belgium
| | - Mirella Virginie
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Eric Marceau
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Robert Wojcieszak
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Vitaly V Ordomsky
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| | - Andrei Y Khodakov
- CNRS , UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide , Centrale Lille , Univ. Lille , Univ. Artois , F-59000 Lille , France .
| |
Collapse
|
97
|
Beheshti Askari A, al Samarai M, Morana B, Tillmann L, Pfänder N, Wandzilak A, Watts B, Belkhou R, Muhler M, DeBeer S. In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catal 2020; 10:6223-6230. [PMID: 32551182 PMCID: PMC7295368 DOI: 10.1021/acscatal.9b05517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023]
Abstract
![]()
Herein,
we report the synthesis of a γ-Al2O3-supported
NiCo catalyst for dry methane reforming (DMR) and
study the catalyst using in situ scanning transmission X-ray microscopy
(STXM) during the reduction (activation step) and under reaction conditions.
During the reduction process, the NiCo alloy particles undergo elemental
segregation with Co migrating toward the center of the catalyst particles
and Ni migrating to the outer surfaces. Under DMR conditions, the
segregated structure is maintained, thus hinting at the importance
of this structure to optimal catalytic functions. Finally, the formation
of Ni-rich branches on the surface of the particles is observed during
DMR, suggesting that the loss of Ni from the outer shell may play
a role in the reduced stability and hence catalyst deactivation. These
findings provide insights into the morphological and electronic structural
changes that occur in a NiCo-based catalyst during DMR. Further, this
study emphasizes the need to study catalysts under operating conditions
in order to elucidate material dynamics during the reaction.
Collapse
Affiliation(s)
- Abbas Beheshti Askari
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Mustafa al Samarai
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Bruno Morana
- NanoInsight, Feldmannweg 17, 2628 CT Delft, The Netherlands
| | - Lukas Tillmann
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Norbert Pfänder
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Aleksandra Wandzilak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme
des Merisiers, Saint-Aubin − BP 48, Gif-sur-Yvette Cedex F-91192, France
| | - Martin Muhler
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
98
|
Albinsson D, Bartling S, Nilsson S, Ström H, Fritzsche J, Langhammer C. Operando detection of single nanoparticle activity dynamics inside a model pore catalyst material. SCIENCE ADVANCES 2020; 6:eaba7678. [PMID: 32596464 PMCID: PMC7304992 DOI: 10.1126/sciadv.aba7678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Nanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution. Here, we have nanofabricated quasi-two-dimensional mimics of porous catalysts, which combine the traits of nanofluidics with single particle plasmonics and online mass spectrometry readout. Enabled by single particle resolution at operando conditions during CO oxidation over a Cu model catalyst, we directly visualize reactant concentration gradient formation due to conversion on single Cu nanoparticles inside the "model pore" and how it dynamically controls oxidation state-and, thus, activity-of particles downstream. Our results provide a general framework for single particle catalysis in the gas phase and highlight the importance of single particle approaches for the understanding of complex catalyst materials.
Collapse
Affiliation(s)
- David Albinsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Stephan Bartling
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
99
|
|
100
|
Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat Commun 2020; 11:2133. [PMID: 32358583 PMCID: PMC7195460 DOI: 10.1038/s41467-020-16027-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 11/08/2022] Open
Abstract
The dynamical structure of a catalyst determines the availability of active sites on its surface. However, how nanoparticle (NP) catalysts re-structure under reaction conditions and how these changes associate with catalytic activity remains poorly understood. Using operando transmission electron microscopy, we show that Pd NPs exhibit reversible structural and activity changes during heating and cooling in mixed gas environments containing O2 and CO. Below 400 °C, the NPs form flat low index facets and are inactive towards CO oxidation. Above 400 °C, the NPs become rounder, and conversion of CO to CO2 increases significantly. This behavior reverses when the temperature is later reduced. Pt and Rh NPs under similar conditions do not exhibit such reversible transformations. We propose that adsorbed CO molecules suppress the activity of Pd NPs at lower temperatures by stabilizing low index facets and reducing the number of active sites. This hypothesis is supported by thermodynamic calculations.
Collapse
|