51
|
Tokuhisa A, Kanada R, Chiba S, Terayama K, Isaka Y, Ma B, Kamiya N, Okuno Y. Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns. J Chem Inf Model 2020; 60:2803-2818. [PMID: 32469517 DOI: 10.1021/acs.jcim.0c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular imaging using X-ray free-electron lasers (XFELs) has been successfully applied to serial femtosecond crystallography. However, the application of single-particle analysis for structure determination using XFELs with 100 nm or smaller biomolecules has two practical problems: the incomplete diffraction data sets for reconstructing 3D assembled structures and the heterogeneous conformational states of samples. A new diffraction template matching method is thus presented here to retrieve a plausible 3D structural model based on single noisy target diffraction patterns, assuming candidate structures. Two concepts are introduced here: prompt candidate diffraction, generated by enhanced sampled coarse-grain (CG) candidate structures, and efficient molecular orientation searching for matching based on Bayesian optimization. A CG model-based diffraction-matching protocol is proposed that achieves a 100-fold speed increase compared to exhaustive diffraction matching using an all-atom model. The conditions that enable multiconformational analysis were also investigated by simulated diffraction data for various conformational states of chromatin and ribosomes. The proposed method can enable multiconformational analysis, with a structural resolution of at least 20 Å for 270-800 Å flexible biomolecules, in experimental single-particle structure analyses that employ XFELs.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Kanada
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Chiba
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kei Terayama
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Isaka
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Biao Ma
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
52
|
Zhao Z, Liu LT, Singer A. Steerable ePCA: Rotationally Invariant Exponential Family PCA. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 29:10.1109/TIP.2020.2988139. [PMID: 32340944 PMCID: PMC10717790 DOI: 10.1109/tip.2020.2988139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications require an accurate estimation of the covariance of the underlying 2-D clean images. For example, in X-ray free electron laser (XFEL) single molecule imaging, the covariance matrix of 2-D diffraction images is used to reconstruct the 3-D molecular structure. Accurate estimation of the covariance from low-photon-count images must take into account that pixel intensities are Poisson distributed, hence the classical sample covariance estimator is highly biased. Moreover, in single molecule imaging, including in-plane rotated copies of all images could further improve the accuracy of covariance estimation. In this paper we introduce an efficient and accurate algorithm for covariance matrix estimation of count noise 2-D images, including their uniform planar rotations and possibly reflections. Our procedure, steerable ePCA, combines in a novel way two recently introduced innovations. The first is a methodology for principal component analysis (PCA) for Poisson distributions, and more generally, exponential family distributions, called ePCA. The second is steerable PCA, a fast and accurate procedure for including all planar rotations when performing PCA. The resulting principal components are invariant to the rotation and reflection of the input images. We demonstrate the efficiency and accuracy of steerable ePCA in numerical experiments involving simulated XFEL datasets and rotated face images from Yale Face Database B.
Collapse
|
53
|
Nakasako M, Kobayashi A, Takayama Y, Asakura K, Oide M, Okajima K, Oroguchi T, Yamamoto M. Methods and application of coherent X-ray diffraction imaging of noncrystalline particles. Biophys Rev 2020; 12:541-567. [PMID: 32180121 DOI: 10.1007/s12551-020-00690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
Microscopic imaging techniques have been developed to visualize events occurring in biological cells. Coherent X-ray diffraction imaging is one of the techniques applicable to structural analyses of cells and organelles, which have never been crystallized. In the experiment, a single noncrystalline particle is illuminated by an X-ray beam with almost complete spatial coherence. The structure of the particle projected along the direction of the beam is, in principle, retrieved from a finely recorded diffraction pattern alone by using iterative phase-retrieval algorithms. Here, we describe fundamental theory and experimental methods of coherent X-ray diffraction imaging and the recent application in structural studies of noncrystalline specimens by using X-rays available at Super Photon Ring of 8-Gev and SPring-8 Angstrom Compact Free Electron Laser in Japan.
Collapse
Affiliation(s)
- Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Kenta Asakura
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
54
|
Oide M, Kato T, Oroguchi T, Nakasako M. Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy. FEBS J 2020; 287:3472-3493. [PMID: 31976609 DOI: 10.1111/febs.15224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 11/28/2022]
Abstract
Analysis of the conformational changes of protein is important to elucidate the mechanisms of protein motions correlating with their function. Here, we studied the spontaneous domain motion of unliganded glutamate dehydrogenase from Thermococcus profundus using cryo-electron microscopy and proposed a novel method to construct free-energy landscape of protein conformations. Each subunit of the homo-hexameric enzyme comprises nucleotide-binding domain (NAD domain) and hexamer-forming core domain. A large active-site cleft is situated between the two domains and varies from open to close according to the motion of a NAD domain. A three-dimensional map reconstructed from all cryo-electron microscopy images displayed disordered volumes of NAD domains, suggesting that NAD domains in the collected images adopted various conformations in domain motion. Focused classifications on NAD domain of subunits provided several maps of possible conformations in domain motion. To deduce what kinds of conformations appeared in EM images, we developed a novel analysis method that describe the EM maps as a linear combination of representative conformations appearing in a 200-ns molecular dynamics simulation as reference. The analysis enabled us to estimate the appearance frequencies of the representative conformations, which illustrated a free-energy landscape in domain motion. In the open/close domain motion, two free-energy basins hindered the direct transformation from open to closed state. Structure models constructed for representative EM maps in classifications demonstrated the correlation between the energy landscape and conformations in domain motion. Based on the results, the domain motion in glutamate dehydrogenase and the analysis method to visualize conformational changes and free-energy landscape were discussed. DATABASE: The EM maps of the four conformations were deposited to Electron Microscopy Data Bank (EMDB) as accession codes EMD-9845 (open), EMD-9846 (half-open1), EMD-9847 (half-open2), and EMD-9848 (closed), respectively. In addition, the structural models built for the four conformations were deposited to the Protein Data Bank (PDB) as accession codes 6JN9 (open), 6JNA (half-open1), 6JNC (half-open2), and 6JND (closed), respectively.
Collapse
Affiliation(s)
- Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
55
|
Harastani M, Sorzano COS, Jonić S. Hybrid Electron Microscopy Normal Mode Analysis with Scipion. Protein Sci 2019; 29:223-236. [PMID: 31693263 DOI: 10.1002/pro.3772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) method was introduced in 2014. HEMNMA computes normal modes of a reference model (an atomic structure or an electron microscopy map) of a molecular complex and uses this model and its normal modes to analyze single-particle images of the complex to obtain information on its continuous conformational changes, by determining the full distribution of conformational variability from the images. An advantage of HEMNMA is a simultaneous determination of all parameters of each image (particle conformation, orientation, and shift) through their iterative optimization, which allows applications of HEMNMA even when the effects of conformational changes dominate those of orientational changes. HEMNMA was first implemented in Xmipp and was using MATLAB for statistical analysis of obtained conformational distributions and for fitting of underlying trajectories of conformational changes. A HEMNMA implementation independent of MATLAB is now available as part of a plugin of Scipion V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex, can be installed by following the instructions at https://pypi.org/project/scipion-em-continuousflex. In this article, we present this new HEMNMA software, which is user-friendly, totally free, and open-source. STATEMENT FOR A BROADER AUDIENCE: This article presents Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) software that allows analyzing single-particle images of a complex to obtain information on continuous conformational changes of the complex, by determining the full distribution of conformational variability from the images. The HEMNMA software is user-friendly, totally free, open-source, and available as part of ContinuousFlex plugin (https://pypi.org/project/scipion-em-continuousflex) of Scipion V2.0 (http://scipion.i2pc.es).
Collapse
Affiliation(s)
- Mohamad Harastani
- Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | | | - Slavica Jonić
- Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
56
|
Subramanian S, Maurer AC, Bator CM, Makhov AM, Conway JF, Turner KB, Marden JH, Vandenberghe LH, Hafenstein SL. Filling Adeno-Associated Virus Capsids: Estimating Success by Cryo-Electron Microscopy. Hum Gene Ther 2019; 30:1449-1460. [PMID: 31530236 DOI: 10.1089/hum.2019.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses (AAVs) have been employed successfully as gene therapy vectors in treating various genetic diseases for almost two decades. However, transgene packaging is usually imperfect, and developing a rapid and accurate method for measuring the proportion of DNA encapsidation is an important step for improving the downstream process of large scale vector production. In this study, we used two-dimensional class averages and three-dimensional classes, intermediate outputs in the single particle cryo-electron microscopy (cryo-EM) image reconstruction pipeline, to determine the proportion of DNA-packaged and empty capsid populations. Two different preparations of AAV3 were analyzed to estimate the minimum number of particles required to be sampled by cryo-EM in order for robust calculation of the proportion of the full versus empty capsids in any given sample. Cost analysis applied to the minimum amount of data required for a valid ratio suggests that cryo-EM is an effective approach to analyze vector preparations.
Collapse
Affiliation(s)
- Suriyasri Subramanian
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Ocular Genomics Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Carol M Bator
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin B Turner
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James H Marden
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Ocular Genomics Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Susan L Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
57
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
58
|
Zhang C, Cantara W, Jeon Y, Musier-Forsyth K, Grigorieff N, Lyumkis D. Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy 2019; 203:170-180. [PMID: 30528101 PMCID: PMC6476647 DOI: 10.1016/j.ultramic.2018.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Single-particle electron cryo-microscopy and computational image classification can be used to analyze structural variability in macromolecules and their assemblies. In some cases, a particle may contain different regions that each display a range of distinct conformations. We have developed strategies, implemented within the Frealign and cisTEM image processing packages, to focus-classify on specific regions of a particle and detect potential covariance. The strategies are based on masking the region of interest using either a 2-D mask applied to reference projections and particle images, or a 3-D mask applied to the 3-D volume. We show that focused classification approaches can be used to study structural covariance, a concept that is likely to gain more importance as datasets grow in size, allowing the distinction of more structural states and smaller differences between states. Finally, we apply the approaches to an experimental dataset containing the HIV-1 Transactivation Response (TAR) element RNA fused into the large bacterial ribosomal subunit to deconvolve structural mobility within localized regions of interest, and to a dataset containing assembly intermediates of the large subunit to measure structural covariance.
Collapse
Affiliation(s)
- Cheng Zhang
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - William Cantara
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Youngmin Jeon
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA.
| | - Dmitry Lyumkis
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
59
|
Peter B, Farge G, Pardo-Hernandez C, Tångefjord S, Falkenberg M. Structural basis for adPEO-causing mutations in the mitochondrial TWINKLE helicase. Hum Mol Genet 2019; 28:1090-1099. [PMID: 30496414 PMCID: PMC6423418 DOI: 10.1093/hmg/ddy415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden
| | - Geraldine Farge
- Centre Nacionale de la Recherche Scientifique/Institut National de Physique Nucléaire et des Particules, Laboratoire de Physique de Clermont, Université Clermont Auvergne, BP 10448, Clermont-Ferrand, France
| | | | - Stefan Tångefjord
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden
| |
Collapse
|
60
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
61
|
Serna M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Front Mol Biosci 2019; 6:33. [PMID: 31157234 PMCID: PMC6529575 DOI: 10.3389/fmolb.2019.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Electron microscopy of frozen hydrated samples (cryo-EM) is a powerful structural technique that allows the direct study of functional macromolecular complexes in an almost physiological environment. Protein macromolecular complexes are dynamic structures that usually hold together by an intricate network of protein-protein interactions that can be weak and transient. Moreover, a standard feature of many of these complexes is that they behave as nanomachines able to undergo functionally relevant conformational changes in one or several complex components. Among all the other main structural biology techniques, only cryo-EM has the potential of successfully dealing at the same time with both sample heterogeneity and inherent flexibility. The cryo-EM field is currently undergoing a revolution thanks to groundbreaking technical developments that have brought within our reach the possibility of solving the structure of biological complexes at atomic resolution. These technical developments have been mostly focused on new direct electron detector technology and improved sample preparation methods leading to better image quality. This fact has in turn required the development of new and better image processing algorithms to make the most of the higher quality data. The aim of this review is to provide a brief overview of some reported examples of single particle analysis strategies designed to find different conformational and compositional states within target macromolecular complex and specifically to deal with it to reach higher resolution information. Different image processing methodologies specifically aimed to symmetric or pseudo-symmetric protein complexes will also be discussed.
Collapse
Affiliation(s)
- Marina Serna
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
62
|
de Ruiter MV, Klem R, Luque D, Cornelissen JJLM, Castón JR. Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for in vitro catalysis. NANOSCALE 2019; 11:4130-4146. [PMID: 30793729 DOI: 10.1039/c8nr09204d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The organization of enzymes into different subcellular compartments is essential for correct cell function. Protein-based cages are a relatively recently discovered subclass of structurally dynamic cellular compartments that can be mimicked in the laboratory to encapsulate enzymes. These synthetic structures can then be used to improve our understanding of natural protein-based cages, or as nanoreactors in industrial catalysis, metabolic engineering, and medicine. Since the function of natural protein-based cages is related to their three-dimensional structure, it is important to determine this at the highest possible resolution if viable nanoreactors are to be engineered. Cryo-electron microscopy (cryo-EM) is ideal for undertaking such analyses within a feasible time frame and at near-native conditions. This review describes how three-dimensional cryo-EM is used in this field and discusses its advantages. An overview is also given of the nanoreactors produced so far, their structure, function, and applications.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
63
|
Li W, Agrawal RK. Joachim Frank's Binding with the Ribosome. Structure 2019; 27:411-419. [PMID: 30595455 PMCID: PMC11062599 DOI: 10.1016/j.str.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
With recent technological advancements, single-particle cryogenic electron microscopy (cryo-EM) is now the technique of choice to study structure and function of biological macromolecules at near-atomic resolution. Many single-particle EM reconstruction methods necessary for these advances were pioneered by Joachim Frank, and were optimized using the ribosome as a benchmark specimen. In doing so, he made several landmark contributions to the understanding of the structure and function of ribosomes. These include the first 3D visualization of ribosome-bound transfer RNAs, the first experimentally derived structures of the primary complexes formed during the bacterial translation elongation cycle, and the critical ribosomal conformational transitions required for translation. Over the years, his laboratory studied many important functional complexes of the ribosome from both eubacterial and eukaryotic systems, including ribosomes from pathogenic organisms. This article presents a brief account of the contributions made by Joachim Frank to the ribosome field.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
64
|
Glaeser RM. How Good Can Single-Particle Cryo-EM Become? What Remains Before It Approaches Its Physical Limits? Annu Rev Biophys 2019; 48:45-61. [PMID: 30786229 DOI: 10.1146/annurev-biophys-070317-032828] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impressive though the achievements of single-particle cryo-electron microscopy are today, a substantial gap still remains between what is currently accomplished and what is theoretically possible. As is reviewed here, twofold or more improvements are possible as regards (a) the detective quantum efficiency of cameras at high resolution, (b) converting phase modulations to intensity modulations in the image, and (c) recovering the full amount of high-resolution signal in the presence of beam-induced motion of the specimen. In addition, potential for improvement is reviewed for other topics such as optimal choice of electron energy, use of aberration correctors, and quantum metrology. With the help of such improvements, it does not seem to be too much to imagine that determining the structural basis for every aspect of catalytic control, signaling, and regulation, in any type of cell of interest, could easily be accelerated fivefold or more.
Collapse
Affiliation(s)
- Robert M Glaeser
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA;
| |
Collapse
|
65
|
Sorzano COS, Jiménez A, Mota J, Vilas JL, Maluenda D, Martínez M, Ramírez-Aportela E, Majtner T, Segura J, Sánchez-García R, Rancel Y, del Caño L, Conesa P, Melero R, Jonic S, Vargas J, Cazals F, Freyberg Z, Krieger J, Bahar I, Marabini R, Carazo JM. Survey of the analysis of continuous conformational variability of biological macromolecules by electron microscopy. Acta Crystallogr F Struct Biol Commun 2019; 75:19-32. [PMID: 30605122 PMCID: PMC6317454 DOI: 10.1107/s2053230x18015108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
Single-particle analysis by electron microscopy is a well established technique for analyzing the three-dimensional structures of biological macromolecules. Besides its ability to produce high-resolution structures, it also provides insights into the dynamic behavior of the structures by elucidating their conformational variability. Here, the different image-processing methods currently available to study continuous conformational changes are reviewed.
Collapse
Affiliation(s)
| | - A. Jiménez
- National Center of Biotechnology (CSIC), Spain
| | - J. Mota
- National Center of Biotechnology (CSIC), Spain
| | - J. L. Vilas
- National Center of Biotechnology (CSIC), Spain
| | - D. Maluenda
- National Center of Biotechnology (CSIC), Spain
| | - M. Martínez
- National Center of Biotechnology (CSIC), Spain
| | | | - T. Majtner
- National Center of Biotechnology (CSIC), Spain
| | - J. Segura
- National Center of Biotechnology (CSIC), Spain
| | | | - Y. Rancel
- National Center of Biotechnology (CSIC), Spain
| | - L. del Caño
- National Center of Biotechnology (CSIC), Spain
| | - P. Conesa
- National Center of Biotechnology (CSIC), Spain
| | - R. Melero
- National Center of Biotechnology (CSIC), Spain
| | - S. Jonic
- Sorbonne Université, UMR CNRS 7590, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | | | - F. Cazals
- Inria Sophia Antipolis – Méditerranée, France
| | | | | | | | | | | |
Collapse
|
66
|
Radermacher M, Ruiz T. On cross-correlations, averages and noise in electron microscopy. Acta Crystallogr F Struct Biol Commun 2019; 75:12-18. [PMID: 30605121 PMCID: PMC6317458 DOI: 10.1107/s2053230x18014036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
The influence of noise on cross-correlations is revisited. Equations are provided describing the influence of noise on the cross-correlations between single images and averaged images and on those between averaged images. Biological samples are radiation-sensitive and require imaging under low-dose conditions to minimize damage. As a result, images contain a high level of noise and exhibit signal-to-noise ratios that are typically significantly smaller than 1. Averaging techniques, either implicit or explicit, are used to overcome the limitations imposed by the high level of noise. Averaging of 2D images showing the same molecule in the same orientation results in highly significant projections. A high-resolution structure can be obtained by combining the information from many single-particle images to determine a 3D structure. Similarly, averaging of multiple copies of macromolecular assembly subvolumes extracted from tomographic reconstructions can lead to a virtually noise-free high-resolution structure. Cross-correlation methods are often used in the alignment and classification steps of averaging processes for both 2D images and 3D volumes. However, the high noise level can bias alignment and certain classification results. While other approaches may be implicitly affected, sensitivity to noise is most apparent in multireference alignments, 3D reference-based projection alignments and projection-based volume alignments. Here, the influence of the image signal-to-noise ratio on the value of the cross-correlation coefficient is analyzed and a method for compensating for this effect is provided.
Collapse
Affiliation(s)
- Michael Radermacher
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
67
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
68
|
Stella S, Mesa P, Thomsen J, Paul B, Alcón P, Jensen SB, Saligram B, Moses ME, Hatzakis NS, Montoya G. Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity. Cell 2018; 175:1856-1871.e21. [PMID: 30503205 DOI: 10.1016/j.cell.2018.10.045] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/27/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.
Collapse
Affiliation(s)
- Stefano Stella
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Pablo Mesa
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Bijoya Paul
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Pablo Alcón
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon B Jensen
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Bhargav Saligram
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Matias E Moses
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
69
|
Boyd CM, Bubeck D. Advances in cryoEM and its impact on β-pore forming proteins. Curr Opin Struct Biol 2018; 52:41-49. [PMID: 30125772 PMCID: PMC6302071 DOI: 10.1016/j.sbi.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Deployed by both hosts and pathogens, β-pore-forming proteins (β-PFPs) rupture membranes and lyse target cells. Soluble protein monomers oligomerize on the lipid bilayer where they undergo dramatic structural rearrangements, resulting in a transmembrane β-barrel pore. Advances in electron cryo-microscopy (cryoEM) sample preparation, image detection, and computational algorithms have led to a number of recent structures that reveal a molecular mechanism of pore formation in atomic detail.
Collapse
Affiliation(s)
- Courtney M Boyd
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
70
|
Frank J. Einzelpartikel-Rekonstruktion biologischer Moleküle - Geschichte in einer Probe (Nobel-Aufsatz). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics; Columbia University Medical Center; New York NY USA
- Department of Biological Sciences; Columbia University; USA
| |
Collapse
|
71
|
Henderson R. Von der Elektronenkristallographie zur Einzelpartikel-KryoEM (Nobel-Aufsatz). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology; Francis Crick Avenue Cambridge CB2 0QH Großbritannien
| |
Collapse
|
72
|
Reboul CF, Kiesewetter S, Eager M, Belousoff M, Cui T, De Sterck H, Elmlund D, Elmlund H. Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE. J Struct Biol 2018; 204:172-181. [PMID: 30092280 DOI: 10.1016/j.jsb.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) and single-particle analysis enables determination of near-atomic resolution structures of biological molecules. However, large computational requirements limit throughput and rapid testing of new image processing tools. We developed PRIME, an algorithm part of the SIMPLE software suite, for determination of the relative 3D orientations of single-particle projection images. PRIME has primarily found use for generation of an initial ab initio 3D reconstruction. Here we show that the strategy behind PRIME, iterative estimation of per-particle orientation distributions with stochastic hill climbing, provides a competitive approach to near-atomic resolution single-particle 3D reconstruction. A number of mathematical techniques for accelerating the convergence rate are introduced, leading to a speedup of nearly two orders of magnitude. We benchmarked our developments on numerous publicly available data sets and conclude that near-atomic resolution ab initio 3D reconstructions can be obtained with SIMPLE in a matter of hours, using standard over-the-counter CPU workstations.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Eager
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Matthew Belousoff
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tiangang Cui
- School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hans De Sterck
- School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
73
|
Henderson R. From Electron Crystallography to Single Particle CryoEM (Nobel Lecture). Angew Chem Int Ed Engl 2018; 57:10804-10825. [PMID: 29984560 DOI: 10.1002/anie.201802731] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 01/08/2023]
Abstract
Pictures are a key to knowledge: The development of electron microscopy from its beginnings to modern single particle cryo-EM is described by R. Henderson in his Nobel lecture. Shown is the first projection structure at 7 Å resolution of the purple membrane from October 1974.
Collapse
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
74
|
Frank J. Single-Particle Reconstruction of Biological Molecules-Story in a Sample (Nobel Lecture). Angew Chem Int Ed Engl 2018; 57:10826-10841. [PMID: 29978534 DOI: 10.1002/anie.201802770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 12/24/2022]
Abstract
Pictures tell a thousand words: The development of single-particle cryo-electron microscopy set the stage for high-resolution structure determination of biological molecules. In his Nobel lecture, J. Frank describes the ground-breaking discoveries that have enabled the development of cryo-EM. The method has taken biochemistry into a new era.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, Medical Center, New York, NY, USA.,Department of Biological Sciences, Columbia University, USA
| |
Collapse
|
75
|
|
76
|
|
77
|
Nakane T, Kimanius D, Lindahl E, Scheres SH. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 2018; 7:36861. [PMID: 29856314 PMCID: PMC6005684 DOI: 10.7554/elife.36861] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Macromolecular complexes that exhibit continuous forms of structural flexibility pose a challenge for many existing tools in cryo-EM single-particle analysis. We describe a new tool, called multi-body refinement, which models flexible complexes as a user-defined number of rigid bodies that move independently from each other. Using separate focused refinements with iteratively improved partial signal subtraction, the new tool generates improved reconstructions for each of the defined bodies in a fully automated manner. Moreover, using principal component analysis on the relative orientations of the bodies over all particle images in the data set, we generate movies that describe the most important motions in the data. Our results on two test cases, a cytoplasmic ribosome from Plasmodium falciparum, and the spliceosomal B-complex from yeast, illustrate how multi-body refinement can be useful to gain unique insights into the structure and dynamics of large and flexible macromolecular complexes.
Collapse
Affiliation(s)
- Takanori Nakane
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Dari Kimanius
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
78
|
Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, Rapp M, Eng ET, Rice WJ, Cheng A, Negro CJ, Shapiro L, Kwong PD, Jeruzalmi D, des Georges A, Potter CS, Carragher B. Routine single particle CryoEM sample and grid characterization by tomography. eLife 2018; 7:e34257. [PMID: 29809143 PMCID: PMC5999397 DOI: 10.7554/elife.34257] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.
Collapse
Affiliation(s)
- Alex J Noble
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Venkata P Dandey
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Hui Wei
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Julia Brasch
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Jillian Chase
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Priyamvada Acharya
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - Yong Zi Tan
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Zhening Zhang
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Laura Y Kim
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Giovanna Scapin
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Structural Chemistry and Chemical BiotechnologyMerck & Co., IncNew JerseyUnited States
| | - Micah Rapp
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Edward T Eng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - William J Rice
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Anchi Cheng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Carl J Negro
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Peter D Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - David Jeruzalmi
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in BiologyThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Amedee des Georges
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Advanced Science Research CenterThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Clinton S Potter
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Bridget Carragher
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
79
|
Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y. Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome. Nat Commun 2018; 9:1360. [PMID: 29636472 PMCID: PMC5893597 DOI: 10.1038/s41467-018-03785-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
The proteasome is a sophisticated ATP-dependent molecular machine responsible for protein degradation in all known eukaryotic cells. It remains elusive how conformational changes of the AAA-ATPase unfoldase in the regulatory particle (RP) control the gating of the substrate–translocation channel leading to the proteolytic chamber of the core particle (CP). Here we report three alternative states of the ATP-γ-S-bound human proteasome, in which the CP gates are asymmetrically open, visualized by cryo-EM at near-atomic resolutions. At least four nucleotides are bound to the AAA-ATPase ring in these open-gate states. Variation in nucleotide binding gives rise to an axial movement of the pore loops narrowing the substrate-translation channel, which exhibit remarkable structural transitions between the spiral-staircase and saddle-shaped-circle topologies. Gate opening in the CP is thus regulated by nucleotide-driven conformational changes of the AAA-ATPase unfoldase. These findings demonstrate an elegant mechanism of allosteric coordination among sub-machines within the human proteasome holoenzyme. The 26S proteasome consists of a core particle that is capped at each side by a regulatory particle. Here the authors present cryo-EM structures of the activated human 26S proteasome holoenzyme in three alternative open-gate states, which provides mechanistic insights into gate opening and dynamic remodeling of the substrate–translocation pathway.
Collapse
Affiliation(s)
- Yanan Zhu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Wei Li Wang
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Daqi Yu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Youdong Mao
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China. .,Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
80
|
Cossio P, Hummer G. Likelihood-based structural analysis of electron microscopy images. Curr Opin Struct Biol 2018; 49:162-168. [PMID: 29579548 DOI: 10.1016/j.sbi.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/24/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
Likelihood-based analysis of single-particle electron microscopy images has contributed much to the recent improvements in resolution. By treating particle orientations and classes probabilistically, uncertainties in the reconstruction process are explicitly accounted for, and the risk of bias towards the initial model is diminished. As a result, the quality and reliability of the reconstructions have greatly improved at manageable computational cost. Likelihood-based analysis of electron microscopy images also offers a route to direct coordinate refinement for dynamic systems, as an alternative to 3D density reconstruction. Here, we review recent developments in the algorithms used for reconstructions of high-resolution maps, and in the integrative framework of combining likelihood methods with simulations to address conformational variability in cryo-electron microscopy.
Collapse
Affiliation(s)
- Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
81
|
Abstract
Experimental methods for the characterization of protein complexes have been instrumental in achieving our current understanding of the protein universe and continue to progress with each year that passes. In this chapter, we review some of the most important tools and techniques in the field, covering the important points in X-ray crystallography, cryo-electron microscopy, NMR spectroscopy, and mass spectrometry. Novel developments are making it possible to study large protein complexes at near-atomic resolutions, and we also now have the ability to study the dynamics and assembly pathways of protein complexes across a range of sizes.
Collapse
Affiliation(s)
- Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
82
|
Loveland AB, Korostelev AA. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 2017; 137:55-66. [PMID: 29247757 DOI: 10.1016/j.ymeth.2017.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022] Open
Abstract
Bacterial ribosomal protein S1 is the largest and highly flexible protein of the 30S subunit, and one of a few core ribosomal proteins for which a complete structure is lacking. S1 is thought to participate in transcription and translation. Best understood is the role of S1 in facilitating translation of mRNAs with structured 5' UTRs. Here, we present cryo-EM analyses of the 70S ribosome that reveal multiple conformations of S1. Based on comparison of several 3D maximum likelihood classification approaches in Frealign, we propose a streamlined strategy for visualizing a highly dynamic component of a large macromolecular assembly that itself exhibits high compositional and conformational heterogeneity. The resulting maps show how S1 docks at the ribosomal protein S2 near the mRNA exit channel. The globular OB-fold domains sample a wide area around the mRNA exit channel and interact with mobile tails of proteins S6 and S18. S1 also interacts with the mRNA entrance channel, where an OB-fold domain can be localized near S3 and S5. Our analyses suggest that S1 cooperates with other ribosomal proteins to form a dynamic mesh near the mRNA exit and entrance channels to modulate the binding, folding and movement of mRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
83
|
Frank J. The translation elongation cycle-capturing multiple states by cryo-electron microscopy. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0180. [PMID: 28138066 DOI: 10.1098/rstb.2016.0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
During the work cycle of elongation, the ribosome, a molecular machine of vast complexity, exists in a large number of states distinguished by constellation of its subunits, its subunit domains and binding partners. Single-particle cryogenic electron microscopy (cryo-EM), developed over the past 40 years, is uniquely suited to determine the structure of molecular machines in their native states. With the emergence, 10 years ago, of unsupervised clustering techniques in the analysis of single-particle data, it has been possible to determine multiple structures from a sample containing ribosomes equilibrating in different thermally accessible states. In addition, recent advances in detector technology have made it possible to reach near-atomic resolution for some of these states. With these capabilities, single-particle cryo-EM has been at the forefront of exploring ribosome dynamics during its functional cycle, along with single-molecule fluorescence resonance energy transfer and molecular dynamics computations, offering insights into molecular architecture uniquely honed by evolution to capitalize on thermal energy in the ambient environment.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA .,Howard Hughes Medical Institute, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
84
|
Forsberg BO, Aibara S, Kimanius D, Paul B, Lindahl E, Amunts A. Cryo-EM reconstruction of the chlororibosome to 3.2 Å resolution within 24 h. IUCRJ 2017; 4:723-727. [PMID: 29123673 PMCID: PMC5668856 DOI: 10.1107/s205225251701226x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The introduction of direct detectors and the automation of data collection in cryo-EM have led to a surge in data, creating new opportunities for advancing computational processing. In particular, on-the-fly workflows that connect data collection with three-dimensional reconstruction would be valuable for more efficient use of cryo-EM and its application as a sample-screening tool. Here, accelerated on-the-fly analysis is reported with optimized organization of the data-processing tools, image acquisition and particle alignment that make it possible to reconstruct the three-dimensional density of the 70S chlororibosome to 3.2 Å resolution within 24 h of tissue harvesting. It is also shown that it is possible to achieve even faster processing at comparable quality by imposing some limits to data use, as illustrated by a 3.7 Å resolution map that was obtained in only 80 min on a desktop computer. These on-the-fly methods can be employed as an assessment of data quality from small samples and extended to high-throughput approaches.
Collapse
Affiliation(s)
- Björn O. Forsberg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Dari Kimanius
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Bijoya Paul
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
85
|
Baldwin PR, Tan YZ, Eng ET, Rice WJ, Noble AJ, Negro CJ, Cianfrocco MA, Potter CS, Carragher B. Big data in cryoEM: automated collection, processing and accessibility of EM data. Curr Opin Microbiol 2017; 43:1-8. [PMID: 29100109 DOI: 10.1016/j.mib.2017.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
Abstract
The scope and complexity of cryogenic electron microscopy (cryoEM) data has greatly increased, and will continue to do so, due to recent and ongoing technical breakthroughs that have led to much improved resolutions for macromolecular structures solved using this method. This big data explosion includes single particle data as well as tomographic tilt series, both generally acquired as direct detector movies of ∼10-100 frames per image or per tilt-series. We provide a brief survey of the developments leading to the current status, and describe existing cryoEM pipelines, with an emphasis on the scope of data acquisition, methods for automation, and use of cloud storage and computing.
Collapse
Affiliation(s)
- Philip R Baldwin
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Yong Zi Tan
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - William J Rice
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Alex J Noble
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Carl J Negro
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Michael A Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clinton S Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
86
|
Fortmann-Grote C, Buzmakov A, Jurek Z, Loh NTD, Samoylova L, Santra R, Schneidmiller EA, Tschentscher T, Yakubov S, Yoon CH, Yurkov MV, Ziaja-Motyka B, Mancuso AP. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCRJ 2017; 4:560-568. [PMID: 28989713 PMCID: PMC5619849 DOI: 10.1107/s2052252517009496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Collapse
Affiliation(s)
| | - Alexey Buzmakov
- FSRC ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow, Russian Federation
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ne-Te Duane Loh
- Centre for Bio-Imaging Sciences, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | | | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | | | | | | | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA
| | | | - Beata Ziaja-Motyka
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | | |
Collapse
|
87
|
Wu J, Ma YB, Congdon C, Brett B, Chen S, Xu Y, Ouyang Q, Mao Y. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning. PLoS One 2017; 12:e0182130. [PMID: 28786986 PMCID: PMC5546606 DOI: 10.1371/journal.pone.0182130] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
Collapse
Affiliation(s)
- Jiayi Wu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yong-Bei Ma
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Charles Congdon
- Software and Services Group, Intel Corporation, Santa Clara, California, United States of America
| | - Bevin Brett
- Software and Services Group, Intel Corporation, Santa Clara, California, United States of America
| | - Shuobing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yaofang Xu
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biophysics, Peking University Health Science Center, Beijing, China
| | - Qi Ouyang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Youdong Mao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
88
|
Doerschuk PC. Statistical characterization of ensembles of symmetric virus particles: 3-D stochastic signal reconstruction from electron microscope images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3977-3980. [PMID: 28269156 DOI: 10.1109/embc.2016.7591598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stochastic models of nano-biomachines have been studied by 3-D reconstruction from cryo electron microscopy images in recent years. The image data is the projection of many heterogeneous instances of the object under study (e.g., a virus). Initial reconstruction algorithms require different instances of the object, while still heterogeneous, to have the same symmetry. This paper presents a maximum likelihood reconstruction approach which allows each object to lack symmetry while constraining the statistics of the ensemble of objects to have symmetry. This algorithm is demonstrated on bacteriophage HK97 and is contrasted with the former algorithm. Reconstruction results show that the proposed algorithm provides estimates that make more biological sense.
Collapse
|
89
|
Ozorowski G, Pallesen J, de Val N, Lyumkis D, Cottrell CA, Torres JL, Copps J, Stanfield RL, Cupo A, Pugach P, Moore JP, Wilson IA, Ward AB. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 2017; 547:360-363. [PMID: 28700571 PMCID: PMC5538736 DOI: 10.1038/nature23010] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
For many enveloped viruses, binding to a receptor(s) on a host cell acts as a first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication [for review see1,2]. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. While Env can tolerate a high degree of mutation in five variable regions (V1-V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env3,4, targets of broadly neutralizing antibodies (bnAbs). Thus, they are attractive immunogens for vaccine development [for review see5–8]. Here we present high-resolution cryo-electron microscopy (cryoEM) structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of ~3.7 Å and ~3.6 Å, respectively, and compare them to cryoEM reconstructions of ligand-free B41 SOSIP Env trimers or in complex with either CD4 or CD4bs antibody PGV04, at ~5.6 Å, ~5.2 Å and ~7.4 Å, respectively. Consequently, we present the most complete description and understanding of the CD4/17b-induced intermediate and provide the molecular basis of the receptor-binding induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes more buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.
Collapse
Affiliation(s)
- Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
90
|
Nakano M, Miyashita O, Jonic S, Song C, Nam D, Joti Y, Tama F. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:727-737. [PMID: 28664878 PMCID: PMC5493022 DOI: 10.1107/s1600577517007767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/24/2017] [Indexed: 05/19/2023]
Abstract
The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.
Collapse
Affiliation(s)
- Miki Nakano
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Slavica Jonic
- IMPMC, Sorbonne Universités – CNRS UMR 7590, UPMC Univ Paris 6, MNHN, IRD UMR 206, Paris 75005, France
| | - Changyong Song
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Daewoong Nam
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Yasumasa Joti
- XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Florence Tama
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
91
|
Sanchez Sorzano CO, Alvarez-Cabrera AL, Kazemi M, Carazo JM, Jonić S. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes. Biophys J 2017; 110:1753-1765. [PMID: 27119636 DOI: 10.1016/j.bpj.2016.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions.
Collapse
Affiliation(s)
- Carlos Oscar Sanchez Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Ana Lucia Alvarez-Cabrera
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Mohsen Kazemi
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Jose María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Slavica Jonić
- IMPMC, Sorbonne Universités, CNRS UMR 7590, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France.
| |
Collapse
|
92
|
Zhou Q, Zhou N, Wang HW. Particle segmentation algorithm for flexible single particle reconstruction. BIOPHYSICS REPORTS 2017; 3:43-55. [PMID: 28782000 PMCID: PMC5515998 DOI: 10.1007/s41048-017-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China.,Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Niyun Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
93
|
Abstract
Major developments in cryo-electron microscopy in the past three or four years have led to the solution of a number of spliceosome structures at high resolution, e.g., the fully assembled but not yet active spliceosome (Bact), the spliceosome just after the first step of splicing (C), and the spliceosome activated for the second step (C*). Therefore 30 years of genetics and biochemistry of the spliceosome can now be interpreted at the structural level. I have closely examined the RNase H domain of Prp8 in each of the structures. Interestingly, the RNase H domain has different and unexpected roles in each of the catalytic steps of splicing.
Collapse
Affiliation(s)
- John Abelson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
94
|
Ripstein ZA, Huang R, Augustyniak R, Kay LE, Rubinstein JL. Structure of a AAA+ unfoldase in the process of unfolding substrate. eLife 2017; 6. [PMID: 28390173 PMCID: PMC5423775 DOI: 10.7554/elife.25754] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.
Collapse
Affiliation(s)
- Zev A Ripstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Rui Huang
- Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Rafal Augustyniak
- Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
95
|
Punjani A, Brubaker MA, Fleet DJ. Building Proteins in a Day: Efficient 3D Molecular Structure Estimation with Electron Cryomicroscopy. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2017; 39:706-718. [PMID: 27849524 DOI: 10.1109/tpami.2016.2627573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Discovering the 3D atomic-resolution structure of molecules such as proteins and viruses is one of the foremost research problems in biology and medicine. Electron Cryomicroscopy (cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D atomic structures from a large set of 2D transmission electron microscope images. This paper presents a new Bayesian framework for cryo-EM structure estimation that builds on modern stochastic optimization techniques to allow one to scale to very large datasets. We also introduce a novel Monte-Carlo technique that reduces the cost of evaluating the objective function during optimization by over five orders of magnitude. The net result is an approach capable of estimating 3D molecular structure from large-scale datasets in about a day on a single CPU workstation.
Collapse
|
96
|
Abstract
Translation of the genetic code on the ribosome into protein is a process of extraordinary complexity, and understanding its mechanism has remained one of the major challenges even though x-ray structures have been available since 2000. In the past two decades, single-particle cryo-electron microscopy has contributed a major share of information on structure, binding modes, and conformational changes of the ribosome during its work cycle, but the contributions of this technique in the translation field have recently skyrocketed after the introduction of a new recording medium capable of detecting individual electrons. As many examples in the recent literature over the past three years show, the impact of this development on the advancement of knowledge in this field has been transformative and promises to be lasting.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
97
|
Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1032432. [PMID: 28191458 PMCID: PMC5274696 DOI: 10.1155/2017/1032432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
In living organisms, biological macromolecules are intrinsically flexible and naturally exist in multiple conformations. Modern electron microscopy, especially at liquid nitrogen temperatures (cryo-EM), is able to visualise biocomplexes in nearly native conditions and in multiple conformational states. The advances made during the last decade in electronic technology and software development have led to the revelation of structural variations in complexes and also improved the resolution of EM structures. Nowadays, structural studies based on single particle analysis (SPA) suggests several approaches for the separation of different conformational states and therefore disclosure of the mechanisms for functioning of complexes. The task of resolving different states requires the examination of large datasets, sophisticated programs, and significant computing power. Some methods are based on analysis of two-dimensional images, while others are based on three-dimensional studies. In this review, we describe the basic principles implemented in the various techniques that are currently used in the analysis of structural conformations and provide some examples of successful applications of these methods in structural studies of biologically significant complexes.
Collapse
|
98
|
Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Curr Opin Struct Biol 2017; 43:114-121. [PMID: 28088125 DOI: 10.1016/j.sbi.2016.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
Thanks to latest technical advances in cryo-electron microscopy (cryo-EM), structures of macromolecular complexes (viruses, ribosomes, etc.) are now often obtained at near-atomic resolution. Also, studies of conformational changes of complexes, in connection with their function, are gaining ground. Conformational variability analysis is usually done by classifying images in a number of discrete classes supposedly representing all conformational states present in the specimen. However, discrete classes cannot be meaningfully defined when the conformational change is continuous (the specimen contains a continuum of states instead of a few discrete states). For such cases, first image analysis methods that explicitly consider continuous conformational changes were recently developed. The latest developments in cryo-EM image analysis methods for conformational variability analysis are the focus of this review.
Collapse
|
99
|
Frank J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 2017; 12:209-212. [PMID: 28055037 DOI: 10.1038/nprot.2017.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022]
Abstract
In single-particle cryo-electron microscopy (cryo-EM), molecules suspended in a thin aqueous layer are rapidly frozen and imaged at cryogenic temperature in the transmission electron microscope. From the random projection views, a three-dimensional image is reconstructed, enabling the structure of the molecule to be obtained. In this article I discuss technological progress over the past decade, which has, in my own field of study, culminated in the determination of ribosome structure at 2.5-Å resolution. I also discuss likely future improvements in methodology.
Collapse
Affiliation(s)
- Joachim Frank
- Departments of Biochemistry and Molecular Biophysics and of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
100
|
Walls A, Tortorici MA, Bosch B, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D. Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. Protein Sci 2017; 26:113-121. [PMID: 27667334 PMCID: PMC5192993 DOI: 10.1002/pro.3048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022]
Abstract
The tremendous pandemic potential of coronaviruses was demonstrated twice in the last 15 years by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. Despite their biomedical importance, coronavirus S glycoproteins have proven difficult targets for structural characterization, precluding high-resolution studies of the biologically relevant trimer. Recent technological developments in single particle cryo-electron microscopy allowed us to determine the first structure of a coronavirus S glycoprotein trimer which provided a framework to understand the mechanisms of viral entry and suggested potential inhibition strategies for this family of viruses. Here, we describe the key factors that enabled this breakthrough.
Collapse
Affiliation(s)
- Alexandra Walls
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
| | - M. Alejandra Tortorici
- Institut Pasteur, Département de Virologie, Unité de Virologie StructuraleParisFrance
- CNRS UMR 3569 VirologieParisFrance
| | - Berend‐Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary MedicineUtrecht University3584 CL UtrechtThe Netherlands
| | - Brandon Frenz
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
| | - Peter J. M. Rottier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary MedicineUtrecht University3584 CL UtrechtThe Netherlands
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
| | - Felix A. Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie StructuraleParisFrance
- CNRS UMR 3569 VirologieParisFrance
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
| |
Collapse
|