51
|
White JJ, Lin T, Brown AM, Arancillo M, Lackey EP, Stay TL, Sillitoe RV. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 2016; 262:21-31. [PMID: 26777474 DOI: 10.1016/j.jneumeth.2016.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Electrophysiological recording approaches are essential for understanding brain function. Among these approaches are various methods of performing single-unit recordings. However, a major hurdle to overcome when recording single units in vivo is stability. Poor stability results in a low signal-to-noise ratio, which makes it challenging to isolate neuronal signals. Proper isolation is needed for differentiating a signal from neighboring cells or the noise inherent to electrophysiology. Insufficient isolation makes it impossible to analyze full action potential waveforms. A common source of instability is an inadequate surgery. Problems during surgery cause blood loss, tissue damage and poor healing of the surrounding tissue, limited access to the target brain region, and, importantly, unreliable fixation points for holding the mouse's head. NEW METHOD We describe an optimized surgical procedure that ensures limited tissue damage and delineate a method for implanting head plates to hold the animal firmly in place. RESULTS Using the cerebellum as a model, we implement an extracellular recording technique to acquire single units from Purkinje cells and cerebellar nuclear neurons in behaving mice. We validate the stability of our method by holding single units after injecting the powerful tremorgenic drug harmaline. We performed multiple structural analyses after recording. COMPARISON WITH EXISTING METHODS Our approach is ideal for studying neuronal function in active mice and valuable for recording single-neuron activity when considerable motion is unavoidable. CONCLUSIONS The surgical principles we present for accessing the cerebellum can be easily adapted to examine the function of neurons in other brain regions.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
53
|
Neural Coding of Perceived Odor Intensity. eNeuro 2015; 2:eN-NWR-0083-15. [PMID: 26665162 PMCID: PMC4672005 DOI: 10.1523/eneuro.0083-15.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 01/02/2023] Open
Abstract
Stimulus intensity is a fundamental perceptual feature in all sensory systems. In olfaction, perceived odor intensity depends on at least two variables: odor concentration; and duration of the odor exposure or adaptation. To examine how neural activity at early stages of the olfactory system represents features relevant to intensity perception, we studied the responses of mitral/tufted cells (MTCs) while manipulating odor concentration and exposure duration. Temporal profiles of MTC responses to odors changed both as a function of concentration and with adaptation. However, despite the complexity of these responses, adaptation and concentration dependencies behaved similarly. These similarities were visualized by principal component analysis of average population responses and were quantified by discriminant analysis in a trial-by-trial manner. The qualitative functional dependencies of neuronal responses paralleled psychophysics results in humans. We suggest that temporal patterns of MTC responses in the olfactory bulb contribute to an internal perceptual variable: odor intensity.
Collapse
|
54
|
Respiratory modulation of spontaneous subthreshold synaptic activity in olfactory bulb granule cells recorded in awake, head-fixed mice. J Neurosci 2015; 35:8758-67. [PMID: 26063910 DOI: 10.1523/jneurosci.0311-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the firing patterns of principal neurons in the olfactory bulb are known to be modulated strongly by respiration even under basal conditions, less is known about whether inhibitory local circuit activity in the olfactory bulb (OB) is modulated phasically. The diverse phase preferences of principal neurons in the OB and olfactory cortex that innervate granule cells (GCs) may interfere and prevent robust respiratory coupling, as suggested by recent findings. Using whole-cell recording, we examined the spontaneous, subthreshold membrane potential of GCs in the OBs of awake head-fixed mice. We found that, during periods of basal respiration, the synaptic input to GCs was strongly phase modulated, leading to a phase preference in the average, cycle-normalized membrane potential. Subthreshold phase tuning was heterogeneous in both mitral and tufted cells (MTCs) and GCs but relatively constant within each GC during periods of increased respiratory frequency. The timing of individual EPSPs in GC recordings also was phase modulated with the phase preference imparted by large-amplitude EPSPs, with fast kinetics often matching the phase tuning of the average membrane potential. These results suggest that activity in a subset of excitatory afferents to GCs, presumably including cortical feedback projections and other sources of large-amplitude unitary EPSPs, function to provide a timing signal linked to respiration. The phase preference we find in the membrane potential may provide a mechanism to dynamically modulate recurrent and lateral dendrodendritic inhibition of MTCs and to selective engage a subpopulation of interneurons based on the alignment of their phase tuning relative to sensory-driven MTC discharges.
Collapse
|
55
|
Boyd AM, Kato HK, Komiyama T, Isaacson JS. Broadcasting of cortical activity to the olfactory bulb. Cell Rep 2015; 10:1032-9. [PMID: 25704808 DOI: 10.1016/j.celrep.2015.01.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022] Open
Abstract
Odor representations are initially formed in the olfactory bulb, which contains a topographic glomerular map of odor molecular features. The bulb transmits sensory information directly to piriform cortex, where it is encoded by distributed ensembles of pyramidal cells without spatial order. Intriguingly, piriform cortex pyramidal cells project back to the bulb, but the information contained in this feedback projection is unknown. Here, we use imaging in awake mice to directly monitor activity in the presynaptic boutons of cortical feedback fibers. We show that the cortex provides the bulb with a rich array of information for any individual odor and that cortical feedback is dependent on brain state. In contrast to the stereotyped, spatial arrangement of olfactory bulb glomeruli, cortical inputs tuned to different odors commingle and indiscriminately target individual glomerular channels. Thus, the cortex modulates early odor representations by broadcasting sensory information diffusely onto spatially ordered bulbar circuits.
Collapse
Affiliation(s)
- Alison M Boyd
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiroyuki K Kato
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; JST, PRESTO, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffry S Isaacson
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
56
|
Kollo M, Schmaltz A, Abdelhamid M, Fukunaga I, Schaefer AT. 'Silent' mitral cells dominate odor responses in the olfactory bulb of awake mice. Nat Neurosci 2014; 17:1313-5. [PMID: 25064849 PMCID: PMC4176944 DOI: 10.1038/nn.3768] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
How wakefulness shapes neural activity is a topic of intense discussion. In the awake olfactory bulb, high activity with weak sensory-evoked responses has been reported in mitral/tufted cells (M/TCs). Using blind whole-cell recordings, we found 33% of M/TCs to be 'silent', yet still show strong sensory responses, with weak or inhibitory responses in 'active' neurons. Thus, a previously missed M/TC subpopulation can exert powerful influence over the olfactory bulb.
Collapse
Affiliation(s)
- Mihaly Kollo
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Anja Schmaltz
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mostafa Abdelhamid
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Izumi Fukunaga
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Andreas T Schaefer
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. [4] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
57
|
Cauthron JL, Stripling JS. Long-term plasticity in the regulation of olfactory bulb activity by centrifugal fibers from piriform cortex. J Neurosci 2014; 34:9677-87. [PMID: 25031407 PMCID: PMC4099545 DOI: 10.1523/jneurosci.1314-14.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022] Open
Abstract
Olfactory bulb granule cells are activated synaptically via two main pathways. Mitral/tufted (M/T) cells form dendrodendritic synapses on granule cells that can be activated by antidromic stimulation of the lateral olfactory tract (LOT). Centrifugal fibers originating from the association fiber (AF) system in piriform cortex (PC) make axodendritic synapses on granule cells within the granule cell layer (GCL) that can be activated by orthodromic stimulation of AF axons in the PC. We explored functional plasticity in the AF pathway by recording extracellularly from individual M/T cells and presumed granule cells in male Long-Evans rats under urethane anesthesia while testing their response to LOT and AF stimulation. Presumed granule cells driven synaptically by LOT stimulation (type L cells) were concentrated in the superficial half of the GCL and were activated at short latencies, whereas those driven synaptically by AF stimulation (type A cells) were concentrated in the deep half of the GCL and were activated at longer latencies. Type A cells were readily detected only in animals in which the AF input to the GCL had been previously potentiated by repeated high-frequency stimulation. An additional bout of high-frequency stimulation administered under urethane caused an immediate increase in the number of action potentials evoked in type A cells by AF test stimulation and a concomitant increase in inhibition of M/T cells. These results underscore the importance of the role played in olfactory processing by PC regulation of OB activity and document the long-lasting potentiation of that regulation by repeated high-frequency AF activation.
Collapse
Affiliation(s)
- Joy L Cauthron
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Jeffrey S Stripling
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
58
|
Fukunaga I, Herb JT, Kollo M, Boyden ES, Schaefer AT. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nat Neurosci 2014; 17:1208-16. [PMID: 24997762 PMCID: PMC4146518 DOI: 10.1038/nn.3760] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022]
Abstract
Circuits in the brain possess a remarkable ability to orchestrate activities on different timescales, but how distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example where slow, theta, and fast, gamma, rhythms coexist. Furthermore inhibitory interneurons generally implicated in rhythm generation are segregated into distinct layers, neatly separating local from global motifs. Here, combining intracellular recordings in vivo with circuit-specific optogenetic interference we dissect the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits control rhythms on distinct timescales: local, glomerular networks coordinate theta activity, regulating baseline and odor-evoked inhibition; granule cells orchestrate gamma synchrony and spike timing. Surprisingly, they did not contribute to baseline rhythms, or sniff-coupled odor-evoked inhibition despite their perceived dominance. Thus, activities on theta and gamma time scales are controlled by separate, dissociable inhibitory networks in the olfactory bulb.
Collapse
Affiliation(s)
- Izumi Fukunaga
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Jan T Herb
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mihaly Kollo
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Edward S Boyden
- Media Lab, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andreas T Schaefer
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. [4] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
59
|
Abstract
Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli. DOI:http://dx.doi.org/10.7554/eLife.02743.001 Many animals emit and detect chemicals known as pheromones to communicate with other members of their own species. Animals also rely on chemical signals from other species to warn them, for example, that a predator is nearby. Many of these chemical signals—which are present in sweat, tears, urine, and saliva—are detected by a structure called the vomeronasal organ, which is located at the base of the nasal cavity. When this organ detects a particular chemical signal, it broadcasts this information to a network of brain regions that generates an appropriate behavioral response. Two structures within this network, the accessory olfactory bulb and the medial amygdala, play an important role in modifying this signal before it reaches its final destination—a region of the brain called the hypothalamus. Activation of the hypothalamus by the signal triggers changes in the animal's behavior. Although the anatomical details of this pathway have been widely studied, it is not clear how information is actually transmitted along it. Now, Bergan et al. have provided insights into this process by recording signals in the brains of anesthetized mice exposed to specific stimuli. Whereas neurons in the accessory olfactory bulb responded similarly in male and female mice, those in the medial amygdala showed a preference for female urine in male mice, and a preference for male urine in the case of females. This is the first direct demonstration of differences in sensory processing in the brains of male and female mammals. These differences are thought to result from the actions of sex hormones, particularly estrogen, on brain circuits during development. Consistent with this, neurons in the medial amygdala of male mice with reduced levels of estrogen showed a reduced preference for female urine compared to control males. Similarly, female mice that had been previously exposed to high levels of estrogen as pups showed a reduced preference for male urine compared to controls. In addition to increasing understanding of how chemical signals—including pheromones—influence the responses of rodents to other animals, the work of Bergan et al. has provided clues to the neural mechanisms that underlie sex-specific differences in behaviors. DOI:http://dx.doi.org/10.7554/eLife.02743.002
Collapse
Affiliation(s)
- Joseph F Bergan
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Catherine Dulac
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
60
|
Bergan JF, Ben-Shaul Y, Dulac C. Sex-specific processing of social cues in the medial amygdala. eLife 2014. [PMID: 24894465 DOI: 10.7554/elife.02743.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal-animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli.DOI: http://dx.doi.org/10.7554/eLife.02743.001.
Collapse
Affiliation(s)
- Joseph F Bergan
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Catherine Dulac
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
61
|
Cornelis H, Coop AD. Afference copy as a quantitative neurophysiological model for consciousness. J Integr Neurosci 2014; 13:363-402. [DOI: 10.1142/s0219635214400020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
62
|
|