51
|
Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K, Jin WL, Frost A, Polleux F. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 2009; 138:990-1004. [PMID: 19737524 DOI: 10.1016/j.cell.2009.06.047] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/19/2009] [Accepted: 06/25/2009] [Indexed: 01/29/2023]
Abstract
During brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in nonneuronal cells filopodia dynamics decrease the rate of cell migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces leading process branching and increases the rate of neuronal migration in vivo. Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading process branching and decreasing migration. These results suggest that F-BAR domains are functionally diverse and highlight the functional importance of proteins directly regulating membrane deformation for proper neuronal migration and morphogenesis.
Collapse
Affiliation(s)
- Sabrice Guerrier
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hurtado-Chong A, Yusta-Boyo MJ, Vergaño-Vera E, Bulfone A, de Pablo F, Vicario-Abejón C. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 2009; 30:742-55. [PMID: 19712103 DOI: 10.1111/j.1460-9568.2009.06870.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While insulin-like growth factor-I (IGF-I) supports neuronal and glial differentiation in the CNS, it is largely unknown whether IGF-I also influences neuronal migration and positioning. We show here that the pattern of olfactory bulb (OB) layering is altered in Igf-I (-/-) mice. In these animals, Tbr1(+)-glutamatergic neurons are misplaced in the mitral cell layer (ML) and the external plexiform layer (EPL). In addition, there are fewer interneurons in the glomerular layer and the EPL of the Igf-I (-/-) mice, and fewer newborn neurons are incorporated into the OB from the forebrain subventricular zone (SVZ). Indeed, neuroblasts accumulate in the postnatal/adult SVZ of Igf-I (-/-) mice. Significantly, the positioning of Tbr1(+)-cells in a primitive ML is stimulated by IGF-I in cultured embryonic OB slices, an effect that is partially repressed by the phosphoinositide 3-kinase (PI3K) inhibitor. In OB cell cultures, IGF-I increases the phosphorylation of disabled1 (P-Dab1), an adaptor protein that is a target of Src family kinases (SFK) in the reelin signalling pathway, whereas reduced P-Dab1 levels were found in Igf-I (-/-) mice. Neuroblast migration from the rostral migratory stream (RMS) explants of postnatal Igf-I (-/-) was similar to that from Igf-I (+/+) explants. However, cell migration was significantly enhanced by IGF-I added to the explants, an effect that was repressed by PI3K and SFK inhibitors. These findings suggest that IGF-I promotes neuronal positioning in the OB and support a role for IGF-I in stimulating neuroblast exit from the SVZ into the RMS, thereby promoting the incorporation of newly formed neurons into the OB.
Collapse
Affiliation(s)
- Anahí Hurtado-Chong
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci 2009; 42:11-22. [PMID: 19523518 DOI: 10.1016/j.mcn.2009.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022] Open
Abstract
Neocortex, a distinct six-layered neural structure, is one of the most exquisite nerve tissues in the human body. Proper assembly of neocortex requires precise regulation of neuronal migration and abnormalities can result in severe neurological diseases. Three major types of neuronal migration have been implicated in corticogenesis: radial migration of excitatory neuron precursors and tangential migration of interneurons as well as Cajal-Retzius cells. In the past several years, significant progress has been made in understanding how these parallel events are regulated and coordinated during corticogenesis. New insights have been gained into regulation of radial neuron migration by the well-known Reelin signal. New pathways have also been identified that regulate radial as well as tangential migration. Equally important, better understandings have been obtained on the cellular and molecular mechanics of cell migration by both projection neurons and interneurons. These findings have not only enhanced our understanding of normal neuron migration but also revealed insights into the etiologies of several neurological diseases where these processes go awry.
Collapse
|
54
|
Abstract
The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis.
Collapse
|
55
|
Rakić S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolić M. Cortical interneurons require p35/Cdk5 for their migration and laminar organization. ACTA ACUST UNITED AC 2008; 19:1857-69. [PMID: 19037081 DOI: 10.1093/cercor/bhn213] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Projection neurons and interneurons populate the cerebral cortex in a layer-specific manner. Here, we studied the role of Cyclin-dependent kinase 5 (Cdk5) and its activator p35 in cortical interneuron migration and disposition in the cortex. We found that mice lacking p35 (p35(-/-)) show accumulation of interneurons in the upper part of the cortex. We also observed an inverted distribution of both early- and late-born interneurons, with the former showing a preference for the upper and the latter for the lower aspects of the cortex. We investigated the causes of the altered laminar organization of interneurons in p35(-/-) mice and found a cell-autonomous delay in their tangential migration that may prevent them from reaching correct positions. Incomplete splitting of the preplate in p35(-/-) mice, which causes accumulation of cells in the superficial layer and defects in the "inward" and "outward" components of their radial movement, may also account for the altered final arrangement of interneurons. We, therefore, propose that p35/Cdk5 plays a key role in guiding cortical interneurons to their final positions in the cortex.
Collapse
Affiliation(s)
- Sonja Rakić
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
56
|
Nikolic M. Unravelling the complex role of Cdk5 in the developing cerebral cortex. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.6.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The normal development of the mammalian CNS is entirely dependent on the coordinated behavior of its cellular components. Particular importance is attributed to the correct morphology, migration and communication of neurons. Recent years have seen the identification of many extracellular, cell surface and intracellular signaling molecules that are important for normal CNS development, consequently triggering huge progress in our understanding of the complex processes involved. A key molecule to emerge is Cdk5. To date, Cdk5 has been functionally linked with controlled neuronal morphology, migration, synaptic function, cognition, drug addiction, neuronal death and neurodegeneration. The complexity of its function has been confirmed by the ever increasing number of diverse upstream regulators, protein substrates and biological consequences of altered catalytic function. The aim of this review is to consolidate recent findings concerning the role of Cdk5 in the developing nervous system, particularly the cerebral cortex, where its importance is most clearly evidenced.
Collapse
Affiliation(s)
- Margareta Nikolic
- Department of Cellular & Molecular Neuroscience, Division of Neuroscience & Mental Health, School of Medicine, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
57
|
Kawauchi T, Hoshino M. Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Dev Neurosci 2008; 30:36-46. [PMID: 18075253 DOI: 10.1159/000109850] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 04/19/2007] [Indexed: 12/14/2022] Open
Abstract
Neuronal migration is a pivotal step for architectural and functional brain development. Migrating neurons exhibit various morphological changes, based on cytoskeletal organization. In addition to many genetic studies revealing the involvement of several cytoskeletal and signaling molecules in cortical neuronal migration (e.g. doublecortin, Lis1, Filamin A, cyclin-dependent kinase 5, Reelin and Dab1), cell biological studies and recently developed techniques, including in utero electroporation, have uncovered detailed functions of these molecules as well as novel molecules, such as Rho family GTPases, focal adhesion kinase, c-jun N-terminal kinase and p27(kip1). In this review, we introduce the molecular pathways underlying cortical neuronal migration and morphological changes, with particular focus on recent findings for the regulatory mechanisms of actin cytoskeleton and microtubules.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
58
|
Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 2007; 27:12829-38. [PMID: 18032654 DOI: 10.1523/jneurosci.1014-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At the lateral wall of the lateral ventricles in the adult rodent brain, neuroblasts form an extensive network of elongated cell aggregates called chains in the subventricular zone and migrate toward the olfactory bulb. The molecular mechanisms regulating this migration of neuroblasts are essentially unknown. Here, we report a novel role for cyclin-dependent kinase 5 (Cdk5), a neuronal protein kinase, in this process. Using in vitro and in vivo conditional knock-out experiments, we found that Cdk5 deletion impaired the chain formation, speed, directionality, and leading process extension of the neuroblasts in a cell-autonomous manner. These findings suggest that Cdk5 plays an important role in neuroblast migration in the postnatal subventricular zone.
Collapse
|
59
|
Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 2007; 11:36-44. [PMID: 18059265 DOI: 10.1038/nn2018] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/29/2007] [Indexed: 11/08/2022]
Abstract
Postmitotic neurons in the developing cortex migrate along radial glial fibers to their proper location in the cortical plate and form the layered structure. Here we report that the radial migration of rat layer II/III cortical neurons requires guidance by the extracellular diffusible factor Semaphorin-3A (Sema3A). This factor is expressed in a descending gradient across the cortical layers, whereas its receptor neuropilin-1 (NP1) is highly expressed in migrating neurons. Downregulation or conditional knockout of NP1 in newborn cortical neurons impedes their radial migration by disrupting their radial orientation during migration without altering their cell fate. Studies in cultured cortical slices further show that the endogenous gradient of Sema3A is required for the proper migration of newborn neurons. In addition, transwell chemotaxis assays show that isolated newborn neurons are attracted by Sema3A. Thus, Sema3A may function as a chemoattractive guidance signal for the radial migration of newborn cortical neurons toward upper layers.
Collapse
|
60
|
Brunetti-Pierri N, Grange DK, Ou Z, Peiffer DA, Peacock SKG, Cooper ML, Eng PA, Lalani SR, Chinault AC, Gunderson KL, Craigen WJ, Cheung SW. Characterization of de novo microdeletions involving 17q11.2q12 identified through chromosomal comparative genomic hybridization. Clin Genet 2007; 72:411-9. [PMID: 17916097 DOI: 10.1111/j.1399-0004.2007.00896.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-resolution array-comparative genome hybridization (CGH) is a powerful tool for detection of submicroscopic chromosome deletions and duplications. We describe two patients with mild mental retardation (MR) and de novo microdeletions of 17q11.2q12. Although the deletions did not involve the neurofibromatosis type 1 (NF1) gene, they overlap with long-range deletions of the NF1 region which have been encountered in a small group of NF1 patients with more severe MR. Given the overlap of the deletions in our two patients with the large-sized NF1 microdeletions but not with the more frequent and smaller NF1 deletions, we hypothesize that more than one gene in the 17q11.2q12 region may be involved in MR. We discuss candidate genes for MR within this interval that was precisely defined through array-CGH analysis.
Collapse
Affiliation(s)
- N Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H, Saruta K, Iwasato T, Itohara S, Hashimoto M, Nakajima K, Ogawa M, Kulkarni AB, Mikoshiba K. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 2007; 134:2273-82. [PMID: 17507397 DOI: 10.1242/dev.02854] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.
Collapse
Affiliation(s)
- Toshio Ohshima
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Luque JM. Puzzling out the reeler brainteaser: Does reelin signal to unique neural lineages? Brain Res 2007; 1140:41-50. [PMID: 16566902 DOI: 10.1016/j.brainres.2006.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/13/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Much has been learnt about the reeler mutant since its inclusion in the celebrated Catalog of the Neurological Mutants of the Mouse in the mid-sixties. The pace of discovery was most definitively agitated after the identification of reelin, the genuine gene product mutated in reeler (first expressed by a monolayer of cells in the marginal zone of the developing brain), and the subsequent establishment of the so-called reelin signaling pathway (including the reelin receptor machinery expressed by migrating newborn neurons). Yet little is known as to how the reelin signaling events, which are critically involved in neuronal migration, are linked to the in vivo behavior of individual neurons. Lately, the results of the forced ectopic expression of reelin in the neurogenic zone jeopardized all proposed models regarding its mechanism of action. Our studies suggest that earlier than newborn neurons, the radial glia neuronal progenitors may receive a functional reelin signal. Here I show evidence of an enriched localization of the reelin receptor machinery in radial glial cells of the lateral, but not the median, ganglionic eminence. This precise compartmentalization suggests that, unlike radial migration of cortical projection neurons, reelin signaling is not directly related with the tangential migration of the bulk of cortical interneurons. I hereby submit a personal glimpse of reeler morphogenesis which embodies a testable hypothesis; namely, that reelin signals to unique neural lineages to regulate migration.
Collapse
Affiliation(s)
- Juan M Luque
- Instituto de Neurociencias, UMH-CSIC, San Juan de Alicante, Spain.
| |
Collapse
|
63
|
Wenzel HJ, Tamse CT, Schwartzkroin PA. Dentate development in organotypic hippocampal slice cultures from p35 knockout mice. Dev Neurosci 2007; 29:99-112. [PMID: 17148953 DOI: 10.1159/000096215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/14/2006] [Indexed: 11/19/2022] Open
Abstract
Abnormal brain development, induced by genetic influences or resulting from a perinatal trauma, has been recognized as a cause of seizure disorders. To understand how and when these structural abnormalities form, and how they are involved in epileptogenesis, it is important to generate and investigate animal models. We have studied one such model, a mouse in which deletion of the p35 gene (p35-/-) gives rise to both structural disorganization and seizure-like function. We now report that aberrant dentate development can be recognized in the organotypic hippocampal slice culture preparation generated from p35-/- mouse pups. In these p35-/- cultures, an abnormally high proportion of dentate granule cells migrates into the hilus and molecular layer, and develops aberrant dendritic and axonal morphology. In addition, astrocyte formation in the dentate gyrus is disturbed, as is the distribution of GABAergic interneurons. Although the p35-/- brain shows widespread abnormalities, the disorganization of the hippocampal dentate region is particularly intriguing since a similar pathology is often found in hippocampi of temporal lobe epilepsy patients. The abnormal granule cell features occur early in development, and are independent of seizure activity. Further, these aberrant patterns and histopathological features of p35-/- culture preparations closely resemble those observed in p35 knockout mice in vivo. This culture preparation thus provides an experimentally accessible window for studying abnormal developmental factors that can result in seizure propensity.
Collapse
Affiliation(s)
- H Jurgen Wenzel
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
64
|
Abstract
The correct positioning of neurons during development--achieved through directed migration--is the basis for proper brain function. Several decades of research have yielded a comprehensive map illustrating the temporal and spatial events underlying neurogenesis and neuronal migration during development. The discovery of distinct migration modes and pathways has been accompanied by the identification of a large interwoven molecular network that transmits extracellular signals into the cell. Moreover, recent work has shed new light on how the cytoskeleton is regulated and coordinated at the molecular and cellular level to execute neuronal migration.
Collapse
Affiliation(s)
- Ramsés Ayala
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
65
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as an essential molecule in the brain, where it regulates several neuronal activities, including cytoskeletal remodeling and synaptic transmission. While activity of Cdk5 has primarily been associated with neurons, there are now substantial data indicating that the kinase's activity and function are more general. An increasing body of evidence has established Cdk5 kinase activity, the presence of the Cdk5 activators, p35 and p39, and Cdk5 functions in non-neuronal cells, including myocytes, pancreatic beta-cells, monocytic and neutrophilic leucocytes, glial cells and germ cells. In this review, we present the diverse roles of Cdk5 in several extraneuronal paradigms. The unique properties of each of the different cell types appear to involve distinct means of Cdk5 regulation and function. The potential mechanisms through which Cdk5 regulates extraneuronal cell activities such as exocytosis, gene transcription, wound healing and senescence are discussed.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, The Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
66
|
Britanova O, Alifragis P, Junek S, Jones K, Gruss P, Tarabykin V. A novel mode of tangential migration of cortical projection neurons. Dev Biol 2006; 298:299-311. [PMID: 16901480 DOI: 10.1016/j.ydbio.2006.06.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 06/21/2006] [Accepted: 06/23/2006] [Indexed: 11/29/2022]
Abstract
Projection neurons of the developing cerebral cortex are generated in the cerebral ventricular zone and subsequently move to the developing cortical plate via radial migration. Conversely, most inhibitory interneurons originate in the ganglionic eminences and enter the developing cortical plate by tangential migration. Using immunohistochemical analysis together with tracer labeling experiments in organotypic brain slices, we show that a portion of cortical projection neurons migrates tangentially over long distances. Lineage analysis revealed that these neurons are derived from Emx1+ cortical progenitors and express the transcription factor Satb2 but do not express GABA or Olig1. In vitro and in vivo analysis of reeler mutant brains demonstrated that although reeler mutation does not influence tangential migration of interneurons, it affects the tangential migration of cortical projection neurons.
Collapse
Affiliation(s)
- Olga Britanova
- Department of Molecular Biology of Neuronal Signals, Max-Plank-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Nasrallah IM, McManus MF, Pancoast MM, Wynshaw-Boris A, Golden JA. Analysis of non-radial interneuron migration dynamics and its disruption in Lis1+/- mice. J Comp Neurol 2006; 496:847-58. [PMID: 16628622 DOI: 10.1002/cne.20966] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell migration is an integral process in neural development. Analyses of radial cell migration (RCM) have revealed three modes of migration and specific defects in migration in various mouse mutants. In contrast, the dynamics of non-radial cell migration (NRCM) are incompletely understood. To investigate the dynamics of NRCM, we utilized a slice culture assay coupled with time-lapse videomicroscopy. This analysis revealed that non-radially migrating cells have a complex pattern of extending and retracting one or multiple processes while the nucleus advances concurrently or independently. These data indicate that the process of interneuron migration is unique to that seen for any mode of RCM. Non-radially migrating neurons moved for an average of 0.85 microm/min and paused for approximately 14% of the time observed. Given the novel morphology of NRCM, we hypothesized that specific aspects of migration would be defective with mutations in known cell migration genes, as described for RCM. This was tested by examining the dynamics of migration in the Lis1 mutant mouse; a well-defined cell migration mutant with known defects in NRCM. In contrast to wild-type cells, the rate of nuclear movement was significantly reduced in Lis1+/- interneurons, whereas the rate of active leading edge movement was similar. Morphologically, the leading process was significantly longer and the number of branches reduced in Lis1+/- mice. Together, these data indicate that the NRCM defect in Lis1+/- mice affects specific cellular processes. These data provide insight into NRCM and practical methods for future studies on the role(s) of specific genes in interneuron migration.
Collapse
Affiliation(s)
- Ilya M Nasrallah
- Neuroscience Program, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
68
|
Kawauchi D, Taniguchi H, Watanabe H, Saito T, Murakami F. Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration. Development 2006; 133:1113-23. [PMID: 16501169 DOI: 10.1242/dev.02283] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclei are aggregates of neurons distributed in the central nervous system and are fundamental functional units that share anatomical and physiological features. Despite their importance, the cellular basis that leads to nucleogenesis is only poorly understood. Using exo utero electroporation with an enhanced yellow fluorescent protein (EYFP) gene, we show that the precerebellar neurons derived from the lower rhombic lip (lRL) undergo multiple migration steps to form nuclei. After the unilateral transfer of EYFP to the lRL of embryonic day 12.5 mice, EYFP-labelled neurons migrate tangentially from the lRL in two distinct streams, one towards the ventral metencephalon and the other towards the ventral myelencephalon. These neurons cross the ventral midline and then become radially directed. Labelled neurons in the tangential migratory streams form contralateral clusters in the external cuneate nucleus (ECN) and lateral reticular nucleus (LRN) in the myelencephalon, and bilateral clusters in the pontine grey nucleus (PGN) and reticulotegmental nucleus (RTN) in the metencephalon. Before forming the clusters, EYFP-labelled neurons begin to migrate radially towards the ventricle in close apposition to nestin-positive radial fibres, and then they aggregate as they detach from the fibres. Inhibition of cadherin function in ECN and LRN progenitors caused ipsilateral formation of the ECN and LRN, implying that the transition of their migration from tangential to radial involves a cell-intrinsic mechanism. These observations suggest that nucleogenesis of precerebellar neurons is a result of multi-phasic migration, and that ventricle-directed radial glia-guided migration is a key step for nucleogenesis.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
69
|
Koizumi H, Higginbotham H, Poon T, Tanaka T, Brinkman BC, Gleeson JG. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci 2006; 9:779-86. [PMID: 16699506 DOI: 10.1038/nn1704] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/24/2006] [Indexed: 11/08/2022]
Abstract
The ability of the mature mammalian nervous system to continually produce neuronal precursors is of considerable importance, as manipulation of this process might one day permit the replacement of cells lost as a result of injury or disease. In mammals, the anterior subventricular zone (SVZa) region is one of the primary sites of adult neurogenesis. Here we show that doublecortin (DCX), a widely used marker for newly generated neurons, when deleted in mice results in a severe morphological defect in the rostral migratory stream and delayed neuronal migration that is independent of direction or responsiveness to Slit chemorepulsion. DCX is required for nuclear translocation and maintenance of bipolar morphology during migration of these cells. Our data identifies a critical function for DCX in the movement of newly generated neurons in the adult brain.
Collapse
Affiliation(s)
- Hiroyuki Koizumi
- Neurogenetics Laboratory, Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
70
|
Sen A, Thom M, Martinian L, Jacobs T, Nikolic M, Sisodiya SM. Deregulation of cdk5 in Hippocampal sclerosis. J Neuropathol Exp Neurol 2006; 65:55-66. [PMID: 16410749 DOI: 10.1097/01.jnen.0000195940.48033.a2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hippocampal sclerosis (HS) is the most common cause of chronic medically refractory epilepsy in adults. Histologically, HS is characterized by segmental neuronal loss and gliosis. Although neuronal loss is important to the pathophysiology of HS, the molecular mechanisms underlying the neuronal loss remain uncertain. Recently, it has been appreciated that proteins important in neurodevelopment may also have a role in neurodegeneration. Cyclin-dependent kinase 5 (cdk5), known to be crucial in development of the normal cerebral cortex, has now been shown as pivotal in several cell death paradigms, including apoptosis and necrosis. Deregulation of cdk5 by p25 causes hyperphosphorylation of tau and may contribute to pathology in several neurodegenerative conditions. Furthermore, it has been shown that after transient forebrain ischemia, cdk5 causes specific death of CA1 neurons in the rat hippocampus by direct phosphorylation of the NR2A subunit of the NMDA receptor and subsequent excitotoxicity. Because apoptosis, necrosis, and excitotoxicity are all thought to contribute to neuronal loss in HS, we hypothesized that abnormalities of the cdk5 pathway would accompany this disorder. Surgically resected cases of HS with adjacent histologically normal lateral temporal cortex were examined for cdk5 and its activator p35/p25. We consistently found increased immunoreactivity for p35/p25 in surviving neurons within areas of neuronal loss compared with areas where neurons were preserved. Western blots showed the ratio of p25 to p35 to be greater in diseased hippocampi than in the adjacent histologically normal temporal lobe. Histone-based kinase assays demonstrated increased activity of the p25-cdk5 complex in HS compared with the temporal lobe despite neuronal loss in the hippocampal samples. Our results suggest that p25 is pathologically increased in HS and that deregulation of cdk5 by p25 might contribute to neuronal death in this condition.
Collapse
Affiliation(s)
- Arjune Sen
- Department of Clinical and Experimental Epilepsy, The Institute of Neurology, University College London, Queen Square, London, U.K
| | | | | | | | | | | |
Collapse
|
71
|
Bellion A, Baudoin JP, Alvarez C, Bornens M, Métin C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 2006; 25:5691-9. [PMID: 15958735 PMCID: PMC6724882 DOI: 10.1523/jneurosci.1030-05.2005] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During rodent cortex development, cells born in the medial ganglionic eminence (MGE) of the basal telencephalon reach the embryonic cortex by tangential migration and differentiate as interneurons. Migrating MGE cells exhibit a saltatory progression of the nucleus and continuously extend and retract branches in their neuritic arbor. We have analyzed the migration cycle of these neurons using in vitro models. We show that the nucleokinesis in MGE cells comprises two phases. First, cytoplasmic organelles migrate forward, and second, the nucleus translocates toward these organelles. During the first phase, a large swelling that contains the centrosome and the Golgi apparatus separates from the perinuclear compartment and moves rostrally into the leading neurite, up to 30 mum from the waiting nucleus. This long-distance migration is associated with a splitting of the centrioles that line up along a linear Golgi apparatus. It is followed by the second, dynamic phase of nuclear translocation toward the displaced centrosome and Golgi apparatus. The forward movement of the nucleus is blocked by blebbistatin, a specific inhibitor of nonmuscle myosin II. Because myosin II accumulates at the rear of migrating MGE cells, actomyosin contraction likely plays a prominent role to drive forward translocations of the nucleus toward the centrosome. During this phase of nuclear translocation, the leading growth cone either stops migrating or divides, showing a tight correlation between leading edge movements and nuclear movements.
Collapse
Affiliation(s)
- Arnaud Bellion
- Unité 616, Institut National de la Santé et de la Recherche Médicale, Université Paris 6, Institut Fédératif de Recherche des Sciences 70, Hôpital Pitié-Salpêtrière, 75651 Paris Cédex 13, France
| | | | | | | | | |
Collapse
|
72
|
Borrell V, Kaspar BK, Gage FH, Callaway EM. In vivo Evidence for Radial Migration of Neurons by Long-Distance Somal Translocation in the Developing Ferret Visual Cortex. Cereb Cortex 2005; 16:1571-83. [PMID: 16357334 DOI: 10.1093/cercor/bhj094] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the development of the cerebral cortex, neurons generated in the cortical ventricular zone migrate radially toward the marginal zone. Radially migrating neurons are thought to display 1 of 2 morphologies: cells with a long, pia-contacting, apical process utilized for somal translocation early in development, when the cortex is still relatively thin; or cells with a short leading process, abundant at late stages of corticogenesis when neurons need to travel for longer distances. In large convoluted brains, like those of many primates and carnivores, radially migrating neurons must travel distances up to several millimeters before reaching their final destination, often following curvilinear trajectories. Here we analyze modes and morphologies of radially migrating neurons in convoluted brains by studying the visual cortex of developing ferrets. We provide in vivo and in vitro evidence for the existence of late-born cortical neurons that migrate radially by long-distance somal translocation within a long apical process extended to the cortical plate, in contrast to the early somal translocation observed in rodents. Long-distance translocating neurons in the ferret show a discontinuous rhythm of migration, alternating periods of advance with periods of stall. Furthermore, by combining different labeling methods we find the simultaneous presence in the developing ferret cortex of long-distance translocating neurons and neurons migrating within a short leading process.
Collapse
Affiliation(s)
- Víctor Borrell
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
73
|
Wang CX, Song JH, Song DK, Yong VW, Shuaib A, Hao C. Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death Differ 2005; 13:1203-12. [PMID: 16273078 DOI: 10.1038/sj.cdd.4401804] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyclin-dependent kinase-5 (Cdk5) is required for neuronal survival, but its targets in the apoptotic pathways remain unknown. Here, we show that Cdk5 kinase activity prevents neuronal apoptosis through the upregulation of Bcl-2. Treatment of SH-SY5Y cells with retinoid acid (RA) and brain-derived neurotrophic factor (BDNF) generates differentiated neuron-like cells. DNA damage triggers apoptosis in the undifferentiated cells through mitochondrial pathway; however, RA/BDNF treatment results in Bcl-2 upregulation and inhibition of the mitochondrial pathway in the differentiated cells. RA/BDNF treatment activates Cdk5-mediated PI3K/Akt and ERK pathways. Inhibition of Cdk5 inhibits PI3K/Akt and ERK phosphorylation and Bcl-2 expression, and thus sensitizes the differentiated cells to DNA-damage. Inhibition of ERK, but not PI3K/Akt, abrogates Cdk5-medidated Bcl-2 upregulation and the protection of the differentiated cells. This study suggests that ERK-mediated Bcl-2 upregulation contributes to BDNF-induced Cdk5-mediated neuronal survival.
Collapse
Affiliation(s)
- C X Wang
- Department of Medicine and Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
74
|
Tsai JW, Chen Y, Kriegstein AR, Vallee RB. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. ACTA ACUST UNITED AC 2005; 170:935-45. [PMID: 16144905 PMCID: PMC2171430 DOI: 10.1083/jcb.200505166] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the human LIS1 gene cause the smooth brain disease classical lissencephaly. To understand the underlying mechanisms, we conducted in situ live cell imaging analysis of LIS1 function throughout the entire radial migration pathway. In utero electroporation of LIS1 small interference RNA and short hairpin dominant negative LIS1 and dynactin cDNAs caused a dramatic accumulation of multipolar progenitor cells within the subventricular zone of embryonic rat brains. This effect resulted from a complete failure in progression from the multipolar to the migratory bipolar state, as revealed by time-lapse analysis of brain slices. Surprisingly, interkinetic nuclear oscillations in the radial glial progenitors were also abolished, as were cell divisions at the ventricular surface. Those few bipolar cells that reached the intermediate zone also exhibited a complete block in somal translocation, although, remarkably, process extension persisted. Finally, axonal growth also ceased. These results identify multiple distinct and novel roles for LIS1 in nucleokinesis and process dynamics and suggest that nuclear position controls neural progenitor cell division.
Collapse
Affiliation(s)
- Jin-Wu Tsai
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
75
|
Abstract
Doublecortin (DCX) is a microtubule-associated protein that interacts with and regulates the microtubule cytoskeleton and is required for neuronal migration in the cortex. Two papers in this issue of Neuron (Schaar et al. and Tanaka et al.) demonstrate a role for phosphorylation in the regulation of Doublecortin. Together with recent results showing that Doublecortin may play a role regulating the morphology of migrating neurons, these findings provide new insight into the mechanisms governing neuronal migration.
Collapse
Affiliation(s)
- Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, 06269, USA
| |
Collapse
|
76
|
Lin L, Ye Y, Zakeri Z. p53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death. Cell Death Differ 2005; 13:141-50. [PMID: 16021178 DOI: 10.1038/sj.cdd.4401717] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is mostly seen in neurons, does not vary with cell cycle, and is activated in many neurodegenerative disorders and other non-neuronal pathologies, but its relationship to non-neuronal apoptosis is not understood, nor is the control of the activation of Cdk5 by its activators. The most widely studied activator of Cdk5, p35, is cleaved to p25 by calpain, an event that has been linked with activation of Cdk5 and neuronal death. Here we report that calpain-mediated Cdk5/p25 activation accompanies non-neuronal as well as neuronal cell death, suggesting that the p35/calpain/p25/Cdk5 activation sequence is a general feature of cell death. We further demonstrate that Cdk5 can be activated in the absence of p53, Apaf-1, caspase-9, and -3 during cell death, indicating that its activation relates more to cell death than to a specific pathway of apoptosis.
Collapse
Affiliation(s)
- L Lin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | | | | |
Collapse
|
77
|
Abstract
Cortical formation in the developing brain is a highly complicated process involving neuronal production (through symmetric or asymmetric cell division) interaction of radial glia with neuronal migration, and multiple modes of neuronal migration. It has been convincingly demonstrated by numerous studies that radial glial cells are neural stem cells. However, the processes by which neurons arise from radial glia and migrate to their final destinations in vivo are not yet fully understood. Recent studies using time-lapse imaging of neuronal migration are giving investigators an increasingly more detailed understanding of the mitotic behavior of radial glia and the migrating behavior of their daughter cells. In this review, we describe recent progress in elucidating neuronal migration in brain formation and how neuronal migration is disturbed by mutations in genes that control this process.
Collapse
Affiliation(s)
- Shigeaki Kanatani
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
78
|
Patel LS, Wenzel HJ, Schwartzkroin PA. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 2005; 24:9005-14. [PMID: 15483119 PMCID: PMC6730067 DOI: 10.1523/jneurosci.2943-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice lacking a functional p35 gene provide an ideal model in which to address these questions, because these knock-out animals not only exhibit aberrant neuronal migration but also demonstrate spontaneous seizures. Extracellular field recordings from hippocampal slices, characterizing the input-output relationship in the dentate, revealed little difference between wild-type and knock-out mice under both normal and elevated extracellular potassium conditions. However, in the presence of the GABA(A) antagonist bicuculline, p35 knock-out slices, but not wild-type slices, exhibited prolonged depolarizations in response to stimulation of the perforant path. There were no significant differences in the intrinsic properties of dentate granule cells (i.e., input resistance, time constant, action potential generation) from wild-type versus knock-out mice. However, antidromic activation (mossy fiber stimulation) evoked an excitatory synaptic response in over 65% of granule cells from p35 knock-out slices that was never observed in wild-type slices. Ultrastructural analyses identified morphological substrates for this aberrant excitation: recurrent axon collaterals, abnormal basal dendrites, and mossy fiber terminals forming synapses onto the spines of neighboring granule cells. These studies suggest that granule cells in p35 knock-out mice contribute to seizure activity by forming an abnormal excitatory feedback circuit.
Collapse
Affiliation(s)
- Leena S Patel
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
79
|
Bielas S, Higginbotham H, Koizumi H, Tanaka T, Gleeson JG. CORTICAL NEURONAL MIGRATION MUTANTS SUGGEST SEPARATE BUT INTERSECTING PATHWAYS. Annu Rev Cell Dev Biol 2004; 20:593-618. [PMID: 15473853 DOI: 10.1146/annurev.cellbio.20.082503.103047] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group encodes cytoskeletal molecules and produces graded and dosage-dependent effects, with a significant amount of functional redundancy. This group also appears to play important roles during the initiation and ongoing progression of neuronal movement. The second group encodes signaling molecules for which homozygous mutations lead to an inverted cortex. In addition, this group is responsible for movement of neurons through anatomic boundaries to specific cortical layers. The third group encodes enzymatic regulators of glycosylation and appears to delineate where neuronal migration will arrest. There is significant cross-talk among these different groups of molecules, suggesting possible points of pathway convergence.
Collapse
Affiliation(s)
- Stephanie Bielas
- Neurogenetics Laboratory, Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0624, USA.
| | | | | | | | | |
Collapse
|
80
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multi-faced kinase implicated in both development and disease of the mammalian central nervous system. These different faces of Cdk5 are preferentially regulated by the activation of Cdk5 by its different binding partners. The precise molecular and cellular mechanisms governing the role of Cdk5 in brain development and disease are unclear. Emerging evidence is now unraveling how Cdk5 normally orchestrates new signaling pathways that dictate the proper maturation and maintenance of the central nervous system. Under pathological conditions, however, Cdk5 activity goes awry and the malevolent face of Cdk5 surfaces. Recently developed animal models that display this deregulated Cdk5 activity reveal the intimate involvement of Cdk5 in tau pathology and neuronal cell death, and underscore the importance of phosphorylation in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan C Cruz
- Department of Pathology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115 USA.
| | | |
Collapse
|
81
|
Louvi A, Sisodia SS, Grove EA. Presenilin 1 in migration and morphogenesis in the central nervous system. Development 2004; 131:3093-105. [PMID: 15163631 DOI: 10.1242/dev.01191] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis of the central nervous system relies in large part upon the correct migration of neuronal cells from birthplace to final position. Two general modes of migration govern CNS morphogenesis: radial, which is mostly glia-guided and topologically relatively simple; and tangential, which often involves complex movement of neurons in more than one direction. We describe the consequences of loss of function of presenilin 1 on these fundamental processes. Previous studies of the central nervous system in presenilin 1 homozygote mutant embryos identified a premature neuronal differentiation that is transient and localized, with cortical dysplasia at later stages. We document widespread effects on CNS morphogenesis that appear strongly linked to defective neuronal migration. Loss of presenilin 1 function perturbs both radial and tangential migration in cerebral cortex, and several tangential migratory pathways in the brainstem. The inability of cells to execute their migratory trajectories affects cortical lamination, formation of the facial branchiomotor nucleus, the spread of cerebellar granule cell precursors to form the external granule layer and development of the pontine nuclei. Finally, overall morphogenesis of the mid-hindbrain region is abnormal,resulting in incomplete midline fusion of the cerebellum and overgrowth of the caudal midbrain. These observations indicate that in the absence of presenilin 1 function, the ability of a cell to move can be severely impaired regardless of its mode of migration, and, at a grosser level, brain morphogenesis is perturbed. Our results demonstrate that presenilin 1 plays a much more important role in brain development than has been assumed, consistent with a pleiotropic involvement of this molecule in cellular signaling.
Collapse
Affiliation(s)
- Angeliki Louvi
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
82
|
Sanada K, Gupta A, Tsai LH. Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 2004; 42:197-211. [PMID: 15091337 DOI: 10.1016/s0896-6273(04)00222-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 02/09/2004] [Accepted: 03/30/2004] [Indexed: 11/21/2022]
Abstract
Disabled-1 regulates laminar organization in the developing mammalian brain. Although mutation of the disabled-1 gene in scrambler mice results in abnormalities in neuronal positioning, migratory behavior linked to Disabled-1 signaling is not completely understood. Here we show that newborn neurons in the scrambler cortex remain attached to the process of their parental radial glia during the entire course of radial migration, whereas wild-type neurons detach from the glial fiber in the later stage of migration. This abnormal neuronal-glial adhesion is highly linked to the positional abnormality of scrambler neurons and depends intrinsically on Disabled-1 Tyr220 and Tyr232, potential phosphorylation sites during corticogenesis. Importantly, phosphorylation at those sites regulates alpha3 integrin levels, which is critical for the timely detachment of migrating neurons from radial glia. Altogether, these results outline the molecular mechanism by which Disabled-1 signaling controls the adhesive property of neurons to radial glia, thereby maintaining proper neuronal positioning during corticogenesis.
Collapse
Affiliation(s)
- Kamon Sanada
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
83
|
Abstract
Cyclin-dependent kinase-5 (CDK5) is predominantly active in the nervous system and it is well established that CDK5 is essential in neuronal development. In addition to its recognized role in development, there is increasing evidence that CDK5 may be involved in the pathogenesis of several neurodegenerative disorders. Although studies have shown that CDK5 can modulate cell death and survival, controversy still exists as to the exact role CDK5 may play in neurodegenerative processes. This review will highlight recent data on the possible roles of CDK5 in neurodegeneration.
Collapse
Affiliation(s)
- Shirley B Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
84
|
|
85
|
Hatanaka Y, Hisanaga SI, Heizmann CW, Murakami F. Distinct migratory behavior of early- and late-born neurons derived from the cortical ventricular zone. J Comp Neurol 2004; 479:1-14. [PMID: 15389616 DOI: 10.1002/cne.20256] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Time-lapse studies indicate that ventricular zone (VZ)-derived cells show two migratory modes in the cerebral cortex at different stages of mammalian embryogenesis: somal translocation and locomotion. We carried out a systematic analysis to examine whether the migratory behavior of cortical neurons derived from the cortical VZ is stage-dependent. We labeled VZ cells of mouse embryos with green fluorescent protein (gfp) -encoding plasmids by in utero electroporation and evaluated the labeled cells after appropriate survival periods. After electroporation at either embryonic day (E) 12.5 or E15.5, GFP+ VZ cells were initially spindle-shaped and radially oriented. After leaving the VZ, they transformed into round or horizontally oriented fusiform neurons with many short processes. They then seemed to gradually change into radially oriented bipolar cells as they moved upward. Whereas the earliest emigrants from the VZ labeled at E12.5 (early-born neurons) reached the top of the cortical plate (CP) after these changes, VZ cells labeled at E15.5 (late-born neurons) further migrated along the length of radial fibers to reach the top of the CP. A dominant negative form of the gene for cyclin-dependent kinase 5 (Cdk5DN) was then introduced into VZ cells. Transfection of E12.5 VZ with cdk5dn did not disrupt the migration of the early-born neurons. However, this caused a failure in migration of the late-born neurons, although they transformed into bipolar shapes in the intermediate zone. Thus, there appear to be at least two distinct migratory phases of cortical neurons: one common to the early- and late-born neurons, and the other specific to late-born neurons and Cdk5-dependent.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | | | | | | |
Collapse
|