51
|
Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P. Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro. J Biol Chem 2017; 292:4484-4498. [PMID: 28119456 DOI: 10.1074/jbc.m116.747816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
Collapse
Affiliation(s)
- Corey Heffernan
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Mohit R Jain
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Tong Liu
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Hyosung Kim
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Kevin Barretto
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Hong Li
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Patrice Maurel
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| |
Collapse
|
52
|
Xu F, Zhang K, Lv P, Lu R, Zheng L, Zhao J. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1132-1140. [DOI: 10.1016/j.msec.2016.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 03/14/2016] [Indexed: 01/13/2023]
|
53
|
Pronker MF, Lemstra S, Snijder J, Heck AJR, Thies-Weesie DME, Pasterkamp RJ, Janssen BJC. Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat Commun 2016; 7:13584. [PMID: 27922006 PMCID: PMC5150538 DOI: 10.1038/ncomms13584] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023] Open
Abstract
Myelin-associated glycoprotein (MAG) is a myelin-expressed cell-adhesion and bi-directional signalling molecule. MAG maintains the myelin–axon spacing by interacting with specific neuronal glycolipids (gangliosides), inhibits axon regeneration and controls myelin formation. The mechanisms underlying MAG adhesion and signalling are unresolved. We present crystal structures of the MAG full ectodomain, which reveal an extended conformation of five Ig domains and a homodimeric arrangement involving membrane-proximal domains Ig4 and Ig5. MAG-oligosaccharide complex structures and biophysical assays show how MAG engages axonal gangliosides at domain Ig1. Two post-translational modifications were identified—N-linked glycosylation at the dimerization interface and tryptophan C-mannosylation proximal to the ganglioside binding site—that appear to have regulatory functions. Structure-guided mutations and neurite outgrowth assays demonstrate MAG dimerization and carbohydrate recognition are essential for its regeneration-inhibiting properties. The combination of trans ganglioside binding and cis homodimerization explains how MAG maintains the myelin–axon spacing and provides a mechanism for MAG-mediated bi-directional signalling. Myelin-associated glycoprotein (MAG) maintains myelin-axon spacing. Here, the authors report the crystal structures of the MAG full ectodomain in complex with oligosaccharide, and use additional assays to provide insights into the mechanism of MAG-mediated signalling.
Collapse
Affiliation(s)
- Matti F Pronker
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Suzanne Lemstra
- Department for Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Chemistry and Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Chemistry and Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department for Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
54
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
55
|
Chen MS, Kim H, Jagot-Lacoussiere L, Maurel P. Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia 2016; 64:2247-2262. [PMID: 27658374 DOI: 10.1002/glia.23072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.
Collapse
Affiliation(s)
- Ming-Shuo Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hyosung Kim
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | - Patrice Maurel
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
56
|
Frei JA, Stoeckli ET. SynCAMs - From axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2016; 81:41-48. [PMID: 27594578 DOI: 10.1016/j.mcn.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.
Collapse
Affiliation(s)
- Jeannine A Frei
- Hussman Institute for Autism, 801 W Baltimore Street, Baltimore, MD 20201, United States
| | - Esther T Stoeckli
- Dept of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
57
|
Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 2016; 531:371-5. [PMID: 26958833 PMCID: PMC4823817 DOI: 10.1038/nature17187] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/29/2016] [Indexed: 11/28/2022]
|
58
|
Hivert B, Pinatel D, Labasque M, Tricaud N, Goutebroze L, Faivre-Sarrailh C. Assembly of juxtaparanodes in myelinating DRG culture: Differential clustering of the Kv1/Caspr2 complex and scaffolding protein 4.1B. Glia 2016; 64:840-52. [PMID: 26840208 DOI: 10.1002/glia.22968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 11/06/2022]
Abstract
The precise distribution of ion channels at the nodes of Ranvier is essential for the efficient propagation of action potentials along myelinated axons. The voltage-gated potassium channels Kv1.1/1.2 are clustered at the juxtaparanodes in association with the cell adhesion molecules, Caspr2 and TAG-1 and the scaffolding protein 4.1B. In the present study, we set up myelinating cultures of DRG neurons and Schwann cells to look through the formation of juxtaparanodes in vitro. We showed that the Kv1.1/Kv1.2 channels were first enriched at paranodes before being restricted to distal paranodes and juxtaparanodes. In addition, the Kv1 channels displayed an asymmetric expression enriched at the distal juxtaparanodes. Caspr2 was strongly co-localized with Kv1.2 whereas the scaffolding protein 4.1B was preferentially recruited at paranodes while being present at juxtaparanodes too. Kv1.2/Caspr2 but not 4.1B, also transiently accumulated within the nodal region both in myelinated cultures and developing sciatic nerves. Studying cultures and sciatic nerves from 4.1B KO mice, we further showed that 4.1B is required for the proper targeting of Caspr2 early during myelination. Moreover, using adenoviral-mediated expression of Caspr-GFP and photobleaching experiments, we analyzed the stability of paranodal junctions and showed that the lateral stability of paranodal Caspr was not altered in 4.1B KO mice indicating that 4.1B is not required for the assembly and stability of the paranodal junctions. Thus, developing an adapted culture paradigm, we provide new insights into the dynamic and differential distribution of Kv1 channels and associated proteins during myelination.
Collapse
Affiliation(s)
- Bruno Hivert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Delphine Pinatel
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Marilyne Labasque
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| | - Nicolas Tricaud
- INSERM U1051 Institut des Neurosciences de Montpellier, Montpellier, France
| | | | - Catherine Faivre-Sarrailh
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, Marseille, France
| |
Collapse
|
59
|
Terada N, Saitoh Y, Kamijo A, Ohno S, Ohno N. Involvement of membrane skeletal molecules in the Schmidt-Lanterman incisure in Schwann cells. Med Mol Morphol 2015; 49:5-10. [PMID: 26541343 DOI: 10.1007/s00795-015-0125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
Membrane skeletal networks form a two-dimensional lattice structure beneath erythrocyte membranes. 4.1R-MPP (membrane palmitoylated protein) 1-glycophorin C is one of the basic molecular complexes of the membrane skeleton. An analogous molecular complex, 4.1G-MPP6-cell adhesion molecule 4 (CADM4), is incorporated into the Schmidt-Lanterman incisure (SLI), a truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system. In this review, the dynamic structure of peripheral nerve fibers under stretching conditions is demonstrated using in vivo cryotechnique. The structures of nerve fibers had a beaded appearance, and the heights of SLI circular-truncated cones increased at the narrow sites of nerve fibers under the stretched condition. The height of SLI-truncated cones was lower in 4.1G-deficient nerve fibers than in wild-type nerve fibers. 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. The signal transduction protein, Src, was also involved in the 4.1G-MPP6-CADM4 molecular complex. The phosphorylation of Src was altered by the deletion of 4.1G. Thus, we herein demonstrate a membrane skeletal molecular complex in SLI that has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cells.
Collapse
Affiliation(s)
- Nobuo Terada
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Akio Kamijo
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| |
Collapse
|
60
|
Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 2015; 18:1819-31. [PMID: 26523646 DOI: 10.1038/nn.4160] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. Cell type-specific proteins defined as tenfold more abundant than average expression represented about a tenth of the proteome, with an overrepresentation of cell surface proteins. To demonstrate the utility of our resource, we focused on this class of proteins and identified Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination. Our findings provide a framework for a system-level understanding of cell-type diversity in the CNS and serves as a rich resource for analyses of brain development and function.
Collapse
|
61
|
Patzig J, Kusch K, Fledrich R, Eichel MA, Lüders KA, Möbius W, Sereda MW, Nave KA, Martini R, Werner HB. Proteolipid protein modulates preservation of peripheral axons and premature death when myelin protein zero is lacking. Glia 2015; 64:155-74. [PMID: 26393339 DOI: 10.1002/glia.22922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022]
Abstract
Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null)*Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null)*Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null)*Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.
Collapse
Affiliation(s)
- Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital, Würzburg, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
62
|
Poitelon Y, Bogni S, Matafora V, Della-Flora Nunes G, Hurley E, Ghidinelli M, Katzenellenbogen BS, Taveggia C, Silvestri N, Bachi A, Sannino A, Wrabetz L, Feltri ML. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun 2015; 6:8303. [PMID: 26383514 PMCID: PMC4576721 DOI: 10.1038/ncomms9303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. Neuron–glia interactions are critical in the nervous system, where they result in the extension of glial pseudopodia. Poitelon et al. isolate these protrusions using an in vitro assay, and, by characterising their proteomes, identify Prohibitin-2 as a regulator of myelination.
Collapse
Affiliation(s)
- Y Poitelon
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - S Bogni
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - V Matafora
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - G Della-Flora Nunes
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - E Hurley
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - M Ghidinelli
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - B S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana Illinois 61801, USA
| | - C Taveggia
- Division of Neuroscience, San Raffaele Hospital, Milano 20132, Italy
| | - N Silvestri
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - A Bachi
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - A Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - L Wrabetz
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - M L Feltri
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
63
|
Rasband MN, Peles E. The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harb Perspect Biol 2015; 8:a020495. [PMID: 26354894 DOI: 10.1101/cshperspect.a020495] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
64
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
65
|
Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 2015. [PMID: 26224309 PMCID: PMC4591693 DOI: 10.1091/mbc.e14-05-1020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Nobuhiko Ohno
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yurika Saitoh
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akihito Ito
- Research Center, Nissei Bilis, Koga, Shiga 528-0052, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons with Disabilities Research Institute, Tokorozawa, Saitama 359-8555, Japan
| | - Nobuo Terada
- Graduate School of Medicine, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan )
| |
Collapse
|
66
|
Lossos A, Elazar N, Lerer I, Schueler-Furman O, Fellig Y, Glick B, Zimmerman BE, Azulay H, Dotan S, Goldberg S, Gomori JM, Ponger P, Newman JP, Marreed H, Steck AJ, Schaeren-Wiemers N, Mor N, Harel M, Geiger T, Eshed-Eisenbach Y, Meiner V, Peles E. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain 2015; 138:2521-36. [PMID: 26179919 DOI: 10.1093/brain/awv204] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 01/07/2023] Open
Abstract
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.
Collapse
Affiliation(s)
- Alexander Lossos
- 1 Department of Neurology and Agnes Ginges Centre for Human Neurogenetics, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Nimrod Elazar
- 2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Israela Lerer
- 3 Department of Genetics and Metabolic Diseases, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Ora Schueler-Furman
- 4 Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Yakov Fellig
- 5 Department of Pathology, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Benjamin Glick
- 6 Paediatric Neuromuscular Service, Alyn Paediatric Rehabilitation Centre, Jerusalem, Israel
| | - Bat-El Zimmerman
- 3 Department of Genetics and Metabolic Diseases, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Haim Azulay
- 5 Department of Pathology, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Shlomo Dotan
- 7 Department of Ophthalmology, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Sharon Goldberg
- 7 Department of Ophthalmology, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - John M Gomori
- 8 Department of Radiology, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Penina Ponger
- 1 Department of Neurology and Agnes Ginges Centre for Human Neurogenetics, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - J P Newman
- 1 Department of Neurology and Agnes Ginges Centre for Human Neurogenetics, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Hodaifah Marreed
- 3 Department of Genetics and Metabolic Diseases, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Andreas J Steck
- 9 Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | | | - Nofar Mor
- 2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Harel
- 10 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- 10 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Eshed-Eisenbach
- 2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vardiella Meiner
- 3 Department of Genetics and Metabolic Diseases, Hebrew University-Hadassah Medical Centre, Jerusalem, Israel
| | - Elior Peles
- 2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
67
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
68
|
Basak S, Desai DJ, Rho EH, Ramos R, Maurel P, Kim HA. E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination. Glia 2015; 63:1522-36. [PMID: 25988855 DOI: 10.1002/glia.22822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022]
Abstract
In myelinating Schwann cells, E-cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E-cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E-cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E-cadherin deletion and over-expression in Schwann cells. In vivo, Schwann cell-specific E-cadherin ablation results in an early myelination delay. In Schwann cell-dorsal root ganglia neuron co-cultures, E-cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over-expressed in Schwann cells, E-cadherin improves myelination on Nrg1 type III(+/-) neurons and induces myelination on normally non-myelinated axons of sympathetic neurons. The pro-myelinating effect of E-cadherin is associated with an enhanced Nrg1-erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E-cadherin, Nrg1-signaling is diminished in Schwann cells. Our data also show that E-cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E-cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E-cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation.
Collapse
Affiliation(s)
- Sayantani Basak
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Darshan J Desai
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Esther H Rho
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Roselle Ramos
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Haesun A Kim
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
69
|
Mandai K, Rikitake Y, Mori M, Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015; 112:197-231. [PMID: 25733141 DOI: 10.1016/bs.ctdb.2014.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nectins and nectin-like molecules (Necls)/Cadms are Ca(2+)-independent immunoglobulin superfamily cell adhesion molecules, expressed in most cell types. Nectins mediate not only homotypic but also heterotypic cell-cell adhesion, in contrast to classic cadherins which participate only in homophilic adhesion. Nectins and Necls function in organogenesis of the eye, inner ear, tooth, and cerebral cortex and in a variety of developmental processes including spermatogenesis, axon guidance, synapse formation, and myelination. They are also involved in various diseases, such as viral infection, hereditary ectodermal dysplasia, Alzheimer's disease, autism spectrum disorder, and cancer. Thus, nectins and Necls are crucial for both physiology and pathology. This review summarizes recent advances in research on these cell adhesion molecules in development and pathogenesis.
Collapse
Affiliation(s)
- Kenji Mandai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan
| | - Yoshiyuki Rikitake
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Neurophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan.
| |
Collapse
|
70
|
Localization of aquaporin 1 water channel in the Schmidt–Lanterman incisures and the paranodal regions of the rat sciatic nerve. Neuroscience 2015; 285:119-27. [DOI: 10.1016/j.neuroscience.2014.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/02/2023]
|
71
|
Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies. Autoimmun Rev 2014; 13:1070-8. [DOI: 10.1016/j.autrev.2014.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
|
72
|
Shen YAA, Chen Y, Dao DQ, Mayoral SR, Wu L, Meijer D, Ullian EM, Chan JR, Lu QR. Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent. Nat Commun 2014; 5:4991. [PMID: 25255972 PMCID: PMC4334370 DOI: 10.1038/ncomms5991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
The Schwann cell (SC)-axon interface represents a membrane specialization that integrates axonal signals to coordinate cytoskeletal dynamics resulting in myelination. Here we show that LKB1/Par-4 is asymmetrically localized to the SC-axon interface and colocalizes with the polarity protein Par-3. Using purified SCs and myelinating cocultures, we demonstrate that localization is dependent on the phosphorylation of LKB1 at serine-431. SC-specific deletion of LKB1 significantly attenuates developmental myelination, delaying the initiation and altering the myelin extent into adulthood, resulting in a 30% reduction in the conduction velocity along adult sciatic nerves. Phosphorylation of LKB1 by protein kinase A is essential to establish the asymmetric localization of LKB1 and Par-3 and rescues the delay in myelination observed in the SC-specific knockout of LKB1. Our findings suggest that SC polarity may coordinate multiple signaling complexes that couple SC-axon contact to the redistribution of specific membrane components necessary to initiate and control myelin extent.
Collapse
Affiliation(s)
- Yun-An A Shen
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Yan Chen
- 1] Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 [2] Department of Pediatrics and Obstetrics/Gynecology, State Key Laboratory of Biotherapy, Cancer Center, West China Second Hospital, Sichuan University, Chengdu 61004, China
| | - Dang Q Dao
- Department of Ophthalmology and Physiology and Programs in Neurosciences, University of California, San Francisco, California 94143, USA
| | - Sonia R Mayoral
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Laiman Wu
- Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Dies Meijer
- Department of Cellular Neurobiology, Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Erik M Ullian
- Department of Ophthalmology and Physiology and Programs in Neurosciences, University of California, San Francisco, California 94143, USA
| | - Jonah R Chan
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
73
|
Karayannis T, Au E, Patel JC, Kruglikov I, Markx S, Delorme R, Héron D, Salomon D, Glessner J, Restituito S, Gordon A, Rodriguez-Murillo L, Roy NC, Gogos JA, Rudy B, Rice ME, Karayiorgou M, Hakonarson H, Keren B, Huguet G, Bourgeron T, Hoeffer C, Tsien RW, Peles E, Fishell G. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature 2014; 511:236-40. [PMID: 24870235 PMCID: PMC4281262 DOI: 10.1038/nature13248] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023]
Abstract
Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (γ-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.
Collapse
|
74
|
Zeng XXI, Yelon D. Cadm4 restricts the production of cardiac outflow tract progenitor cells. Cell Rep 2014; 7:951-60. [PMID: 24813897 DOI: 10.1016/j.celrep.2014.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Heart assembly requires input from two populations of progenitor cells, the first and second heart fields (FHF and SHF), that differentiate at distinct times and create different cardiac components. The cardiac outflow tract (OFT) is built through recruitment of late-differentiating, SHF-derived cardiomyocytes to the arterial pole of the heart. The mechanisms responsible for selection of an appropriate number of OFT cells from the SHF remain unclear. Here, we find that cell adhesion molecule 4 (cadm4) is essential for restricting the size of the zebrafish OFT. Knockdown of cadm4 causes dramatic OFT expansion, and overexpression of cadm4 results in a greatly diminished OFT. Moreover, cadm4 activity limits the production of OFT progenitor cells and the duration of their accumulation at the arterial pole. Together, our data suggest a role for cell adhesion in restraining SHF deployment to the OFT, perturbation of which could cause congenital OFT defects.
Collapse
Affiliation(s)
- Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
75
|
Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D, Kalaydjieva L, Giancotti F, King RH, Fejes-Toth AN, Fejes-Toth G, Feltri ML, Lang F, Salzer JL. Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 2014; 204:1219-36. [PMID: 24687281 PMCID: PMC3971744 DOI: 10.1083/jcb.201307057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/18/2014] [Indexed: 02/02/2023] Open
Abstract
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination.
Collapse
Affiliation(s)
- Bradley A. Heller
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Monica Ghidinelli
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Jakob Voelkl
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - Steven Einheber
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010
| | - Ryan Smith
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Ethan Grund
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Grant Morahan
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - David Chandler
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Filippo Giancotti
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Rosalind H. King
- UCL Institute of Neurology, University College London, London NW3 2PF, England, UK
| | - Aniko Naray Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Gerard Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Maria Laura Feltri
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Florian Lang
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - James L. Salzer
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
76
|
Frei JA, Stoeckli ET. SynCAMs extend their functions beyond the synapse. Eur J Neurosci 2014; 39:1752-60. [DOI: 10.1111/ejn.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jeannine A. Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
77
|
Mori M, Rikitake Y, Mandai K, Takai Y. Roles of Nectins and Nectin-Like Molecules in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 8:91-116. [DOI: 10.1007/978-1-4614-8090-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
Abstract
The pseudounipolar sensory neurons of the dorsal root ganglia (DRG) give rise to peripheral branches that convert thermal, mechanical, and chemical stimuli into electrical signals that are transmitted via central branches to the spinal cord. These neurons express unique combinations of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) channels that contribute to the resting membrane potential, action potential threshold, and regulate neuronal firing frequency. The small-diameter neurons (<25 μm) isolated from the DRG represent the cell bodies of C-fiber nociceptors that express both TTX-S and TTX-R Na(+) currents. The large-diameter neurons (>35 μm) are typically low-threshold A-fibers that predominately express TTX-S Na(+) currents. Peripheral nerve damage, inflammation, and metabolic diseases alter the expression and function of these Na(+) channels leading to increases in neuronal excitability and pain. The Na(+) channels expressed in these neurons are the target of intracellular signaling cascades that regulate the trafficking, cell surface expression, and gating properties of these channels. Post-translational regulation of Na(+) channels by protein kinases (PKA, PKC, MAPK) alter the expression and function of the channels. Injury-induced changes in these signaling pathways have been linked to sensory neuron hyperexcitability and pain. This review examines the signaling pathways and regulatory mechanisms that modulate the voltage-gated Na(+) channels of sensory neurons.
Collapse
Affiliation(s)
- Mohamed Chahine
- Centre de recherche, Institut en santé mentale de Québec, Local F-6539, 2601, chemin de la Canardière, QC City, QC, Canada, G1J 2G3,
| | | |
Collapse
|
79
|
Minis A, Dahary D, Manor O, Leshkowitz D, Pilpel Y, Yaron A. Subcellular transcriptomics-Dissection of the mRNA composition in the axonal compartment of sensory neurons. Dev Neurobiol 2013; 74:365-81. [DOI: 10.1002/dneu.22140] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/06/2013] [Accepted: 10/03/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Adi Minis
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Dvir Dahary
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Ohad Manor
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Dena Leshkowitz
- Biological Services Department; Bioinformatics Unit, Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Avraham Yaron
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
80
|
Apra C, Richard L, Coulpier F, Blugeon C, Gilardi-Hebenstreit P, Vallat JM, Lindner V, Charnay P, Decker L. Cthrc1 is a negative regulator of myelination in Schwann cells. Glia 2013; 60:393-403. [PMID: 22379615 DOI: 10.1002/glia.22273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The analysis of the molecular mechanisms involved in the initial interaction between neurons and Schwann cells is a key issue in understanding the myelination process. We recently identified Cthrc1 (Collagen triple helix repeat containing 1) as a gene upregulated in Schwann cells upon interaction with the axon. Cthrc1 encodes a secreted protein previously shown to be involved in migration and proliferation in different cell types. We performed a functional analysis of Cthrc1 in Schwann cells by loss-of- and gain-of-function approaches using RNA interference knockdown in cell culture and a transgenic mouse line that overexpresses the gene. This work establishes that Cthrc1 enhances Schwann cell proliferation but prevents myelination. In particular, time-course analysis of myelin formation intransgenic animals reveals that overexpression of Cthrc1 in Schwann cells leads to a delay in myelin formation with cells maintaining a proliferative state. Our data, therefore, demonstrate that Cthrc1 plays a negative regulatory role, fine-tuning the onset of peripheral myelination.
Collapse
Affiliation(s)
- Caroline Apra
- Ecole Normale Supérieure, IBENS, Developmental Biology Section, 75230 Paris cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 2013; 33:10950-61. [PMID: 23825401 DOI: 10.1523/jneurosci.0571-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system. Mice lacking Cadm4 (PGK-Cre/Cadm4(fl/fl)), but not Cadm1, Cadm2, or Cadm3, develop focal hypermyelination characterized by tomacula and myelin outfoldings, which are the hallmark of several Charcot-Marie-Tooth neuropathies. The absence of Cadm4 also resulted in abnormal axon-glial contact and redistribution of ion channels along the axon. These neuropathological features were also found in transgenic mice expressing a dominant-negative mutant of Cadm4 lacking its cytoplasmic domain in myelinating glia Tg(mbp-Cadm4dCT), as well as in mice lacking Cadm4 specifically in Schwann cells (DHH-Cre/Cadm4(fl/fl)). Consistent with these abnormalities, both PGK-Cre/Cadm4(fl/fl) and Tg(mbp-Cadm4dCT) mice exhibit impaired motor function and slower nerve conduction velocity. These findings indicate that Cadm4 regulates the growth of the myelin unit and the organization of the underlying axonal membrane.
Collapse
|
82
|
Almeida RG, Lyons DA. On the resemblance of synapse formation and CNS myelination. Neuroscience 2013; 276:98-108. [PMID: 24035825 DOI: 10.1016/j.neuroscience.2013.08.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.
Collapse
Affiliation(s)
- R G Almeida
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - D A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
83
|
Chernousov MA, Stahl RC, Carey DJ. Tetraspanins are involved in Schwann cell-axon interaction. J Neurosci Res 2013; 91:1419-28. [PMID: 24038174 DOI: 10.1002/jnr.23272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/27/2013] [Accepted: 06/01/2013] [Indexed: 01/01/2023]
Abstract
Many studies have shown that tetraspanins play important role in cell-cell and cell-extracellular matrix (ECM) interactions. The repertoire and functions of tetraspanins in Schwann cells, glial cells of the peripheral nervous system have remained largely uncharacterized. This study was undertaken to identify Schwann cell tetraspanins and to elucidate their possible functions. Microarray analysis revealed the expression of numerous tetraspanins in primary culture of Schwann cells. Expression of five of them, CD9, CD63, CD81, CD82, and CD151, and of tetraspanin-associated protein EWI-2 was also confirmed by immunofluorescence. Localization of CD9, CD63, CD81, and EWI-2 was largely confined to paranodes and Schmidt-Lanterman incisures, regions of noncompact myelin. Immunoprecipitation experiments showed that these four proteins form a complex in Schwann cells. siRNA silencing of individual components of the complex did not affect Schwann cell adhesion to ECM proteins or attachment to and alignment with axons. However, suppression of both CD63 and CD81 expression together significantly inhibited extension of Schwann cell processes along axons, without affecting initial attachment of the cells to the axonal surface. Adhesion, spreading, and migration of Schwann cells on ECM proteins also were not affected by double silencing of CD63 and CD81. Suppression of CD63 and CD81 expression did not affect the ability of Schwann cells to myelinate dorsal root ganglion neurons in vitro. These findings strongly suggest that CD63 and CD81 play an important role in Schwann cell spreading along axons but seem to be dispensable for Schwann cell myelination.
Collapse
|
84
|
Zhu Y, Li H, Li K, Zhao X, An T, Hu X, Park J, Huang H, Bin Y, Qiang B, Yuan J, Peng X, Qiu M. Necl-4/SynCAM-4 is expressed in myelinating oligodendrocytes but not required for axonal myelination. PLoS One 2013; 8:e64264. [PMID: 23700466 PMCID: PMC3659047 DOI: 10.1371/journal.pone.0064264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/10/2013] [Indexed: 12/04/2022] Open
Abstract
The timing and progression of axonal myelination are precisely controlled by intercellular interactions between neurons and glia in development. Previous in vitro studies demonstrated that Nectin like 4 (Necl-4, also known as cell adhesion molecule Cadm-4 or SynCAM-4) plays an essential role in axonal myelination by Schwann cells in the peripheral nervous system (PNS). However, the role of Necl-4 protein in axonal myelination in the developing central nervous system (CNS) has remained unknown. In this study, we discovered upregulation of Necl-4 expression in mature oligodendrocytes at perinatal stages when axons undergo active myelination. We generated Necl4 gene knockout mice, but found that disruption of Necl-4 gene did not affect oligodendrocyte differentiation and myelin formation in the CNS. Surprisingly, disruption of Necl-4 had no significant effect on axonal myelination in the PNS either. Therefore, our results demonstrated that Necl-4 is dispensable for axonal myelination in the developing nervous system.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kehan Li
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tai An
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jinsil Park
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yin Bin
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangang Yuan
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (MQ)
| | - Mengsheng Qiu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- * E-mail: (XP); (MQ)
| |
Collapse
|
85
|
Sugiyama H, Mizutani K, Kurita S, Okimoto N, Shimono Y, Takai Y. Interaction of Necl-4/CADM4 with ErbB3 and integrin α6 β4 and inhibition of ErbB2/ErbB3 signaling and hemidesmosome disassembly. Genes Cells 2013; 18:519-28. [PMID: 23611113 DOI: 10.1111/gtc.12056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 12/14/2022]
Abstract
Nectin-like molecule 4 (Necl-4)/CADM4, a transmembrane cell-cell adhesion molecule with three Ig-like domains, was shown to serve as a tumor suppressor, but its mode of action has not been elucidated. In this study, we showed that Necl-4 interacted in cis with ErbB3 through their extracellular regions, recruited PTPN13 and inhibited the heregulin-induced activation of the ErbB2/ErbB3 signaling. In addition, we extended our previous finding that Necl-4 interacts in cis with integrin α6 β4 through their extracellular regions and found that Necl-4 inhibited the phorbol ester-induced disassembly of hemidesmosomes. These results indicate that Necl-4 serves as a tumor suppressor by inhibiting the ErbB2/ErbB3 signaling and hemidesmosome disassembly.
Collapse
Affiliation(s)
- Hirokazu Sugiyama
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Tanabe Y, Fujita E, Hayashi YK, Zhu X, Lubbert H, Mezaki Y, Senoo H, Momoi T. Synaptic adhesion molecules in Cadm family at the neuromuscular junction. Cell Biol Int 2013; 37:731-6. [DOI: 10.1002/cbin.10092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yuko Tanabe
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| | | | - Yukiko K. Hayashi
- Department of Neuromuscular Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Ogawa-Higashi, Kodaira, Tokyo; Japan
| | - Xinran Zhu
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Hermann Lubbert
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Yoshihiro Mezaki
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Takashi Momoi
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| |
Collapse
|
87
|
Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. CURRENT TOPICS IN MEMBRANES 2013; 72:159-92. [PMID: 24210430 DOI: 10.1016/b978-0-12-417027-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells. They can be subdivided into at least two structurally and functionally distinct domains: somatodendritic and axonal domains. The somatodendritic domain receives and integrates upstream input signals, and the axonal domain generates and relays outputs in the form of action potentials to the downstream target. Demand for quick response to the harsh surroundings prompted evolution to equip vertebrates' neurons with a remarkable glia-derived structure called myelin. Not only Insulating the axon, myelinating glia also rearrange the axonal components and elaborate functional subdomains along the axon. Proper functioning of all theses domains and subdomains is vital for a normal, efficient nervous system.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
88
|
A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 2012; 16:48-54. [PMID: 23222914 DOI: 10.1038/nn.3281] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023]
Abstract
After peripheral nerve injury, axons regenerate and become remyelinated by resident Schwann cells. However, myelin repair never results in the original myelin thickness, suggesting insufficient stimulation by neuronal growth factors. Upon testing this hypothesis, we found that axonal neuregulin-1 (NRG1) type III and, unexpectedly, also NRG1 type I restored normal myelination when overexpressed in transgenic mice. This led to the observation that Wallerian degeneration induced de novo NRG1 type I expression in Schwann cells themselves. Mutant mice lacking a functional Nrg1 gene in Schwann cells are fully myelinated but exhibit impaired remyelination in adult life. We suggest a model in which loss of axonal contact triggers denervated Schwann cells to transiently express NRG1 as an autocrine/paracrine signal that promotes Schwann cell differentiation and remyelination.
Collapse
|
89
|
Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, Shrager P, Kissil J, Maurel P, Salzer JL. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 2012; 61:240-53. [PMID: 23109359 DOI: 10.1002/glia.22430] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
Abstract
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness.
Collapse
Affiliation(s)
- Steven Einheber
- School of Health Sciences, Hunter College, City University of New York, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Daud MF, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW. An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 2012; 33:5901-13. [DOI: 10.1016/j.biomaterials.2012.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/05/2012] [Indexed: 01/15/2023]
|
91
|
Kinter J, Lazzati T, Schmid D, Zeis T, Erne B, Lützelschwab R, Steck AJ, Pareyson D, Peles E, Schaeren-Wiemers N. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease. Neurobiol Dis 2012; 49:221-31. [PMID: 22940629 DOI: 10.1016/j.nbd.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/30/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contributes to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity.
Collapse
Affiliation(s)
- Jochen Kinter
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Lazzati
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Daniela Schmid
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Beat Erne
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Roland Lützelschwab
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Andreas J Steck
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Davide Pareyson
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel.
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
92
|
Avari P, Huang W, Averill S, Colom B, Imhof BA, Nourshargh S, Priestley JV. The spatiotemporal localization of JAM-C following sciatic nerve crush in adult rats. Brain Behav 2012; 2:402-14. [PMID: 22950044 PMCID: PMC3432963 DOI: 10.1002/brb3.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/09/2023] Open
Abstract
JAM-C is a junctional adhesion molecule, enriched at tight junctions on endothelial and epithelial cells, and also localized to Schwann cells at junctions between adjoining myelin end loops. The role of JAM-C following peripheral nerve injury (PNI) is currently unknown. We examined the localization of JAM-C after sciatic nerve crush injury in adult rats. JAM-C immunoreactivity was present in paranodes and incisures in sham surgery control nerve, but distal to the crush injury significantly decreased at three and 14 days. JAM-C was re-expressed at 28 days and, by 56 days, was significantly increased in the distal nerve compared to controls. In a 7-mm length of sciatic nerve sampled distal to the crush site, the densities of JAM-C immunoreactive paranodes increased in the distal direction. Conversely, the densities of JAM-C immunoreactive incisures were highest immediately distal to the crush site and decreased in the more distal direction. Further analysis revealed a strong correlation between JAM-C localization and remyelination. Fifty-six days after crush injury, greater densities of JAM-C paranodes were seen compared to the nodal marker jacalin, suggesting that paranodal JAM-C precedes node formation. Our data are the first to demonstrate a potential role of JAM-C in remyelination after PNI.
Collapse
|
93
|
Ji Y, Shen M, Wang X, Zhang S, Yu S, Chen G, Gu X, Ding F. Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins. J Proteome Res 2012; 11:3186-98. [PMID: 22519560 DOI: 10.1021/pr201221u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.
Collapse
Affiliation(s)
- Yuhua Ji
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University , 19 Qixiu Road, Nantong, JS 226001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Möbius W, Rosenbluth J, Brose N, Peles E. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. ACTA ACUST UNITED AC 2012; 196:337-44. [PMID: 22291039 PMCID: PMC3275379 DOI: 10.1083/jcb.201111127] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deletion of the Schwann cell cytoskeletal adapter protein 4.1G led to aberrant distribution of glial adhesion molecules and axonal proteins along the internodes. Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G−/− mice, these proteins “piled up” at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Molecular Neurobiology and 2 Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Simons M, Snaidero N, Aggarwal S. Cell polarity in myelinating glia: from membrane flow to diffusion barriers. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1146-53. [PMID: 22314181 DOI: 10.1016/j.bbalip.2012.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
Abstract
Myelin-forming glia are highly polarized cells that synthesize as an extension of their plasma membrane, a multilayered myelin membrane sheath, with a unique protein and lipid composition. In most cells polarity is established by the polarized exocytosis of membrane vesicles to the distinct plasma membrane domains. Since myelin is composed of a stack of tightly packed membrane layers that do not leave sufficient space for the vesicular trafficking, we hypothesize that myelin does not use polarized exocytosis as a primary mechanism, but rather depends on lateral transport of membrane components in the plasma membrane. We suggest a model in which vesicle-mediated transport is confined to the cytoplasmic channels, from where transport to the compacted areas occurs by lateral flow of cargo within the plasma membrane. A diffusion barrier that is formed by MBP and the two adjacent cytoplasmic leaflets of the myelin bilayers acts a molecular sieve and regulates the flow of the components. Finally, we highlight potential mechanism that may contribute to the assembly of specific lipids within myelin. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany.
| | | | | |
Collapse
|
96
|
Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ. Expression and localization of myosin-1d in the developing nervous system. Brain Res 2012; 1440:9-22. [PMID: 22284616 DOI: 10.1016/j.brainres.2011.12.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 01/15/2023]
Abstract
Myosin-1d is a monomeric actin-based motor found in a wide range of tissues, but highly expressed in the nervous system. Previous microarray studies suggest that myosin-1d is found in oligodendrocytes where transcripts are upregulated during the maturation of these cells. Myosin-1d was also identified as a component of myelin-containing subcellular fractions in proteomic studies and mutations in MYO1D have been linked to autism. Despite the potential implications of these previous studies, there is little information on the expression and localization of myosin-1d in the developing nervous system. Therefore, we analyzed myosin-1d expression patterns in the peripheral and central nervous systems during postnatal development. In mouse sciatic nerve, myosin-1d is expressed along the axon and in the ensheathing myelin compartment. Analysis of mouse cerebellum prior to myelination at day 3 reveals that myosin-1d is present in the Purkinje cell layer, granule cell layer, and region of the cerebellar nuclei. Upon the onset of myelination, myosin-1d enrichment expands along axonal tracts, while still present in the Purkinje and granule cell layers. However, myosin-1d was undetectable in oligodendrocyte progenitor cells at early and late time points. We also show that myosin-1d interacts and is co-expressed with aspartoacylase, an enzyme that plays a key role in fatty acid synthesis throughout the nervous system. Together, these studies provide a foundation for understanding the role of myosin-1d in neurodevelopment and neurological disorders.
Collapse
Affiliation(s)
- Andrew E Benesh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
97
|
Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 2012; 31:16369-86. [PMID: 22072688 DOI: 10.1523/jneurosci.4016-11.2011] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.
Collapse
|
98
|
Pereira JA, Lebrun-Julien F, Suter U. Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 2011; 35:123-34. [PMID: 22192173 DOI: 10.1016/j.tins.2011.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid saltatory conduction. The functionality of this system is critical, as revealed by numerous neurological diseases that result from deregulation of the system, including multiple sclerosis and peripheral neuropathies. In this review we focus on PNS myelination and present a conceptual framework that integrates crucial signaling mechanisms with basic SC biology. We will highlight signaling hubs and overarching molecular mechanisms, including genetic, epigenetic, and post-translational controls, which together regulate the interplay between SCs and axons, extracellular signals, and the transcriptional network.
Collapse
Affiliation(s)
- Jorge A Pereira
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
99
|
Hunter PR, Nikolaou N, Odermatt B, Williams PR, Drescher U, Meyer MP. Localization of Cadm2a and Cadm3 proteins during development of the zebrafish nervous system. J Comp Neurol 2011; 519:2252-70. [PMID: 21456004 DOI: 10.1002/cne.22627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Members of the Cadm/SynCAM/Necl/IGSF/TSLC family of cell adhesion molecules are known to have diverse functions during development of the nervous system, but information regarding their role during central nervous system (CNS) development in vivo is scarce. The rapid development of a relatively simple nervous system in larval zebrafish makes them a highly tractable model organism for studying gene function during nervous system development. An essential prerequisite for functional studies is a description of protein localization. To address this we have generated subtype-specific antibodies to two members of the zebrafish cell adhesion molecule family: cadm2a and cadm3. Using these novel antibodies we show that cadm3 and cadm2a are expressed throughout the nervous system of larval stage zebrafish. Particularly striking, and largely nonoverlapping expression of cadm2a and cadm3 is observed in the developing retina and spinal cord. Using in vitro binding assays we show that cadm2a and cadm3 bind heterophilically and preferentially to cadm1 and cadm4, respectively. These binding preferences are very similar to those seen for tetrapod Cadms but our study of protein localization suggests novel and diverse functions of cadms during nervous system development.
Collapse
Affiliation(s)
- Paul R Hunter
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
100
|
Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep 2011; 7:394-403. [PMID: 21052870 DOI: 10.1007/s12015-010-9198-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Schwann cells (SC), the glial cells of peripheral nerves, are involved in many diseases including Charcot Marie Tooth and neurofibromatosis, and play a pivotal role in peripheral nerve regeneration. Although it is possible to obtain human SC from nerve biopsies, they are difficult to maintain and expand in culture. Here we describe an efficient system for directing the differentiation of human embryonic stem cells (hESC) into cells with the morphological and molecular characteristics of SC. Neurospheres were generated from hESC using stromal cell induction and grown under conditions supportive of SC differentiation. After 8 weeks, hESC-derived SC expressed characteristic markers GFAP, S100, HNK1, P75, MBP and PMP-22, and were observed in close association with hESC-derived neurites. ~60% of the cells were double-immunostained for the SC markers GFAP/S100. RT-PCR analysis confirmed the expression of GFAP, S100, P75, PMP-22 and MBP and demonstrated expression of the SC markers P0, KROX20 and PLP in the cultures. Expression of CAD19 was observed in 2 and 4 week cultures and then was down-regulated, consistent with its expression in SC precursor, but not mature stages. Co-culture of hESC-derived SC with rat, chick or hESC-derived axons in compartmentalized microfluidic chambers resulted in tight association of the SC with axons. Apparent wrapping of the axons by SC was occasionally observed, suggestive of myelination. Our method for generating SC from hESC makes available a virtually unlimited source of human SC for studies of their role in nerve regeneration and modeling of disease.
Collapse
Affiliation(s)
- Lina Ziegler
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Gonda Building, Old Campus, 52900, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|