51
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
52
|
Manninen T, Aćimović J, Linne ML. Analysis of Network Models with Neuron-Astrocyte Interactions. Neuroinformatics 2023; 21:375-406. [PMID: 36959372 PMCID: PMC10085960 DOI: 10.1007/s12021-023-09622-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/25/2023]
Abstract
Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| |
Collapse
|
53
|
Lia A, Sansevero G, Chiavegato A, Sbrissa M, Pendin D, Mariotti L, Pozzan T, Berardi N, Carmignoto G, Fasolato C, Zonta M. Rescue of astrocyte activity by the calcium sensor STIM1 restores long-term synaptic plasticity in female mice modelling Alzheimer's disease. Nat Commun 2023; 14:1590. [PMID: 36949142 PMCID: PMC10033875 DOI: 10.1038/s41467-023-37240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Calcium dynamics in astrocytes represent a fundamental signal that through gliotransmitter release regulates synaptic plasticity and behaviour. Here we present a longitudinal study in the PS2APP mouse model of Alzheimer's disease (AD) linking astrocyte Ca2+ hypoactivity to memory loss. At the onset of plaque deposition, somatosensory cortical astrocytes of AD female mice exhibit a drastic reduction of Ca2+ signaling, closely associated with decreased endoplasmic reticulum Ca2+ concentration and reduced expression of the Ca2+ sensor STIM1. In parallel, astrocyte-dependent long-term synaptic plasticity declines in the somatosensory circuitry, anticipating specific tactile memory loss. Notably, we show that both astrocyte Ca2+ signaling and long-term synaptic plasticity are fully recovered by selective STIM1 overexpression in astrocytes. Our data unveil astrocyte Ca2+ hypoactivity in neocortical astrocytes as a functional hallmark of early AD stages and indicate astrocytic STIM1 as a target to rescue memory deficits.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Angela Chiavegato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Miriana Sbrissa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Diana Pendin
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, Padua, Italy
| | - Nicoletta Berardi
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
54
|
Cheng YT, Luna-Figueroa E, Woo J, Chen HC, Lee ZF, Harmanci AS, Deneen B. Inhibitory input directs astrocyte morphogenesis through glial GABA B R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532493. [PMID: 36993256 PMCID: PMC10054985 DOI: 10.1101/2023.03.14.532493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Communication between neurons and glia plays an important role in establishing and maintaining higher order brain function. Astrocytes are endowed with complex morphologies which places their peripheral processes in close proximity to neuronal synapses and directly contributes to their regulation of brain circuits. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unknown. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABA B R and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABA B R in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together our studies identify input from inhibitory neurons and astrocytic GABA B R as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.
Collapse
Affiliation(s)
- Yi-Ting Cheng
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
| | - Estefania Luna-Figueroa
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
| | - Junsung Woo
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
| | - Hsiao-Chi Chen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston TX 77030
| | - Zhung-Fu Lee
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Development, Disease, Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
| | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Development, Disease, Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
55
|
Salmon CK, Syed TA, Kacerovsky JB, Alivodej N, Schober AL, Sloan TFW, Pratte MT, Rosen MP, Green M, Chirgwin-Dasgupta A, Mehta S, Jilani A, Wang Y, Vali H, Mandato CA, Siddiqi K, Murai KK. Organizing principles of astrocytic nanoarchitecture in the mouse cerebral cortex. Curr Biol 2023; 33:957-972.e5. [PMID: 36805126 DOI: 10.1016/j.cub.2023.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
Astrocytes are increasingly understood to be important regulators of central nervous system (CNS) function in health and disease; yet, we have little quantitative understanding of their complex architecture. While broad categories of astrocytic structures are known, the discrete building blocks that compose them, along with their geometry and organizing principles, are poorly understood. Quantitative investigation of astrocytic complexity is impeded by the absence of high-resolution datasets and robust computational approaches to analyze these intricate cells. To address this, we produced four ultra-high-resolution datasets of mouse cerebral cortex using serial electron microscopy and developed astrocyte-tailored computer vision methods for accurate structural analysis. We unearthed specific anatomical building blocks, structural motifs, connectivity hubs, and hierarchical organizations of astrocytes. Furthermore, we found that astrocytes interact with discrete clusters of synapses and that astrocytic mitochondria are distributed to lie closer to larger clusters of synapses. Our findings provide a geometrically principled, quantitative understanding of astrocytic nanoarchitecture and point to an unexpected level of complexity in how astrocytes interact with CNS microanatomy.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada; MILA - Québec AI Institute, 6666 Rue Saint-Urbain, Montreal, QC H2S 3H1, Canada
| | - J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Nensi Alivodej
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Alexandra L Schober
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | | | - Michael T Pratte
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Michael P Rosen
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Miranda Green
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Adario Chirgwin-Dasgupta
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Shaurya Mehta
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Affan Jilani
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Yanan Wang
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy & Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent Machines, McGill University, 3480 Rue University, Montreal, QC H3A 2A7, Canada; MILA - Québec AI Institute, 6666 Rue Saint-Urbain, Montreal, QC H2S 3H1, Canada.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
56
|
Astrocytes in memory formation and maintenance. Essays Biochem 2023; 67:107-117. [PMID: 36148596 DOI: 10.1042/ebc20220091] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Learning and memory are fundamental but highly complex functions of the brain. They rely on multiple mechanisms including the processing of sensory information, memory formation, maintenance of short- and long-term memory, memory retrieval and memory extinction. Recent experiments provide strong evidence that, besides neurons, astrocytes crucially contribute to these higher brain functions. However, the complex interplay of astrocytes and neurons in local neuron-glia assemblies is far from being understood. Although important basic cellular principles that govern and link neuronal and astrocytic cellular functions have been established, additional mechanisms clearly continue to emerge. In this short essay, we first review current technologies allowing the experimenter to explore the role of astrocytes in behaving animals, with focus on spatial memory. We then discuss astrocytic signaling mechanisms and their role in learning and memory. We also reveal gaps in our knowledge that currently prevent a comprehensive understanding of how astrocytes contribute to acquisition, storage and retrieval of memory by modulating neuronal signaling in local circuits.
Collapse
|
57
|
Prabhakar P, Pielot R, Landgraf P, Wissing J, Bayrhammer A, van Ham M, Gundelfinger ED, Jänsch L, Dieterich DC, Müller A. Monitoring regional astrocyte diversity by cell type-specific proteomic labeling in vivo. Glia 2023; 71:682-703. [PMID: 36401581 DOI: 10.1002/glia.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Astrocytes exhibit regional heterogeneity in morphology, function and molecular composition to support and modulate neuronal function and signaling in a region-specific manner. To characterize regional heterogeneity of astrocytic proteomes of different brain regions we established an inducible Aldh1l1-methionyl-tRNA-synthetaseL274G (MetRSL274G ) mouse line that allows astrocyte-specific metabolic labeling of newly synthesized proteins by azidonorleucine (ANL) in vivo and subsequent isolation of tagged proteins by click chemistry. We analyzed astrocytic proteins from four different brain regions by mass spectrometry. The induced expression of MetRSL274G is restricted to astrocytes and identified proteins show a high overlap with proteins compiled in "AstroProt," a newly established database for astrocytic proteins. Gene enrichment analysis reveals a high similarity among brain regions with subtle differences in enriched biological processes and in abundances of key astrocytic proteins for hippocampus, cortex and striatum. However, the cerebellar proteome stands out with proteins being highly associated with the calcium signaling pathway or with bipolar disorder. Subregional analysis of single astrocyte TAMRA intensities in hippocampal layers indicates distinct subregional heterogeneity of astrocytes and highlights the applicability of our toolbox to study differences of astrocytic proteomes in vivo.
Collapse
Affiliation(s)
- Priyadharshini Prabhakar
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Rainer Pielot
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Josef Wissing
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Bayrhammer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eckart D Gundelfinger
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anke Müller
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
58
|
Peng W, Liu X, Ma G, Wu Z, Wang Z, Fei X, Qin M, Wang L, Li Y, Zhang S, Xu M. Adenosine-independent regulation of the sleep-wake cycle by astrocyte activity. Cell Discov 2023; 9:16. [PMID: 36746933 PMCID: PMC9902472 DOI: 10.1038/s41421-022-00498-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/20/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior, and adenosine signaling is generally thought to be involved. Here we show multiple lines of evidence supporting that modulation of the sleep-wake behavior by astrocyte Ca2+ activity could occur without adenosine signaling. In the basal forebrain and the brainstem, two brain regions that are known to be essential for sleep-wake regulation, chemogenetically-induced astrocyte Ca2+ elevation significantly modulated the sleep-wake cycle. Although astrocyte Ca2+ level positively correlated with the amount of extracellular adenosine, as revealed by a genetically encoded adenosine sensor, we found no detectable change in adenosine level after suppressing astrocyte Ca2+ elevation, and transgenic mice lacking one of the major extracellular ATP-adenosine conversion enzymes showed similar extracellular adenosine level and astrocyte Ca2+-induced sleep modulation. Furthermore, astrocyte Ca2+ is dependent primarily on local neuronal activity, causing brain region-specific regulation of the sleep-wake cycle. Thus, neural activity-dependent astrocyte activity could regulate the sleep-wake behavior independent of adenosine signaling.
Collapse
Affiliation(s)
- Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaotong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaofa Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziyue Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Fei
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Meiling Qin
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lizhao Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shangha, China.
| |
Collapse
|
59
|
Dursun G, Bijelić D, Ayşit N, Kurt Vatandaşlar B, Radenović L, Çapar A, Kerman BE, Andjus PR, Korenić A, Özkaya U. Combined segmentation and classification-based approach to automated analysis of biomedical signals obtained from calcium imaging. PLoS One 2023; 18:e0281236. [PMID: 36745648 PMCID: PMC9901747 DOI: 10.1371/journal.pone.0281236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Automated screening systems in conjunction with machine learning-based methods are becoming an essential part of the healthcare systems for assisting in disease diagnosis. Moreover, manually annotating data and hand-crafting features for training purposes are impractical and time-consuming. We propose a segmentation and classification-based approach for assembling an automated screening system for the analysis of calcium imaging. The method was developed and verified using the effects of disease IgGs (from Amyotrophic Lateral Sclerosis patients) on calcium (Ca2+) homeostasis. From 33 imaging videos we analyzed, 21 belonged to the disease and 12 to the control experimental groups. The method consists of three main steps: projection, segmentation, and classification. The entire Ca2+ time-lapse image recordings (videos) were projected into a single image using different projection methods. Segmentation was performed by using a multi-level thresholding (MLT) step and the Regions of Interest (ROIs) that encompassed cell somas were detected. A mean value of the pixels within these boundaries was collected at each time point to obtain the Ca2+ traces (time-series). Finally, a new matrix called feature image was generated from those traces and used for assessing the classification accuracy of various classifiers (control vs. disease). The mean value of the segmentation F-score for all the data was above 0.80 throughout the tested threshold levels for all projection methods, namely maximum intensity, standard deviation, and standard deviation with linear scaling projection. Although the classification accuracy reached up to 90.14%, interestingly, we observed that achieving better scores in segmentation results did not necessarily correspond to an increase in classification performance. Our method takes the advantage of the multi-level thresholding and of a classification procedure based on the feature images, thus it does not have to rely on hand-crafted training parameters of each event. It thus provides a semi-autonomous tool for assessing segmentation parameters which allows for the best classification accuracy.
Collapse
Affiliation(s)
- Gizem Dursun
- Electrical and Electronics Engineering Department, Süleyman Demirel University, Isparta, Turkey
| | - Dunja Bijelić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Neşe Ayşit
- Department of Medical Biology, Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Burcu Kurt Vatandaşlar
- Department of Medical Biology, Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lidija Radenović
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Abdulkerim Çapar
- Informatics Institute of İstanbul Technical University, İstanbul, Turkey
| | - Bilal Ersen Kerman
- Department of Medical Biology, Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Andrej Korenić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ufuk Özkaya
- Electrical and Electronics Engineering Department, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
60
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
61
|
Ozoran H, Srinivasan R. Astrocytes and Alpha-Synuclein: Friend or Foe? JOURNAL OF PARKINSON'S DISEASE 2023; 13:1289-1301. [PMID: 38007674 PMCID: PMC10741342 DOI: 10.3233/jpd-230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/27/2023]
Abstract
Despite its devastating disease burden and alarming prevalence, the etiology of Parkinson's disease (PD) remains to be completely elucidated. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta and this correlates with the accumulation of misfolded α-synuclein. While the aggregation of α-synuclein in the form of Lewy bodies or Lewy neurites is a well-established intraneuronal hallmark of the disease process, our understanding of the glial contribution to aberrant α-synuclein proteostasis is lacking. In this regard, restoring astrocyte function during early PD could offer a promising therapeutic avenue and understanding the involvement of astrocytes in handling/mishandling of α-synuclein is of particular interest. Here, we explore the growing body of scientific literature implicating aberrant astrocytic α-synuclein proteostasis with the seemingly inexorable pathological sequelae typifying PD. We also provide a perspective on how heterogeneity in the morphological relationship between astrocytes and neurons will need to be considered in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Hakan Ozoran
- Clinical Medical School, University of Oxford, Oxford, UK
- Green Templeton College, University of Oxford, Oxford, UK
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
62
|
de Lima IB, Ribeiro FM. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:164-182. [PMID: 34951388 PMCID: PMC10190153 DOI: 10.2174/1570159x20666211223140303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.
Collapse
Affiliation(s)
- Izabella B.Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
63
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
64
|
Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 2023; 15:1138577. [PMID: 36937570 PMCID: PMC10017551 DOI: 10.3389/fnsyn.2023.1138577] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Glia are as numerous in the brain as neurons and widely known to serve supportive roles such as structural scaffolding, extracellular ionic and neurotransmitter homeostasis, and metabolic support. However, over the past two decades, several lines of evidence indicate that astrocytes, which are a type of glia, play active roles in neural information processing. Astrocytes, although not electrically active, can exhibit a form of excitability by dynamic changes in intracellular calcium levels. They sense synaptic activity and release neuroactive substances, named gliotransmitters, that modulate neuronal activity and synaptic transmission in several brain areas, thus impacting animal behavior. This "dialogue" between astrocytes and neurons is embodied in the concept of the tripartite synapse that includes astrocytes as integral elements of synaptic function. Here, we review the recent work and discuss how astrocytes via calcium-mediated excitability modulate synaptic information processing at various spatial and time scales.
Collapse
|
65
|
Denizot A, Arizono M, Nägerl UV, Berry H, De Schutter E. Control of Ca 2+ signals by astrocyte nanoscale morphology at tripartite synapses. Glia 2022; 70:2378-2391. [PMID: 36097958 PMCID: PMC9825906 DOI: 10.1002/glia.24258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 01/11/2023]
Abstract
Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so-called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super-resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano-morphology of astrocytic processes powerfully shapes the spatio-temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo-osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron-astrocyte communication at so-called tripartite synapses, where astrocytic processes come into close contact with pre- and postsynaptic structures.
Collapse
Affiliation(s)
- Audrey Denizot
- Computational Neuroscience UnitOkinawa Institute of Science and TechnologyOnna‐SonJapan
| | - Misa Arizono
- Interdisciplinary Institute for NeuroscienceUniversité de BordeauxBordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS UMR 5297BordeauxFrance
- Department of PharmacologyKyoto University Graduate School of MedicineKyotoJapan
| | - U. Valentin Nägerl
- Interdisciplinary Institute for NeuroscienceUniversité de BordeauxBordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS UMR 5297BordeauxFrance
| | - Hugues Berry
- LIRIS, UMR5205 CNRSUniv LyonVilleurbanneFrance
- INRIAVilleurbanneFrance
| | - Erik De Schutter
- Computational Neuroscience UnitOkinawa Institute of Science and TechnologyOnna‐SonJapan
| |
Collapse
|
66
|
Bancroft EA, De La Mora M, Pandey G, Zarate SM, Srinivasan R. Extracellular S100B inhibits A-type voltage-gated potassium currents and increases L-type voltage-gated calcium channel activity in dopaminergic neurons. Glia 2022; 70:2330-2347. [PMID: 35916350 PMCID: PMC10738449 DOI: 10.1002/glia.24254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is associated with an increase in secreted S100B within the midbrain and cerebrospinal fluid. In addition, S100B overexpression in mice accelerates the loss of substantia nigra pars compacta dopaminergic (DA) neurons, suggesting a role for this protein in PD pathogenesis. We found that in the mouse SNc, S100B labeled astrocytic processes completely envelop the somata of tyrosine hydroxylase (TH) expressing DA neurons only in male mice. These data suggest that an increase in S100B secretion by astrocytes within the midbrain could play a role in DA dysfunction during early PD. We therefore asked if acute exposure to extracellular S100B alters the activity of identified TH expressing DA neurons in primary mouse midbrain cultures. Acute exposure to 50 pM S100B specifically inhibited A-type voltage-gated potassium currents in TH+ , but not TH- neurons. This was accompanied by ~2-fold increases in the frequency of both intrinsic firing, as well as L-type voltage-gated calcium channel (VGCC)-mediated calcium fluxes only in TH+ neurons. Further, exposure to 100 μM 4-aminopyridine (4-AP), an A-type voltage-gated potassium channel inhibitor, mimicked the S100B mediated increase in intrinsic firing and L-type VGCC-mediated calcium fluxes in TH+ neurons. Taken together, our finding that extracellular S100B alters the activity of native DA neurons via an inhibition of A-type voltage-gated potassium channels has important implications for understanding the pathophysiology of early PD.
Collapse
Affiliation(s)
- Eric A. Bancroft
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Martha De La Mora
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Gauri Pandey
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience (TAMIN), College Station, Texas, USA
| | - Sara M. Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience (TAMIN), College Station, Texas, USA
| |
Collapse
|
67
|
Requie LM, Gómez-Gonzalo M, Speggiorin M, Managò F, Melone M, Congiu M, Chiavegato A, Lia A, Zonta M, Losi G, Henriques VJ, Pugliese A, Pacinelli G, Marsicano G, Papaleo F, Muntoni AL, Conti F, Carmignoto G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 2022; 25:1639-1650. [PMID: 36396976 DOI: 10.1038/s41593-022-01193-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.
Collapse
Affiliation(s)
- Linda Maria Requie
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| | - Michele Speggiorin
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, Università degli Studi di Cagliari, Cagliari, Italy.,Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Angela Chiavegato
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.,Nanoscienze Institute, National Research Council (CNR), Modena, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Giovanni Marsicano
- University of Bordeaux and Interdisciplinary Institute for Neuroscience (CNRS), Bordeaux, France
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| |
Collapse
|
68
|
Li J, Feng P, Zhao L, Chen J, Du M, Song J, Wu Y. Transition behavior of the seizure dynamics modulated by the astrocyte inositol triphosphate noise. CHAOS (WOODBURY, N.Y.) 2022; 32:113121. [PMID: 36456345 DOI: 10.1063/5.0124123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Epilepsy is a neurological disorder with recurrent seizures, which convey complex dynamical characteristics including chaos and randomness. Until now, the underlying mechanism has not been fully elucidated, especially the bistable property beneath the epileptic random induction phenomena in certain conditions. Inspired by the recent finding that astrocyte GTPase-activating protein (G-protein)-coupled receptors could be involved in stochastic epileptic seizures, we proposed a neuron-astrocyte network model, incorporating the noise of the astrocytic second messenger, inositol triphosphate (IP3) that is modulated by G-protein-coupled receptor activation. Based on this model, we have statistically analyzed the transitions of epileptic seizures by performing repeatable simulation trials. Our simulation results show that the increase in the IP3 noise intensity induces depolarization-block epileptic seizures together with an increase in neuronal firing frequency, consistent with corresponding experiments. Meanwhile, the bistable states of the seizure dynamics were present under certain noise intensities, during which the neuronal firing pattern switches between regular sparse spiking and epileptic seizure states. This random presence of epileptic seizures is absent when the noise intensity continues to increase, accompanying with an increase in the epileptic depolarization block duration. The simulation results also shed light on the fact that calcium signals in astrocytes play significant roles in the pattern formations of the epileptic seizure. Our results provide a potential pathway for understanding the epileptic randomness in certain conditions.
Collapse
Affiliation(s)
- Jiajia Li
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Peihua Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Zhao
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Junying Chen
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Mengmeng Du
- School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan 430070, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
69
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
70
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
71
|
Abstract
Astrocytic calcium dynamics has been implicated in the encoding of sensory information1-5, and modulation of calcium in astrocytes has been shown to affect behaviour6-10. However, longitudinal investigation of the real-time calcium activity of astrocytes in the hippocampus of awake mice is lacking. Here we used two-photon microscopy to chronically image CA1 astrocytes as mice ran in familiar or new virtual environments to obtain water rewards. We found that astrocytes exhibit persistent ramping activity towards the reward location in a familiar environment, but not in a new one. Shifting the reward location within a familiar environment also resulted in diminished ramping. After additional training, as the mice became familiar with the new context or new reward location, the ramping was re-established. Using linear decoders, we could predict the location of the mouse in a familiar environment from astrocyte activity alone. We could not do the same in a new environment, suggesting that the spatial modulation of astrocytic activity is experience dependent. Our results indicate that astrocytes can encode the expected reward location in spatial contexts, thereby extending their known computational abilities and their role in cognitive functions.
Collapse
|
72
|
Butcher JB, Sims RE, Ngum NM, Bazzari AH, Jenkins SI, King M, Hill EJ, Nagel DA, Fox K, Parri HR, Glazewski S. A requirement for astrocyte IP3R2 signaling for whisker experience-dependent depression and homeostatic upregulation in the mouse barrel cortex. Front Cell Neurosci 2022; 16:905285. [PMID: 36090792 PMCID: PMC9452848 DOI: 10.3389/fncel.2022.905285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes. To address this issue, we used the well-described mouse whiskers-to-barrel cortex system, which expresses a number of forms of EDP. We found that all-whisker deprivation induced characteristic experience-dependent Hebbian depression (EDHD) followed by homeostatic upregulation in L2/3 barrel cortex of wild type mice. However, these changes were not seen in mutant animals (IP3R2–/–) that lack the astrocyte-expressed IP3 receptor subtype. A separate paradigm, the single-whisker experience, induced potentiation of whisker-induced response in both wild-type (WT) mice and IP3R2–/– mice. Recordings in ex vivo barrel cortex slices reflected the in vivo results so that long-term depression (LTD) could not be elicited in slices from IP3R2–/– mice, but long-term potentiation (LTP) could. Interestingly, 1 Hz stimulation inducing LTD in WT paradoxically resulted in NMDAR-dependent LTP in slices from IP3R2–/– animals. The LTD to LTP switch was mimicked by acute buffering astrocytic [Ca2+]i in WT slices. Both WT LTD and IP3R2–/– 1 Hz LTP were mediated by non-ionotropic NMDAR signaling, but only WT LTD was P38 MAPK dependent, indicating an underlying mechanistic switch. These results demonstrate a critical role for astrocytic [Ca2+]i in several EDP mechanisms in neocortex.
Collapse
Affiliation(s)
- John B. Butcher
- School of Life Sciences, Keele University, Keele, United Kingdom
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Robert E. Sims
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Neville M. Ngum
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Amjad H. Bazzari
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Stuart I. Jenkins
- Neural Tissue Engineering Group, Institute for Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom
| | - Marianne King
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J. Hill
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - David A. Nagel
- Aston Medical School, Aston Medical Research Institute, Aston University, Birmingham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - H. Rheinallt Parri
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- *Correspondence: H. Rheinallt Parri,
| | - Stanislaw Glazewski
- School of Life Sciences, Keele University, Keele, United Kingdom
- Stanislaw Glazewski,
| |
Collapse
|
73
|
Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron 2022; 110:2984-2999.e8. [PMID: 35963237 DOI: 10.1016/j.neuron.2022.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Adult brain activities are generally believed to be dominated by chemical and electrical transduction mechanisms. However, the importance of mechanotransduction mediated by mechano-gated ion channels in brain functions is less appreciated. Here, we show that the mechano-gated Piezo1 channel is expressed in the exploratory processes of astrocytes and utilizes its mechanosensitivity to mediate mechanically evoked Ca2+ responses and ATP release, establishing Piezo1-mediated mechano-chemo transduction in astrocytes. Piezo1 deletion in astrocytes causes a striking reduction of hippocampal volume and brain weight and severely impaired (but ATP-rescuable) adult neurogenesis in vivo, and it abolishes ATP-dependent potentiation of neural stem cell (NSC) proliferation in vitro. Piezo1-deficient mice show impaired hippocampal long-term potentiation (LTP) and learning and memory behaviors. By contrast, overexpression of Piezo1 in astrocytes sufficiently enhances mechanotransduction, LTP, and learning and memory performance. Thus, astrocytes utilize Piezo1-mediated mechanotransduction mechanisms to robustly regulate adult neurogenesis and cognitive functions, conceptually highlighting the importance of mechanotransduction in brain structure and function.
Collapse
|
74
|
Looking to the stars for answers: Strategies for determining how astrocytes influence neuronal activity. Comput Struct Biotechnol J 2022; 20:4146-4156. [PMID: 36016711 PMCID: PMC9379862 DOI: 10.1016/j.csbj.2022.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Astrocytes are critical components of neural circuits positioned in close proximity to the synapse, allowing them to rapidly sense and respond to neuronal activity. One repeatedly observed biomarker of astroglial activation is an increase in intracellular Ca2+ levels. These astroglial Ca2+ signals are often observed spreading throughout various cellular compartments from perisynaptic astroglial processes, to major astrocytic branches and on to the soma or cell body. Here we review recent evidence demonstrating that astrocytic Ca2+ events are remarkably heterogeneous in both form and function, propagate through the astroglial syncytia, and are directly linked to the ability of astroglia to influence local neuronal activity. As many of the cellular functions of astroglia can be linked to intracellular Ca2+ signaling, and the diversity and heterogeneity of these events becomes more apparent, there is an increasing need for novel experimental strategies designed to better understand the how these signals evolve in parallel with neuronal activity. Here we review the recent advances that enable the characterization of both subcellular and population-wide astrocytic Ca2+ dynamics. Additionally, we also outline the experimental design required for simultaneous in vivo Ca2+ imaging in the context of neuronal or astroglial manipulation, highlighting new experimental strategies made possible by recent advances in viral vector, imaging, and quantification technologies. Through combined usage of these reagents and methodologies, we provide a conceptual framework to study how astrocytes functionally integrate into neural circuits and to what extent they influence and direct the synaptic activity underlying behavioral responses.
Collapse
|
75
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
76
|
Nippert AR, Chiang PP, Del Franco AP, Newman EA. Astrocyte regulation of cerebral blood flow during hypoglycemia. J Cereb Blood Flow Metab 2022; 42:1534-1546. [PMID: 35296178 PMCID: PMC9274859 DOI: 10.1177/0271678x221089091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Hypoglycemia triggers increases in cerebral blood flow (CBF), augmenting glucose supply to the brain. We have tested whether astrocytes, which can regulate vessel tone, contribute to this CBF increase. We hypothesized that hypoglycemia-induced adenosine signaling acts to increase astrocyte Ca2+ activity, which then causes the release of prostaglandins (PGs) and epoxyeicosatrienoic acids (EETs), leading to the dilation of brain arterioles and blood flow increases. We used an awake mouse model to investigate the effects of insulin-induced hypoglycemia on arterioles and astrocytes in the somatosensory cortex. During insulin-induced hypoglycemia, penetrating arterioles dilated and astrocyte Ca2+ signaling increased when blood glucose dropped below a threshold of ∼50 mg/dL. Application of the A2A adenosine receptor antagonist ZM-241385 eliminated hypoglycemia-evoked astrocyte Ca2+ increases and reduced arteriole dilations by 44% (p < 0.05). SC-560 and miconazole, which block the production of the astrocyte vasodilators PGs and EETs respectively, reduced arteriole dilations in response to hypoglycemia by 89% (p < 0.001) and 76% (p < 0.001). Hypoglycemia-induced arteriole dilations were decreased by 65% (p < 0.001) in IP3R2 knockout mice, which have reduced astrocyte Ca2+ signaling compared to wild-type. These results support the hypothesis that astrocytes contribute to hypoglycemia-induced increases in CBF by releasing vasodilators in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Amy R Nippert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
77
|
Åbjørsbråten KS, Skaaraas GHES, Cunen C, Bjørnstad DM, Binder KMG, Bojarskaite L, Jensen V, Nilsson LNG, Rao SB, Tang W, Hermansen GH, Nagelhus EA, Ottersen OP, Torp R, Enger R. Impaired astrocytic Ca 2+ signaling in awake-behaving Alzheimer's disease transgenic mice. eLife 2022; 11:e75055. [PMID: 35833623 PMCID: PMC9352348 DOI: 10.7554/elife.75055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Increased astrocytic Ca2+ signaling has been shown in Alzheimer's disease mouse models, but to date no reports have characterized behaviorally induced astrocytic Ca2+ signaling in such mice. Here, we employ an event-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake-behaving tg-ArcSwe mice and non-transgenic wildtype littermates while monitoring pupil responses and behavior. We demonstrate an attenuated astrocytic Ca2+ response to locomotion and an uncoupling of pupil responses and astrocytic Ca2+ signaling in 15-month-old plaque-bearing mice. Using the genetically encoded fluorescent norepinephrine sensor GRABNE, we demonstrate a reduced norepinephrine signaling during spontaneous running and startle responses in the transgenic mice, providing a possible mechanistic underpinning of the observed reduced astrocytic Ca2+ responses. Our data points to a dysfunction in the norepinephrine-astrocyte Ca2+ activity axis, which may account for some of the cognitive deficits observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Knut Sindre Åbjørsbråten
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Gry HE Syverstad Skaaraas
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Céline Cunen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of OsloOsloNorway
- Norwegian Computing CenterOsloNorway
| | - Daniel M Bjørnstad
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Kristin M Gullestad Binder
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Laura Bojarskaite
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
- Department of Neurology, Oslo University HospitalOsloNorway
| | - Vidar Jensen
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Lars NG Nilsson
- Department of Pharmacology, University of Oslo and Oslo University HospitalOsloNorway
| | - Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Wannan Tang
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Gudmund Horn Hermansen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| | - Erlend A Nagelhus
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | | | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| | - Rune Enger
- GliaLab at the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
| |
Collapse
|
78
|
Takeda I, Yoshihara K, Cheung DL, Kobayashi T, Agetsuma M, Tsuda M, Eto K, Koizumi S, Wake H, Moorhouse AJ, Nabekura J. Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour. Nat Commun 2022; 13:4100. [PMID: 35835747 PMCID: PMC9283422 DOI: 10.1038/s41467-022-31773-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic pain is a major public health problem that currently lacks effective treatment options. Here, a method that can modulate chronic pain-like behaviour induced by nerve injury in mice is described. By combining a transient nerve block to inhibit noxious afferent input from injured peripheral nerves, with concurrent activation of astrocytes in the somatosensory cortex (S1) by either low intensity transcranial direct current stimulation (tDCS) or via the chemogenetic DREADD system, we could reverse allodynia-like behaviour previously established by partial sciatic nerve ligation (PSL). Such activation of astrocytes initiated spine plasticity to reduce those synapses formed shortly after PSL. This reversal from allodynia-like behaviour persisted well beyond the active treatment period. Thus, our study demonstrates a robust and potentially translational approach for modulating pain, that capitalizes on the interplay between noxious afferents, sensitized central neuronal circuits, and astrocyte-activation induced synaptic plasticity. Astrocytes may contribute to synaptic remodelling in the cortex in chronic pain states. Here the authors describe modulation of astrocyte activity to drive circuit reorganization in somatosensory cortex in mice, along with peripheral nerve block, which could be a potential therapeutic approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Ikuko Takeda
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy and Molecular Cell Biology Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Dennis L Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomoko Kobayashi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan.,Center of Optical Scattering Image Science Department of Systems Science, Kobe University, Kobe, Japan
| | - Andrew J Moorhouse
- Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan. .,Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
79
|
Ingiosi AM, Frank MG. Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis. Clocks Sleep 2022; 4:332-345. [PMID: 35892990 PMCID: PMC9326550 DOI: 10.3390/clockssleep4030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal-astroglial interactions.
Collapse
Affiliation(s)
- Ashley M. Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
- Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
80
|
Covelo A, Badoual A, Denizot A. Reinforcing Interdisciplinary Collaborations to Unravel the Astrocyte "Calcium Code". J Mol Neurosci 2022; 72:1443-1455. [PMID: 35543801 PMCID: PMC9293817 DOI: 10.1007/s12031-022-02006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we present the major insights from and challenges faced in the acquisition, analysis and modeling of astrocyte calcium activity, aiming at bridging the gap between those fields to crack the complex astrocyte "Calcium Code". We then propose strategies to reinforce interdisciplinary collaborative projects to unravel astrocyte function in health and disease.
Collapse
Affiliation(s)
- Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215, NeuroCentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, Bordeaux, 33077, France
| | - Anaïs Badoual
- SERPICO Project-Team, Inria Centre Rennes-Bretagne Atlantique, Rennes Cedex, 35042, France
- SERPICO/STED Team, UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Universités, Paris, 75005, France
| | - Audrey Denizot
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna, 904-0495, Japan.
| |
Collapse
|
81
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
82
|
Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, Wolujewicz P, Witztum J, Longo F, Chen M, Greening DW, Klann E, Ross ME, Liston C, Colak D. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca 2+ signaling. Mol Psychiatry 2022; 27:2470-2484. [PMID: 35365802 PMCID: PMC9135629 DOI: 10.1038/s41380-022-01486-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.
Collapse
Affiliation(s)
- Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ben S Huang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jonathan Witztum
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY, USA
| | - Maoshan Chen
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Conor Liston
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
83
|
Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells 2022; 11:cells11091400. [PMID: 35563706 PMCID: PMC9102536 DOI: 10.3390/cells11091400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
At glutamatergic synapses, astrocytes respond to the neurotransmitter glutamate with intracellular Ca2+ elevations and the release of gliotransmitters that modulate synaptic transmission. While the functional interactions between neurons and astrocytes have been intensively studied at glutamatergic synapses, the role of astrocytes at GABAergic synapses has been less investigated. In the present study, we combine optogenetics with 2-photon Ca2+ imaging experiments and patch-clamp recording techniques to investigate the signaling between Somatostatin (SST)-releasing GABAergic interneurons and astrocytes in brain slice preparations from the visual cortex (VCx). We found that an intense stimulation of SST interneurons evokes Ca2+ elevations in astrocytes that fundamentally depend on GABAB receptor (GABABR) activation, and that this astrocyte response is modulated by the neuropeptide somatostatin. After episodes of SST interneuron hyperactivity, we also observed a long-lasting reduction of the inhibitory postsynaptic current (IPSC) amplitude onto pyramidal neurons (PNs). This reduction of inhibitory tone (i.e., disinhibition) is counterbalanced by the activation of astrocytes that upregulate SST interneuron-evoked IPSC amplitude by releasing ATP that, after conversion to adenosine, activates A1Rs. Our results describe a hitherto unidentified modulatory mechanism of inhibitory transmission to VCx layer II/III PNs that involves the functional recruitment of astrocytes by SST interneuron signaling.
Collapse
|
84
|
Bistability and Chaos Emergence in Spontaneous Dynamics of Astrocytic Calcium Concentration. MATHEMATICS 2022. [DOI: 10.3390/math10081337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, we consider a mathematical model describing spontaneous calcium signaling in astrocytes. Based on biologically relevant principles, this model simulates experimentally observed calcium oscillations and can predict the emergence of complicated dynamics. Using analytical and numerical analysis, various attracting sets were found and investigated. Employing bifurcation theory analysis, we examined steady state solutions, bistability, simple and complicated periodic limit cycles and also chaotic attractors. We found that astrocytes possess a variety of complex dynamical modes, including chaos and multistability, that can further provide different modulations of neuronal circuits, enhancing their plasticity and flexibility.
Collapse
|
85
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
86
|
Gorzo KA, Gordon GR. Photonics tools begin to clarify astrocyte calcium transients. NEUROPHOTONICS 2022; 9:021907. [PMID: 35211642 PMCID: PMC8857908 DOI: 10.1117/1.nph.9.2.021907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
Astrocytes integrate information from neurons and the microvasculature to coordinate brain activity and metabolism. Using a variety of calcium-dependent cellular mechanisms, these cells impact numerous aspects of neurophysiology in health and disease. Astrocyte calcium signaling is highly diverse, with complex spatiotemporal features. Here, we review astrocyte calcium dynamics and the optical imaging tools used to measure and analyze these events. We briefly cover historical calcium measurements, followed by our current understanding of how calcium transients relate to the structure of astrocytes. We then explore newer photonics tools including super-resolution techniques and genetically encoded calcium indicators targeted to specific cellular compartments and how these have been applied to astrocyte biology. Finally, we provide a brief overview of analysis software used to accurately quantify the data and ultimately aid in our interpretation of the various functions of astrocyte calcium transients.
Collapse
Affiliation(s)
- Kelsea A. Gorzo
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Grant R. Gordon
- University of Calgary, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
87
|
Curreli S, Bonato J, Romanzi S, Panzeri S, Fellin T. Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol 2022; 20:e3001530. [PMID: 35239646 PMCID: PMC8893713 DOI: 10.1371/journal.pbio.3001530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023] Open
Abstract
Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.
Collapse
Affiliation(s)
- Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara Romanzi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- University of Genova, Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
88
|
Del Franco AP, Chiang PP, Newman EA. Dilation of cortical capillaries is not related to astrocyte calcium signaling. Glia 2022; 70:508-521. [PMID: 34767261 PMCID: PMC8732319 DOI: 10.1002/glia.24119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
The brain requires an adequate supply of oxygen and nutrients to maintain proper function as neuronal activity varies. This is achieved, in part, through neurovascular coupling mechanisms that mediate local increases in blood flow through the dilation of arterioles and capillaries. The role of astrocytes in mediating this functional hyperemia response is controversial. Specifically, the function of astrocyte Ca2+ signaling is unclear. Cortical arterioles dilate in the absence of astrocyte Ca2+ signaling, but previous work suggests that Ca2+ increases are necessary for capillary dilation. This question has not been fully addressed in vivo, however, and we have reexamined the role of astrocyte Ca2+ signaling in vessel dilation in the barrel cortex of awake, behaving mice. We recorded evoked vessel dilations and astrocyte Ca2+ signaling in response to whisker stimulation. Experiments were carried out on WT and IP3R2 KO mice, a transgenic model where astrocyte Ca2+ signaling is substantially reduced. Compared to WT mice at rest, Ca2+ signaling in astrocyte endfeet contacting capillaries increased by 240% when whisker stimulation evoked running. In contrast, Ca2+ signaling was reduced to 9% of WT values in IP3R2 KO mice. In all three conditions, however, the amplitude of capillary dilation was largely unchanged. In addition, the latency to the onset of astrocyte Ca2+ signaling lagged behind dilation onset in most trials, although a subset of rapid onset Ca2+ events with latencies as short as 0.15 s occurred. In summary, we found that whisker stimulation-evoked capillary dilations occurred independent of astrocyte Ca2+ increases in the cerebral cortex.
Collapse
Affiliation(s)
- Armani P Del Franco
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
89
|
Astrocytic Gap Junctions Contribute to Aberrant Neuronal Synchronization in a Mouse Model of MeCP2 Duplication Syndrome. Neurosci Bull 2022; 38:591-606. [PMID: 35147909 DOI: 10.1007/s12264-022-00824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
Abstract
Abnormal synchronous neuronal activity has been widely detected by brain imaging of autistic patients, but its underlying neural mechanism remains unclear. Compared with wild-type mice, our in vivo two-photon imaging showed that transgenic (Tg1) mice over-expressing human autism risk gene MeCP2 exhibited higher neuronal synchrony in the young but lower synchrony in the adult stage. Whole-cell recording of neuronal pairs in brain slices revealed that higher neuronal synchrony in young postnatal Tg1 mice was attributed mainly to more prevalent giant slow inward currents (SICs). Both in vivo and slice imaging further demonstrated more dynamic activity and higher synchrony in astrocytes from young Tg1 mice. Blocking astrocytic gap junctions markedly decreased the generation of SICs and overall cell synchrony in the Tg1 brain. Furthermore, the expression level of Cx43 protein and the coupling efficiency of astrocyte gap junctions remained unchanged in Tg1 mice. Thus, astrocytic gap junctions facilitate but do not act as a direct trigger for the abnormal neuronal synchrony in young Tg1 mice, revealing the potential role of the astrocyte network in the pathogenesis of MeCP2 duplication syndrome.
Collapse
|
90
|
Georgiou L, Echeverría A, Georgiou A, Kuhn B. Ca + activity maps of astrocytes tagged by axoastrocytic AAV transfer. SCIENCE ADVANCES 2022; 8:eabe5371. [PMID: 35138891 PMCID: PMC8827655 DOI: 10.1126/sciadv.abe5371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Astrocytes exhibit localized Ca2+ microdomain (MD) activity thought to be actively involved in information processing in the brain. However, functional organization of Ca2+ MDs in space and time in relationship to behavior and neuronal activity is poorly understood. Here, we first show that adeno-associated virus (AAV) particles transfer anterogradely from axons to astrocytes. Then, we use this axoastrocytic AAV transfer to express genetically encoded Ca2+ indicators at high-contrast circuit specifically. In combination with two-photon microscopy and unbiased, event-based analysis, we investigated cortical astrocytes embedded in the vibrissal thalamocortical circuit. We found a wide range of Ca2+ MD signals, some of which were ultrafast (≤300 ms). Frequency and size of signals were extensively increased by locomotion but only subtly with sensory stimulation. The overlay of these signals resulted in behavior-dependent maps with characteristic Ca2+ activity hotspots, maybe representing memory engrams. These functional subdomains are stable over days, suggesting subcellular specialization.
Collapse
|
91
|
Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry 2022; 27:873-885. [PMID: 34642458 DOI: 10.1038/s41380-021-01332-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.
Collapse
|
92
|
Schroeder ME, Bassett DS, Meaney DF. A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury. Netw Neurosci 2022; 6:499-527. [PMID: 35733423 PMCID: PMC9208011 DOI: 10.1162/netn_a_00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. Despite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of glutamatergic signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured distinct topology and response behavior from single-cell-type networks. mGluR5 inhibition decreased neuronal activity, but did not on its own disrupt functional connectivity or network topology. In contrast, injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in networks pretreated with mGluR5 inhibition. Comparison of spatial and functional connectivity revealed that functional connectivity is largely independent of spatial proximity at the microscale, but mechanical injury increased the spatial-functional correlation. Finally, we found that astrocyte segments of the same cell often belong to separate functional communities based on neuronal connectivity, suggesting that astrocyte segments function as independent entities. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations. Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. We constructed a multilayer network model of neuron-astrocyte connectivity based on calcium activity in mixed cortical cultures, and used this model to evaluate the effect of glutamatergic inhibition and mechanical injury on network topology. We found that injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in injured networks pretreated with a glutamate receptor antagonist. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.
Collapse
Affiliation(s)
- Margaret E. Schroeder
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F. Meaney
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
93
|
Bancroft EA, Srinivasan R. Emerging Roles for Aberrant Astrocytic Calcium Signals in Parkinson's Disease. Front Physiol 2022; 12:812212. [PMID: 35087422 PMCID: PMC8787054 DOI: 10.3389/fphys.2021.812212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Astrocytes display a plethora of spontaneous Ca2+ signals that modulate vital functions of the central nervous system (CNS). This suggests that astrocytic Ca2+ signals also contribute to pathological processes in the CNS. In this context, the molecular mechanisms by which aberrant astrocytic Ca2+ signals trigger dopaminergic neuron loss during Parkinson's disease (PD) are only beginning to emerge. Here, we provide an evidence-based perspective on potential mechanisms by which aberrant astrocytic Ca2+ signals can trigger dysfunction in three distinct compartments of the brain, viz., neurons, microglia, and the blood brain barrier, thereby leading to PD. We envision that the coming decades will unravel novel mechanisms by which aberrant astrocytic Ca2+ signals contribute to PD and other neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Eric A. Bancroft
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, United States
| |
Collapse
|
94
|
Optimizing Measures of Information Encoding in Astrocytic Calcium Signals. Brain Inform 2022. [DOI: 10.1007/978-3-031-15037-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
95
|
Abstract
Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.
Collapse
|
96
|
Gray SR, Ye L, Ye JY, Paukert M. Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state. SCIENCE ADVANCES 2021; 7:eabk1378. [PMID: 34919424 PMCID: PMC8682997 DOI: 10.1126/sciadv.abk1378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Recent years have seen compelling demonstrations of the importance of behavioral state on sensory processing and attention. Arousal plays a dominant role in controlling brain-wide neural activity patterns, particularly through modulation by norepinephrine. Noradrenergic brainstem nuclei, including locus coeruleus, can be activated by stimuli of multiple sensory modalities and broadcast modulatory signals via axonal projections throughout the brain. This organization might suggest proportional brain-wide norepinephrine release during states of heightened vigilance. Here, however, we have found that low-intensity, nonarousing visual stimuli enhanced vigilance-dependent noradrenergic signaling locally in visual cortex, revealed using dual-site fiber photometry to monitor noradrenergic Ca2+ responses of astroglia simultaneously in cerebellum and visual cortex and two-photon microscopy to monitor noradrenergic axonal terminal Ca2+ dynamics. Nitric oxide, following N-methyl-d-aspartate receptor activation in neuronal nitric oxide synthase-positive interneurons, mediated transient acceleration of norepinephrine-dependent astroglia Ca2+ activation. These findings reveal a candidate cortical microcircuit for sensory modality-selective modulation of attention.
Collapse
Affiliation(s)
- Shawn R. Gray
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jing Yong Ye
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
97
|
Tworig JM, Coate C, Feller MB. Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility. eLife 2021; 10:73202. [PMID: 34913435 PMCID: PMC8806189 DOI: 10.7554/elife.73202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neural activity has been implicated in the motility and outgrowth of glial cell processes throughout the central nervous system. Here, we explore this phenomenon in Müller glia, which are specialized radial astroglia that are the predominant glial type of the vertebrate retina. Müller glia extend fine filopodia-like processes into retinal synaptic layers, in similar fashion to brain astrocytes and radial glia that exhibit perisynaptic processes. Using two-photon volumetric imaging, we found that during the second postnatal week, Müller glial processes were highly dynamic, with rapid extensions and retractions that were mediated by cytoskeletal rearrangements. During this same stage of development, retinal waves led to increases in cytosolic calcium within Müller glial lateral processes and stalks. These regions comprised distinct calcium compartments, distinguished by variable participation in waves, timing, and sensitivity to an M1 muscarinic acetylcholine receptor antagonist. However, we found that motility of lateral processes was unaffected by the presence of pharmacological agents that enhanced or blocked wave-associated calcium transients. Finally, we found that mice lacking normal cholinergic waves in the first postnatal week also exhibited normal Müller glial process morphology. Hence, outgrowth of Müller glial lateral processes into synaptic layers is determined by factors that are independent of neuronal activity. When it comes to studying the nervous system, neurons often steal the limelight; yet, they can only work properly thanks to an ensemble cast of cell types whose roles are only just emerging. For example, ‘glial cells’ – their name derives from the Greek word for glue – were once thought to play only a passive, supporting function in nervous tissues. Now, growing evidence shows that they are, in fact, integrated into neural circuits: their activity is influenced by neurons, and, in turn, they help neurons to function properly. The role of glial cells is becoming clear in the retina, the thin, light-sensitive layer that lines the back of the eye and relays visual information to the brain. There, beautifully intricate Müller glial cells display fine protrusions (or ‘processes') that intermingle with synapses, the busy space between neurons where chemical messengers are exchanged. These messengers can act on Müller cells, triggering cascades of molecular events that may influence the structure and function of glia. This is of particular interest during development: as Müller cells mature, they are exposed to chemicals released by more fully formed retinal neurons. Tworig et al. explored how neuronal messengers can influence the way Müller cells grow their processes. To do so, they tracked mouse retinal glial cells ‘live’ during development, showing that they were growing fine, highly dynamic processes in a region rich in synapses just as neurons and glia increased their communication. However, using drugs to disrupt this messaging for a short period did not seem to impact how the processes grew. Extending the blockade over a longer timeframe also did not change the way Müller cells developed, with the cells still acquiring their characteristic elaborate process networks. Taken together, these results suggest that the structural maturation of Müller glial cells is not impacted by neuronal signaling, giving a more refined understanding of how glia form in the retina and potentially in the brain.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chandler Coate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
98
|
Aramideh JA, Vidal-Itriago A, Morsch M, Graeber MB. Cytokine Signalling at the Microglial Penta-Partite Synapse. Int J Mol Sci 2021; 22:ijms222413186. [PMID: 34947983 PMCID: PMC8708012 DOI: 10.3390/ijms222413186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.
Collapse
Affiliation(s)
- Jason Abbas Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andres Vidal-Itriago
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
99
|
Jo J, Woo J, Cristobal CD, Choi JM, Wang C, Ye Q, Smith JA, Ung K, Liu G, Cortes D, Jung SY, Arenkiel BR, Lee HK. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22:e53200. [PMID: 34633730 PMCID: PMC8647146 DOI: 10.15252/embr.202153200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Junsung Woo
- Center for Cell and Gene TherapyBaylor College of MedicineHoustonTXUSA
| | - Carlo D Cristobal
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
| | - Jong Min Choi
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Chih‐Yen Wang
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Qi Ye
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Joshua A Smith
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Kevin Ung
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Gary Liu
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Diego Cortes
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Sung Yun Jung
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Hyun Kyoung Lee
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
100
|
Schulte A, Bieniussa L, Gupta R, Samtleben S, Bischler T, Doering K, Sodmann P, Rittner H, Blum R. Homeostatic calcium fluxes, ER calcium release, SOCE, and calcium oscillations in cultured astrocytes are interlinked by a small calcium toolkit. Cell Calcium 2021; 101:102515. [PMID: 34896701 DOI: 10.1016/j.ceca.2021.102515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
How homeostatic ER calcium fluxes shape cellular calcium signals is still poorly understood. Here we used dual-color calcium imaging (ER-cytosol) and transcriptome analysis to link candidates of the calcium toolkit of astrocytes with homeostatic calcium signals. We found molecular and pharmacological evidence that P/Q-type channel Cacna1a contributes to depolarization-dependent calcium entry in astrocytes. For stimulated ER calcium release, the cells express the phospholipase Cb3, IP3 receptors Itpr1 and Itpr2, but no ryanodine receptors (Ryr1-3). After IP3-induced calcium release, Stim1/2 - Orai1/2/3 most likely mediate SOCE. The Serca2 (Atp2a2) is the candidate for refilling of the ER calcium store. The cells highly express adenosine receptor Adora1a for IP3-induced calcium release. Accordingly, adenosine induces fast ER calcium release and subsequent ER calcium oscillations. After stimulation, calcium refilling of the ER depends on extracellular calcium. In response to SOCE, astrocytes show calcium-induced calcium release, notably even after ER calcium was depleted by extracellular calcium removal in unstimulated cells. In contrast, spontaneous ER-cytosol calcium oscillations were not fully dependent on extracellular calcium, as ER calcium oscillations could persist over minutes in calcium-free solution. Additionally, cell-autonomous calcium oscillations show a second-long spatial and temporal delay in the signal dynamics of ER and cytosolic calcium. Our data reveal a rather strong contribution of homeostatic calcium fluxes in shaping IP3-induced and calcium-induced calcium release as well as spatiotemporal components of intracellular calcium oscillations.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany
| | - Linda Bieniussa
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany; Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Germany
| | - Rohini Gupta
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany
| | - Samira Samtleben
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany; Department of Cell Biology, University of Alberta, MSM, Edmonton, T6G 2H7 Canada
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080 Germany
| | - Kristina Doering
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080 Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Philipp Sodmann
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, 97080 Germany
| | - Heike Rittner
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, 97074 Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany.
| |
Collapse
|