51
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
52
|
Pitts EG, Barfield ET, Woon EP, Gourley SL. Action-Outcome Expectancies Require Orbitofrontal Neurotrophin Systems in Naïve and Cocaine-Exposed Mice. Neurotherapeutics 2020; 17:165-177. [PMID: 31218603 PMCID: PMC7007486 DOI: 10.1007/s13311-019-00752-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cocaine use during adolescence decreases the likelihood that individuals will seek treatment for recurrent drug use. In rodents, developmental cocaine exposure weakens action-consequence decision-making, causing a deferral to familiar, habit-like behavioral response strategies. Here, we aimed to improve action-outcome decision-making. We found that acute pharmacological stimulation of the tyrosine/tropomyosin receptor kinase B (trkB) via 7,8-dihydroxyflavone (7,8-DHF) or 3,4-methylenedioxymethamphetamine (MDMA) blocked cocaine-induced habit biases by strengthening memory for action-outcome associations. We believe that MDMA acts by stimulating neurotrophin/trkB systems in the orbitofrontal cortex (OFC), a region involved in prospectively evaluating the consequences of one's action, because 1) MDMA also increased brain-derived neurotrophic factor (BDNF) in the OFC, 2) MDMA corrected habit biases due to Bdnf loss in the OFC, and 3) overexpression of a truncated isoform of trkB occluded the memory-enhancing effects of MDMA. Thus, selecting actions based on their consequences requires BDNF-trkB in the OFC, the stimulation of which may improve goal attainment in both drug-naïve and cocaine-exposed individuals. SIGNIFICANCE STATEMENT: Cocaine use during adolescence decreases the likelihood that individuals will seek treatment for recurrent drug use, even as adults. Understanding how early-life cocaine exposure impacts goal-oriented action and prospective decision-making in adulthood is thus important. One key aspect of goal-directed decision-making is anticipating the consequences of one's actions, a process that likely involves the orbitofrontal cortex (OFC). In rodents, developmental cocaine exposure weakens action-consequence decision-making, causing a deferral to familiar, habit-like behavioral response strategies. Here, we report that we can improve memory for action-consequence relationships by stimulating neurotrophic factors, which support cell survival, development, and plasticity in the brain. With strengthened action-consequence associations, cocaine-exposed mice regain the ability to optimally select actions based on their likely outcomes. Brain region-selective manipulations reveal that neurotrophin systems in the OFC are necessary for stable memory of action-consequence relationships.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Elizabeth T Barfield
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Ellen P Woon
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Dr. NE, Atlanta, GA, 30329, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
53
|
Gill WD, Shelton HW, Burgess KC, Brown RW. Effects of an adenosine A 2A agonist on the rewarding associative properties of nicotine and neural plasticity in a rodent model of schizophrenia. J Psychopharmacol 2020; 34:137-144. [PMID: 31694445 PMCID: PMC9199013 DOI: 10.1177/0269881119885917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adenosine A2a receptors form a mutually inhibitory heteromeric complex with dopamine D2 receptors such that each receptor exhibits lower sensitivity to its agonist after the opposing receptor agonist is bound. This study analyzed the effects of CGS 21680, an adenosine A2A agonist, on nicotine conditioned place preference (CPP) in adolescence using a rodent model of schizophrenia (SZ). METHODS Rats were treated from postnatal day (P) 1 to P21 with saline or the dopamine D2/D3 agonist quinpirole (NQ treatment) and raised to P41. After an initial preference test, rats were conditioned with saline or nicotine (0.6 mg/kg base) from P43 to P51. CGS 21680 (0.03 or 0.09 mg/kg) was given 15 minutes before nicotine was administered. The post-conditioning test was administered on P52. On P53, the nucleus accumbens (NAcc) was analyzed for brain-derived neurotrophic factor (BDNF) and glial cell-lined neurotrophic factor (GDNF). RESULTS Results revealed that NQ treatment enhanced nicotine CPP, and both doses of CGS 21680 alleviated this enhancement. Nicotine also resulted in a CPP in controls, which was alleviated by both doses of CGS 21680. BDNF closely followed the behavioral results: CGS 21680 alleviated the enhancement in NAcc BDNF in NQ-treated animals, and eliminated the increase in NAcc BDNF produced by nicotine in controls. NQ-treated animals conditioned to nicotine resulted in an increase of NAcc GDNF, but this was eliminated by CGS 21680. Both BDNF and GDNF correlated with CPP performance. CONCLUSIONS Results revealed that an adenosine A2A agonist decreased the rewarding aspects of nicotine and its accompanying neural plasticity changes in a model of SZ.
Collapse
Affiliation(s)
- Wesley Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Heath W Shelton
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
54
|
Penrod RD, Thomsen M, Taniguchi M, Guo Y, Cowan CW, Smith LN. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol Biochem Behav 2020; 188:172818. [PMID: 31682894 PMCID: PMC7202920 DOI: 10.1016/j.pbb.2019.172818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1), an immediate early gene and synaptic regulator, is upregulated following a single cocaine exposure. However, there is not much known regarding Arc/Arg3.1's potential contribution to addiction-relevant behaviors. Despite known learning and memory deficits in contextual fear and water-maze reversal learning tasks, we find that mice lacking Arc/Arg3.1 perform conditioned place preference and operant conditioning involving positive reinforcers (food and cocaine) with little-to-no impairment. However, following normal saline-extinction, wild type (WT) mice show a classic inverted-U dose-response function, while Arc/Arg3.1 knockout (KO) mice fail to adjust their intake across multiple doses. Importantly, Arc/Arg3.1 KO and WT mice behave comparably on an increasing cost task (FR1-FR3; acquisition dose), providing evidence that both groups find cocaine reinforcing. Differences in individuals that drive variations in use patterns and particularly, drug intake levels, are critical as they influence the likelihood of developing dependence. Our data suggest that Arc/Arg3.1 may contribute to addiction as a regulator of drug-taking vulnerability under different drug availability conditions.
Collapse
Affiliation(s)
- Rachel D Penrod
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Morgane Thomsen
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Makoto Taniguchi
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Christopher W Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America.
| |
Collapse
|
55
|
Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of Mesolimbic Brain-Derived Neurotrophic Factor in Depression. Biol Psychiatry 2019; 86:738-748. [PMID: 31327473 PMCID: PMC6814503 DOI: 10.1016/j.biopsych.2019.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted as being critical for neural and synaptic plasticity throughout the nervous system. Recent work has shown that BDNF in the mesolimbic dopamine (DA) circuit, originating in ventral tegmental area DA neurons that project to the nucleus accumbens, is crucial in the development of depressive-like behaviors following exposure to chronic social defeat stress in mice. Whereas BDNF modulates DA signaling in encoding responses to acute defeat stress, BDNF signaling alone appears to be responsible for the behavioral effects after chronic social defeat stress. Very different patterns are seen with another widely used chronic stress paradigm in mice, chronic mild stress (also known as chronic variable or unpredictable stress), where DA signaling, but not BDNF signaling, is primarily responsible for the behavioral effects observed. This review discusses the molecular, cellular, and circuit basis of this dramatic discrepancy, which appears to involve the nature of the stress, its severity and duration, and its effects on distinct cell types within the ventral tegmental area-to-nucleus accumbens mesolimbic circuit.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J. Nestler
- Departments of Pharmacological Sciences and of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence to: Ming-Hu Han, Ph.D. and Eric J. Nestler, MD., Ph.D., Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; and
| |
Collapse
|
56
|
Caffino L, Giannotti G, Messa G, Mottarlini F, Fumagalli F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J Biol Psychiatry 2019; 20:531-544. [PMID: 29380665 DOI: 10.1080/15622975.2018.1433328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives: Long-term abstinence following cocaine exposure up-regulates brain-derived neurotrophic factor (BDNF) expression in the mesocorticolimbic pathway. Given the increased vulnerability to drug abuse typical of adolescence, we hypothesized that changes in BDNF expression may become manifest early after the end of cocaine treatment in the adolescent brain.Methods: Rats received cocaine injections from postnatal day 28 (PND28) to PND42 and the mesocorticolimbic expression of BDNF was measured by real-time PCR and Western blotting at PND43.Results: In the ventral tegmental area, BDNF-tropomyosin receptor kinase B (TrΚB) expression and phosphorylation are enhanced while the intracellular signaling is unaltered. In the nucleus accumbens (NAc) shell and core, BDNF and its signaling were down-regulated. In the prelimbic (PL) cortex, we found reduced BDNF expression and increased phosphoprylation of TrΚB, ERK and AKT. In the infralimbic (IL) cortex, increased BDNF expression was coupled with reduced activity and expression of its downstream targets. To evaluate the role of glutamate on BDNF-independent changes, we investigated the expression of the transporter GLT-1 and the activation of the NMDA receptor subunit GluN2B, which were both increased in the PL cortex while reduced in the IL cortex.Conclusions: Our results show that adolescent cocaine exposure modulates BDNF system early after treatment in the mesocorticolimbic pathway, identifying a complex but specific set of changes that could provide clues for treatment.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Giannotti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Messa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
57
|
Bobadilla AC, Garcia-Keller C, Chareunsouk V, Hyde J, Medina Camacho D, Heinsbroek JA, Kalivas PW. Accumbens brain-derived neurotrophic factor (BDNF) transmission inhibits cocaine seeking. Addict Biol 2019; 24:860-873. [PMID: 29890020 DOI: 10.1111/adb.12638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates a variety of physiological processes, and several studies have explored the role of BDNF in addiction-related brain regions like the nucleus accumbens core (NAcore). We sought to understand the rapid effects of endogenous BDNF on cocaine seeking. Rats were trained to self-administer cocaine and extinguished. We then microinjected two inhibitors of BDNF stimulation of tropomyosin receptor kinase B (TrkB), the non-competitive receptor antagonist ANA-12 and TrkB/Fc, a fusion protein that binds BDNF and prevents TrkB stimulation. Blocking TrkB or inactivating BDNF in NAcore potentiated active lever pressing, showing that endogenous BDNF tone was present and supplying inhibitory tone on cue-induced reinstatement. To determine if exogenous BDNF also negatively regulated reinstatement, BDNF was microinjected into NAcore 15 minutes before cue-induced reinstatement. BDNF decreased cocaine seeking through TrkB receptor binding, but had no effect on inactive lever pressing, spontaneous or cocaine-induced locomotion, or on reinstated sucrose seeking. BDNF-infusion potentiated within trial extinction when microinjected in the NAcore during cue- and context + cue induced reinstatement, and the inhibition of lever pressing lasted at least 3 days post injection. Although decreased reinstatement endured for 3 days when BDNF was administered prior to a reinstatement session, when microinjected before an extinction session or in the home cage, BDNF did not alter subsequent cued-reinstatement. Together, these data show that endogenous BDNF acts on TrKB to provide inhibitory tone on reinstated cocaine seeking, and this effect was recapitulated by exogenous BDNF.
Collapse
Affiliation(s)
- Ana-Clara Bobadilla
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Victoria Chareunsouk
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Jeffrey Hyde
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Western Washington University; Department of Psychology and Program in Behavioral Neuroscience; Bellingham WA USA
| | | | - Jasper A. Heinsbroek
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Peter W. Kalivas
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
58
|
Zhang TY, Shahrokh D, Hellstrom IC, Wen X, Diorio J, Breuillaud L, Caldji C, Meaney MJ. Brain-Derived Neurotrophic Factor in the Nucleus Accumbens Mediates Individual Differences in Behavioral Responses to a Natural, Social Reward. Mol Neurobiol 2019; 57:290-301. [PMID: 31327126 DOI: 10.1007/s12035-019-01699-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/09/2019] [Indexed: 01/17/2023]
Abstract
BDNF-oxytocin interactions in the brain are implicated in mammalian maternal behavior. We found that BDNF gene expression is increased in the hippocampus of rat mothers that show increased pup licking/grooming (high LG mothers) compared to low LG mothers. High LG mothers also showed increased BDNF protein levels in the nucleus accumbens (nAcc). Immunoneutralization of BDNF in the nAcc eliminated the differences in pup LG between high and low LG mothers. Oxytocin antagonist in the ventral hippocampus significantly decreased the frequency of maternal LG behavior. Oxytocin antagonist significantly prevented the oxytocin-induced BDNF gene expression in primary hippocampal cell cultures. We suggest that oxytocin-induced regulation of BDNF in the nAcc provides a neuroendocrine basis for both individual differences in maternal behavior and resilience to the stress of reproduction in female mammals.
Collapse
Affiliation(s)
- Tie-Yuan Zhang
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada. .,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, H4H1R3, Canada. .,Ludmer Centre for Neuroinformatics and Mental health, McGill University, Montreal, Quebec, H4H1R3, Canada.
| | - Dara Shahrokh
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Ian C Hellstrom
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Xianglan Wen
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Josie Diorio
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Lionel Breuillaud
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Christian Caldji
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H1R3, Canada. .,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, H4H1R3, Canada. .,Ludmer Centre for Neuroinformatics and Mental health, McGill University, Montreal, Quebec, H4H1R3, Canada. .,Singapore Institute for Clinical Sciences, Singapore, 117609, Singapore.
| |
Collapse
|
59
|
Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology 2019; 44:1370-1376. [PMID: 30587852 PMCID: PMC6785019 DOI: 10.1038/s41386-018-0305-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Comorbid neuropsychiatric disorders such as addiction and anxiety could involve common underlying mechanisms. One potential mechanism involves epigenetic regulation of histone 3 dimethylation at lysine 9 residues (H3K9me2) by the histone dimethyltransferase G9a. Here we provide evidence that local AAV-RNAi-mediated knockdown of G9a expression in nucleus accumbens shell (NAcSh) of male rats reduces both addictive-related and anxiety-related behaviors. Specifically, G9a knockdown reduces sensitivity to low dose cocaine reinforcement when cocaine is freely available (fixed ratio schedule). Similarly, G9a knockdown reduces motivation for cocaine under higher effort demands (progressive ratio schedule). Following several weeks of forced abstinence, G9a knockdown attenuates extinction responding and reinstatement triggered by either cocaine-priming injections or footshock stress. This decrease in addictive behavior is associated with a long-term reduction in anxiety-like behavior as measured by the elevated plus maze (EPM). G9a knockdown also reduces basal anxiety-like behavior in EPM and marble burying tests in drug-naïve rats. These results complement our previous work showing that increased G9a expression in NAcSh enhances addictive-related and anxiety-related behaviors, indicating that G9a bi-directionally controls these responses. These results also suggest that regulation of G9a-influenced gene expression could be a common epigenetic mechanism for co-morbid anxiety and psychostimulant addiction.
Collapse
|
60
|
Parekh PK, Logan RW, Ketchesin KD, Becker-Krail D, Shelton MA, Hildebrand MA, Barko K, Huang YH, McClung CA. Cell-Type-Specific Regulation of Nucleus Accumbens Synaptic Plasticity and Cocaine Reward Sensitivity by the Circadian Protein, NPAS2. J Neurosci 2019; 39:4657-4667. [PMID: 30962277 PMCID: PMC6561687 DOI: 10.1523/jneurosci.2233-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.
Collapse
Affiliation(s)
- Puja K Parekh
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
- Center for Systems Genetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Yanhua H Huang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and
- Center for Systems Genetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
61
|
Metz VG, Segat HJ, Dias VT, Barcelos RCS, Maurer LH, Stiebe J, Emanuelli T, Burger ME, Pase CS. Omega-3 decreases D1 and D2 receptors expression in the prefrontal cortex and prevents amphetamine-induced conditioned place preference in rats. J Nutr Biochem 2019; 67:182-189. [PMID: 30951972 DOI: 10.1016/j.jnutbio.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Amphetamine (AMPH) abuse is a serious public health problem due to the high addictive potential of this drug, whose use is related to severe brain neurotoxicity and memory impairments. So far, therapies for psychostimulant addiction have had limited efficacy. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have shown beneficial influences on the prevention and treatment of several diseases that affect the central nervous system. Here, we assessed the influence of fish oil (FO), which is rich in n-3 PUFA, on withdrawal and relapse symptoms following re-exposure to AMPH. Male Wistar rats received d,l-AMPH or vehicle in the conditioned place preference (CPP) paradigm for 14 days. Then, half of each experimental group was treated with FO (3 g/kg, p.o.) for 14 days. Subsequently, animals were re-exposed to AMPH-CPP for three additional days, in order to assess relapse behavior. Our findings have evidenced that FO prevented relapse induced by AMPH reconditioning. While FO prevented AMPH-induced oxidative damages in the prefrontal cortex, molecular assays allowed us to observe that it was also able to modulate dopaminergic cascade markers (DAT, TH, VMAT-2, D1R and D2R) in the same brain area, thus preventing AMPH-induced molecular changes. To the most of our knowledge, this is the first study to show a natural alternative tool which is able to prevent psychostimulant relapse following drug withdrawal. This non-invasive and healthy nutraceutical may be considered as an adjuvant treatment in detoxification clinics.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | - Hecson Jesser Segat
- Programa de Pós-Graduação em Bioquímica Toxicológica - Universidade Federal de Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Luana Haselein Maurer
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | - Jéssica Stiebe
- Departamento de Tecnologia e Ciências dos Alimentos - Universidade Federal de Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
62
|
Marton S, González B, Rodríguez-Bottero S, Miquel E, Martínez-Palma L, Pazos M, Prieto JP, Rodríguez P, Sames D, Seoane G, Scorza C, Cassina P, Carrera I. Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Front Pharmacol 2019; 10:193. [PMID: 30890941 PMCID: PMC6411846 DOI: 10.3389/fphar.2019.00193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Ibogaine is an atypical psychedelic alkaloid, which has been subject of research due to its reported ability to attenuate drug-seeking behavior. Recent work has suggested that ibogaine effects on alcohol self-administration in rats are related to the release of Glial cell Derived Neurotrophic Factor (GDNF) in the Ventral Tegmental Area (VTA), a mesencephalic region which hosts the soma of dopaminergic neurons. Although previous reports have shown ibogaine’s ability to induce GDNF expression in rat midbrain, there are no studies addressing its effect on the expression of GDNF and other neurotrophic factors (NFs) such as Brain Derived Neurotrophic Factor (BDNF) or Nerve Growth Factor (NGF) in distinct brain regions containing dopaminergic neurons. In this work, we examined the effect of ibogaine acute administration on the expression of these NFs in the VTA, Prefrontal Cortex (PFC), Nucleus Accumbens (NAcc) and the Substantia Nigra (SN). Rats were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg (I40) or vehicle, and NFs expression was analyzed after 3 and 24 h. At 24 h an increase of the expression of the NFs transcripts was observed in a site and dose dependent manner. Only for I40, GDNF was selectively upregulated in the VTA and SN. Both doses elicited a large increase in the expression of BDNF transcripts in the NAcc, SN and PFC, while in the VTA a significant effect was found only for I40. Finally, NGF mRNA was upregulated in all regions after I40, while I20 showed a selective upregulation in PFC and VTA. Regarding protein levels, an increase of GDNF was observed in the VTA only for I40 but no significant increase for BDNF was found in all the studied areas. Interestingly, an increase of proBDNF was detected in the NAcc for both doses. These results show for the first time a selective increase of GDNF specifically in the VTA for I40 but not for I20 after 24 h of administration, which agrees with the effective dose found in previous self-administration studies in rodents. Further research is needed to understand the contribution of these changes to ibogaine’s ability to attenuate drug-seeking behavior.
Collapse
Affiliation(s)
- Soledad Marton
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno González
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Rodríguez-Bottero
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Rodríguez
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
63
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
64
|
7,8-Dihydroxyflavone blocks the development of behavioral sensitization to MDPV, but not to cocaine: Differential role of the BDNF-TrkB pathway. Biochem Pharmacol 2019; 163:84-93. [PMID: 30738029 DOI: 10.1016/j.bcp.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) acts as a dopamine transporter blocker and exerts powerful psychostimulant effects. In this study we aimed to investigate the bidirectional cross-sensitization between MDPV and cocaine, as well as to evaluate the role of the BDNF-TrkB signaling pathway in the development of locomotor sensitization to both drugs. Mice were treated with MDPV (1.5 mg/kg) or cocaine (10 or 15 mg/kg) once daily for 5 days. After withdrawal (10 days), animals were challenged with cocaine (8 mg/kg) or MDPV (1 mg/kg). For biochemical determinations, MDPV (1.5 mg/kg) or cocaine (15 mg/kg) were administered acutely or repeatedly, and BDNF, D3R and G9a transcription levels as well as pro- and mature BDNF protein levels were determined. Our results demonstrate that repeated administration of MDPV or cocaine sensitizes to cocaine and MDPV locomotor effects. After an acute or a repeated exposure to MDPV, cortical mRNA BDNF levels were increased, while a decrease in mBDNF protein levels in the nucleus accumbens 2 h after repeated exposure was evidenced. Interestingly, such decline was involved in the development of locomotor sensitization, thus the pretreatment with 7,8-dihydroxyflavone (10 mg/kg), a TrkB agonist, blocked the development of sensitization to MDPV but not to cocaine, for which no changes in the BDNF-TrkB signaling pathway were observed at early withdrawal. In conclusion, a bidirectional cross-sensitization between MDPV and cocaine was evidenced. Our findings suggest that decreased BDNF-TrkB signaling has an important role in the behavioral sensitization to MDPV, pointing TrkB modulation as a target to prevent MDPV sensitization.
Collapse
|
65
|
López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2019; 258:231-263. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations - where DNA is modified to increase or decrease the probability of gene expression at key genes - have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
66
|
Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 2019; 44:166-183. [PMID: 29946108 PMCID: PMC6235836 DOI: 10.1038/s41386-018-0125-6] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
There is increasing evidence in humans and laboratory animals for biologically based sex differences in every phase of drug addiction: acute reinforcing effects, transition from occasional to compulsive use, withdrawal-associated negative affective states, craving, and relapse. There is also evidence that many qualitative aspects of the addiction phases do not differ significantly between males and females, but one sex may be more likely to exhibit a trait than the other, resulting in population differences. The conceptual framework of this review is to focus on hormonal, chromosomal, and epigenetic organizational and contingent, sex-dependent mechanisms of four neural systems that are known-primarily in males-to be key players in addiction: dopamine, mu-opioid receptors (MOR), kappa opioid receptors (KOR), and brain-derived neurotrophic factor (BDNF). We highlight data demonstrating sex differences in development, expression, and function of these neural systems as they relate-directly or indirectly-to processes of reward and addictive behavior, with a focus on psychostimulants and opioids. We identify gaps in knowledge about how these neural systems interact with sex to influence addictive behavior, emphasizing throughout that the impact of sex can be highly nuanced and male/female data should be reported regardless of the outcome.
Collapse
Affiliation(s)
- Jill B Becker
- Department of Psychology and the Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
67
|
Walker DM, Cates HM, Loh YHE, Purushothaman I, Ramakrishnan A, Cahill KM, Lardner CK, Godino A, Kronman HG, Rabkin J, Lorsch ZS, Mews P, Doyle MA, Feng J, Labonté B, Koo JW, Bagot RC, Logan RW, Seney ML, Calipari ES, Shen L, Nestler EJ. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biol Psychiatry 2018; 84:867-880. [PMID: 29861096 PMCID: PMC6202276 DOI: 10.1016/j.biopsych.2018.04.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD). METHODS We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context. RNA sequencing was conducted on six interconnected brain reward regions. Using pattern analysis of gene expression and factor analysis of behavior, we identified genes that are strongly associated with addiction-related behaviors and uniquely altered by a history of cocaine SA. We then identified potential upstream regulators of these genes. RESULTS We focused on three patterns of gene expression that reflect responses to 1) acute cocaine, 2) context re-exposure, and 3) drug + context re-exposure. These patterns revealed region-specific regulation of gene expression. Further analysis revealed that each of these gene expression patterns correlated with an addiction index-a composite score of several addiction-like behaviors during cocaine SA-in a region-specific manner. Cyclic adenosine monophosphate response element binding protein and nuclear receptor families were identified as key upstream regulators of genes associated with such behaviors. CONCLUSIONS This comprehensive picture of transcriptome-wide regulation in the brain's reward circuitry by cocaine SA and prolonged WD provides new insight into the molecular basis of cocaine addiction, which will guide future studies of the key molecular pathways involved.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah M Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kelly M Cahill
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Casey K Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hope G Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacqui Rabkin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philipp Mews
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marie A Doyle
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan W Logan
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
68
|
Ornell F, Hansen F, Schuch FB, Pezzini Rebelatto F, Tavares AL, Scherer JN, Valerio AG, Pechansky F, Paim Kessler FH, von Diemen L. Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug Alcohol Depend 2018; 193:91-103. [PMID: 30347311 DOI: 10.1016/j.drugalcdep.2018.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with several neurodegenerative and psychiatric disorders. It is not clear, however, whether BDNF levels are modified in substance use disorders (SUDs). METHODS We conducted a systematic search of electronic databases to identify studies comparing peripheral plasma or serum BDNF levels in adults with SUDs vs. non-user controls. Forty studies were included in the meta-analysis involving a total of 2238 participants with SUDs and 2574 controls. RESULTS After trim and fill adjustment, current drug users presented lower serum BDNF levels (SMD = -0.99, 95%CI -1.40 to -0.58, I2 = 95.9) than non-user controls. However, this difference disappears during withdrawal. Studies using serum or plasma BDNF samples have shown different results. Subgroup analysis revealed lower levels of serum BDNF in alcohol users (SMD = -0.70, 95%CI -1.15 to -0.25, I2 = 89.81) and crack/cocaine users (SMD = -1.78, 95%CI -2.92 to -0.65, I2 = 97.59) than controls. Meta-regression analysis revealed that gender, age, and age of first use moderate the effects of drug use in peripheral BDNF levels. CONCLUSIONS Peripheral BDNF levels are decreased in the serum, but not the plasma, of active drug users. Altogether, these findings suggest that BDNF levels may be related to acute use and addiction severity and also point to BDNF's potential utility as a biomarker in this population.
Collapse
Affiliation(s)
- Felipe Ornell
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Fernanda Hansen
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Barreto Schuch
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade La Salle, Porto Alegre, RS, Brazil
| | - Fernando Pezzini Rebelatto
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Ana Laura Tavares
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Juliana Nichterwitz Scherer
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andrei Garziera Valerio
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix Henrique Paim Kessler
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
69
|
Li C, White AC, Schochet T, McGinty JF, Frantz KJ. ARC and BDNF expression after cocaine self-administration or cue-induced reinstatement of cocaine seeking in adolescent and adult male rats. Addict Biol 2018; 23:1233-1241. [PMID: 30421552 DOI: 10.1111/adb.12689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/01/2022]
Abstract
Recreational drug use peaks during adolescence. Our research with adolescent vs adult male rats, however, shows that rats taking cocaine as adolescents have lower levels of cue-induced reinstatement of drug-seeking than adults, despite similar levels of intravenous (i.v.) cocaine self-administration. Lower rates of reinstatement in younger rats could be explained by higher levels of brain plasticity. Two neuroplasticity-related genes, activity-regulated cytoskeletal-associated gene (Arc) and brain-derived neurotrophic factor (Bdnf), influence cocaine self-administration and cue-induced reinstatement. We tested whether reinstatement of cocaine seeking correlates with expression of these genes in reinforcement-related brain regions. Adolescent and adult male rats (postnatal day 35 or 83-95 at start) were allowed to acquire lever-pressing maintained by i.v. infusions of cocaine in daily 2-h sessions over 13 days. At one of three experimental time points, rats were sacrificed and tissue collected to analyze Arc and Bdnf mRNA by in situ hybridization in the entire medial prefrontal cortex and entire nucleus accumbens, as well as relevant subregions: prelimbic cortex, infralimbic cortex, and nucleus accumbens core and shell. Despite taking similar amounts of cocaine, adolescents reinstated less than adults. Gene expression was most notable in the prelimbic cortex, was generally higher in adolescent-onset groups, and was higher with longer abstinence. These data partially support the hypothesis that higher levels of Arc and/or Bdnf gene expression in reinforcement-related brain regions of younger animals contribute to lower rates of extinction responding and/or reinstatement. Future studies should include mechanistic analysis of Arc, Bdnf, and their signaling pathways in age-dependent effects of cocaine.
Collapse
Affiliation(s)
- Chen Li
- Neuroscience Institute; Georgia State University; Atlanta GA USA
| | | | - Terri Schochet
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Kyle J. Frantz
- Neuroscience Institute; Georgia State University; Atlanta GA USA
| |
Collapse
|
70
|
Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Mol Neurobiol 2018; 56:3603-3615. [PMID: 30155791 PMCID: PMC6477015 DOI: 10.1007/s12035-018-1318-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.
Collapse
|
71
|
Overexpression of neuronal RNA-binding protein HuD increases reward induced reinstatement of an instrumental response. Neurosci Lett 2018; 683:119-124. [PMID: 29940328 DOI: 10.1016/j.neulet.2018.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022]
Abstract
The neuronal RNA-binding protein HuD is involved in synaptic plasticity and the molecular mechanisms of learning and memory. Previously, we have shown that HuD is upregulated after both spatial and addiction-associated forms of learning, such as conditioned place preference. However, what role HuD plays in non-drug dependent learning and memory is not fully understood. In order to elucidate the role that HuD plays in non-drug appetitive behavior, we assessed mice over-expressing HuD (HuDOE) throughout the forebrain on the acquisition of an instrumental response for a non-sucrose food reward utilizing a touch-screen paradigm. Next, we examined whether HuD level would alter the extinction or reward-induced reinstatement of responding. We found that HuDOE acquired and extinguished the instrumental response at rates similar to control littermates with no significant alterations in secondary measures of motor behavior or motivation. However, HuDOE reinstated their responding for food reward at rates significantly higher than control animals after a brief presentation of reward. These results suggest that HuD positively regulates the reinstatement of natural reward seeking and supports the role of HuD in forms of learning and memory associated with seeking of appetitive rewards.
Collapse
|
72
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
73
|
Scala F, Nenov MN, Crofton EJ, Singh AK, Folorunso O, Zhang Y, Chesson BC, Wildburger NC, James TF, Alshammari MA, Alshammari TK, Elfrink H, Grassi C, Kasper JM, Smith AE, Hommel JD, Lichti CF, Rudra JS, D'Ascenzo M, Green TA, Laezza F. Environmental Enrichment and Social Isolation Mediate Neuroplasticity of Medium Spiny Neurons through the GSK3 Pathway. Cell Rep 2018; 23:555-567. [PMID: 29642012 PMCID: PMC6150488 DOI: 10.1016/j.celrep.2018.03.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 3β (GSK3β) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by environmentally enriched (EC) or isolated (IC) conditions-models for resilience and vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low levels of GSK3β and SCN8A mRNA as a protective phenotype associated with reduced excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that GSK3β and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3β prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3β with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3β. A GSK3β-Nav1.6T1936 competing peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3β regulation of Nav1.6 as a biosignature of MSNs maladaptive plasticity.
Collapse
Affiliation(s)
- Federico Scala
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Elizabeth J Crofton
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Yafang Zhang
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Brent C Chesson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Norelle C Wildburger
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thomas F James
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Hannah Elfrink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Bench Tutorials Program: Scientific Research and Design, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - James M Kasper
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Ashley E Smith
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA; Cell Biology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Cheryl F Lichti
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jai S Rudra
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Thomas A Green
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
74
|
Li Y, Xia B, Li R, Yin D, Wang Y, Liang W. Expression of brain-derived neurotrophic factors, neurotrophin-3, and neurotrophin-4 in the nucleus accumbens during heroin dependency and withdrawal. Neuroreport 2018; 28:654-660. [PMID: 28538519 PMCID: PMC5491224 DOI: 10.1097/wnr.0000000000000810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal.
Collapse
Affiliation(s)
- Yixin Li
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, China
| | | | | | | | | | | |
Collapse
|
75
|
In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 2018; 23:434-443. [PMID: 28044061 PMCID: PMC5495632 DOI: 10.1038/mp.2016.238] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3'UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.
Collapse
|
76
|
Brain-derived neurotrophic factor (BDNF) determines a sex difference in cue-conditioned alcohol seeking in rats. Behav Brain Res 2018; 339:73-78. [DOI: 10.1016/j.bbr.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/23/2022]
|
77
|
Oliver RJ, Brigman JL, Bolognani F, Allan AM, Neisewander JL, Perrone-Bizzozero NI. Neuronal RNA-binding protein HuD regulates addiction-related gene expression and behavior. GENES BRAIN AND BEHAVIOR 2018; 17:e12454. [PMID: 29283498 DOI: 10.1111/gbb.12454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
The neuronal RNA-binding protein HuD is involved in synaptic plasticity and learning and memory mechanisms. These effects are thought to be due to HuD-mediated stabilization and translation of target mRNAs associated with plasticity. To investigate the potential role of HuD in drug addiction, we first used bioinformatics prediction algorithms together with microarray analyses to search for specific genes and functional networks upregulated within the forebrain of HuD overexpressing mice (HuDOE ). When this set was further limited to genes in the knowledgebase of addiction-related genes database (KARG) that contains predicted HuD-binding sites in their 3' untranslated regions (3'UTRs), we found that HuD regulates networks that have been associated with addiction-like behavior. These genes included Bdnf and Camk2a, 2 previously validated HuD targets. Since addiction is hypothesized to be a disorder stemming from altered gene expression causing aberrant plasticity, we sought to test the role of HuD in cocaine conditioned placed preference (CPP), a model of addiction-related behaviors. HuD mRNA and protein were upregulated by CPP within the nucleus accumbens of wild-type C57BL/6J mice. These changes were associated with increased expression of Bdnf and Camk2a mRNA and protein. To test this further, we trained HuDOE and wild-type mice in CPP and found that HuDOE mice showed increased cocaine CPP compared with controls. This was also associated with elevated expression of HuD target mRNAs and proteins, CaMKIIα and BDNF. These findings suggest HuD involvement in addiction-related behaviors such as cocaine conditioning and seeking, through increased plasticity-related gene expression.
Collapse
Affiliation(s)
- R J Oliver
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - F Bolognani
- Roche Pharma Research and Early Development; Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - A M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - J L Neisewander
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - N I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
78
|
Milivojevic V, Sinha R. Central and Peripheral Biomarkers of Stress Response for Addiction Risk and Relapse Vulnerability. Trends Mol Med 2018; 24:173-186. [PMID: 29396148 DOI: 10.1016/j.molmed.2017.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023]
Abstract
Substance use disorders (SUDs) are marked by heterogeneity in clinical symptomatology and high relapse rates following treatment. Here, we describe specific peripheral and central stress responses associated with the pathophysiology of SUDs. We outline potential stress response measures, including hypothalamus-pituitary-adrenal axis markers, autonomic responses, and central structural and functional brain alterations that could be exploited as putative biomarkers in SUDs. We posit that stress responses can be predictive of both the development of SUDs and their high relapsing nature. We examine their potential as candidate biomarkers, as well as the remaining challenges in developing and implementing their application for the prevention and treatment of SUDs.
Collapse
Affiliation(s)
- Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| | - Rajita Sinha
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, 2 Church Street South, Suite 209, New Haven, CT 06519, USA.
| |
Collapse
|
79
|
Mews P, Walker DM, Nestler EJ. Epigenetic Priming in Drug Addiction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 83:131-139. [PMID: 30936392 PMCID: PMC6764605 DOI: 10.1101/sqb.2018.83.037663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Drug addiction is a chronic relapsing brain disorder that is characterized by compulsive drug seeking and continued use despite negative outcomes. Current pharmacological therapies target neuronal receptors or transporters upon which drugs of abuse act initially, yet these treatments remain ineffective for most individuals and do not prevent disease relapse after abstinence. Drugs of abuse, in addition to their acute effects, cause persistent plasticity after repeated use, involving dysregulated gene expression in the brain's reward regions, which are thought to mediate the persistent behavioral abnormalities that characterize addiction. Emerging evidence implicates epigenetic priming as a key mechanism that underlies the long-lasting alterations in neuronal gene regulation, which can remain latent until triggered by re-exposure to drug-associated stimuli or the drug itself. Thus, to effectively treat drug addiction, we must identify the precise epigenetic mechanisms that establish and preserve the drug-induced pathology of the brain reward circuitry.
Collapse
Affiliation(s)
- Philipp Mews
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Deena M Walker
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric J Nestler
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
80
|
Règue-Guyon M, Lanfumey L, Mongeau R. Neuroepigenetics of Neurotrophin Signaling: Neurobiology of Anxiety and Affective Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:159-193. [DOI: 10.1016/bs.pmbts.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
Sartor GC, Powell SK, Velmeshev D, Lin DY, Magistri M, Wiedner HJ, Malvezzi AM, Andrade NS, Faghihi MA, Wahlestedt C. Cocaine alters Homer1 natural antisense transcript in the nucleus accumbens. Mol Cell Neurosci 2017; 85:183-189. [PMID: 29055697 PMCID: PMC5698162 DOI: 10.1016/j.mcn.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dmitry Velmeshev
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - David Y Lin
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Marco Magistri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Mohammad A Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
82
|
High Fat Diet- Induced Neurotoxicity Alters Following vitamin E and C Administration in Hippocampus of Male Rats. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/gct.58383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
83
|
Ren W, Luan X, Zhang J, Gutteea P, Cai Y, Zhao J, Gu Y, Wu C, Su H, Tao J, Xie Y, Lv D, Feng L, He J. Brain-derived neurotrophic factor levels and depression during methamphetamine withdrawal. J Affect Disord 2017. [PMID: 28647666 DOI: 10.1016/j.jad.2017.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Depression symptoms is highly comorbid with methamphetamine (METH) dependence. Except for the role in the pathophysiology of depression symptoms, brain-derived neurotrophic factor (BDNF) is also involved in the METH dependence. The present study aims to explore whether BDNF plays a role in the development of depression symptoms during METH withdrawal. METHODS We recruited 179 patients with METH dependence who were followed up for two weeks. Ultimately, 131 (73.2%) patients finished the follow-up. Besides, 90 healthy controls were also recruited. Serum BDNF levels were measured by DuoSet ELISA Development System upon admission. The short form (13 items) of the Beck Depression Inventory (BDI) and Amphetamine Withdrawal Questionnaire (AWQ) were used to measure the depression and withdrawal symptoms. Patients with BDI score ≥ 8 were identified to have depression symptoms. RESULTS Of the 131 patients, 64 (48.9%) were identified to have depression symptoms at the two-week endpoint. Patients with depression symptoms showed significantly lower BDNF levels than those with no depression symptoms. Serum BDNF levels (≤ 1251.0pg/ml) were independently associated with the development of depression symptoms during METH withdrawal (OR = 3.50, 95% CI, 1.14-10.73, p = 0.028). LIMITATIONS BDNF levels were tested in serum but not in brain and the baseline BDI and AWQ scores between the depression and non-depression groups were not matched. Besides, the follow-up time was relatively short. CONCLUSIONS Our study demonstrated that patients with serum BDNF levels ≤ 1251.0pg/ml had higher risk of depression symptoms during METH withdrawal.
Collapse
Affiliation(s)
- Wenwei Ren
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoqian Luan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jie Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Priyanka Gutteea
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiyun Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Gu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaowen Wu
- Department of Neurology, Ruian People's Hospital, Wenzhou 325000, China
| | - Hang Su
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingyan Tao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dezhao Lv
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liang Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
84
|
Taurine restores the exploratory behavior following alcohol withdrawal and decreases BDNF mRNA expression in the frontal cortex of chronic alcohol-treated rats. Pharmacol Biochem Behav 2017; 161:6-12. [DOI: 10.1016/j.pbb.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022]
|
85
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
86
|
Haghparast A, Fatahi Z, Arezoomandan R, Karimi S, Taslimi Z, Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. PROGRESS IN BRAIN RESEARCH 2017; 235:139-154. [PMID: 29054286 DOI: 10.1016/bs.pbr.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since its first discovery in 1998, it has become clear that the orexinergic system plays an important role in regulating a number of functions including food, sex, social connections, and most prominently reward-related behaviors. Orexinergic neurons in the lateral hypothalamus project extensively to other brain areas, two most important of which are the ventral tegmental area and the nucleus accumbens that are involved in reward processing. In this review, we have presented the work in our laboratory along with the work of others and have discussed the possible functions we can infer from the research. We discuss the anatomy of the orexinergic system and its components followed by a presentation of other connected brain areas. The second part of this review discusses observed results from the morphine conditioned place preference test that sheds light on the possible role of the involved areas in reward processing. The complex circuits involved in reward processing are only beginning to be understood and we need to deepen our understanding regarding the nature of the interactions between all brain areas involved.
Collapse
Affiliation(s)
- Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Fatahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Arezoomandan
- School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Taslimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
87
|
Jabbi M, Cropp B, Nash T, Kohn P, Kippenhan JS, Masdeu JC, Mattay R, Kolachana B, Berman KF. BDNF Val 66Met polymorphism tunes frontolimbic circuitry during affective contextual learning. Neuroimage 2017; 162:373-383. [PMID: 28867340 DOI: 10.1016/j.neuroimage.2017.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/24/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022] Open
Abstract
Adaptive learning impairments are common in cognitive and behavioral disorders, but the neurogenetic mechanisms supporting human affective learning are poorly understood. We designed a higher-order contextual learning task in which healthy participants genotyped for the Val66Met polymorphism of the brain derived neurotropic factor gene (BDNF) were required to choose the member of a picture pair most congruent with the emotion in a previously-viewed facial expression video in order to produce an advantageous monetary outcome. Functional magnetic resonance imaging (fMRI) identified frontolimbic blood oxygenation level dependent (BOLD) reactivity that was associated with BDNF Val66Met genotype during all three phases of the learning task: aversive and reward-predictive learning, contextually-challenging decision-making, and choice-related monetary loss-avoidance and gain outcomes. Relative to Val homozygotes, Met carriers showed attenuated ventromedial prefrontal response to predictive affective cues, dorsolateral prefrontal signaling that depended on decision difficulty, and enhanced ventromedial prefrontal reactivity that was specific to loss-avoidance. These findings indicate that the BDNF Val66Met polymorphism is associated with functional tuning of behaviorally-relevant frontolimbic circuitry, particularly involving the ventromedial prefrontal cortex, during higher-order learning.
Collapse
Affiliation(s)
- Mbemba Jabbi
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA; Department of Psychiatry, Dell Medical School, University of Texas at Austin, TX 78712, USA.
| | - Brett Cropp
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip Kohn
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Nantz National Alzheimer Center, 6560 Fannin St, Suite 802, Houston, TX 77030, USA
| | - Raghav Mattay
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhaskar Kolachana
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
88
|
BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors. Proc Natl Acad Sci U S A 2017; 114:9469-9474. [PMID: 28808012 DOI: 10.1073/pnas.1702441114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.
Collapse
|
89
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
90
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
91
|
Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex. J Neurosci 2017; 36:8149-59. [PMID: 27488635 DOI: 10.1523/jneurosci.2711-14.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/10/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling yields divergent effects, depending on the brain region, thereby questioning the viability of systemic TrkB targeting for the treatment of cocaine use disorders. Our study provides first-time evidence that systemic administration of a brain-penetrant TrkB antagonist (tat-cyclotraxin-B) reduces several behavioral measures of cocaine dependence, without altering motor performance or reinforcement by a sweet palatable solution. In addition, although cocaine self-administration produced opposite effects on TrkB signaling in the nucleus accumbens and prefrontal cortex, tat-cyclotraxin-B administration normalized these cocaine-induced changes in both brain regions.
Collapse
|
92
|
Abstract
Understanding the brain circuitry that underlies reward is critical to improve treatment for many common health issues, including obesity, depression, and addiction. Here we focus on insights into the organization and function of reward circuitry and its synaptic and structural adaptations in response to cocaine exposure. While the importance of certain circuits, such as the mesocorticolimbic dopamine pathway, are well established in drug reward, recent studies using genetics-based tools have revealed functional changes throughout the reward circuitry that contribute to different facets of addiction, such as relapse and craving. The ability to observe and manipulate neuronal activity within specific cell types and circuits has led to new insight into not only the basic connections between brain regions, but also the molecular changes within these specific microcircuits, such as neurotrophic factor and GTPase signaling or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse. Excitingly, these insights from preclinical rodent work are now being translated into the clinic, where transcranial magnetic simulation and deep brain stimulation therapies are being piloted in human cocaine dependence. Thus, this review seeks to summarize current understanding of the major brain regions implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these regions, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Sarah Cooper
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - A J Robison
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Michelle S Mazei-Robison
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
93
|
Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharmacol Biochem Behav 2017; 159:12-17. [PMID: 28669705 DOI: 10.1016/j.pbb.2017.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
Prior studies have shown that drug-seeking behaviors increase, rather than dissipate, over weeks to months after withdrawal from drug self-administration. This phenomenon - termed incubation - suggests that drug-craving responses elicited by conditioned environmental or discrete cues may intensify over pronged abstinence. While most of this work is conducted in rats with intravenous drug self-administration models, there is less evidence for incubation in mice that have greater utility for molecular genetic analysis and perturbation. We tested whether incubation of cocaine-seeking behavior is evident in C57BL/6J mice following 3weeks (5days/week) of cocaine self-administration in 2h self-administration sessions. We compared cocaine-seeking (drug-paired lever) responses 1, 7, or 28days after withdrawal from cocaine self-administration, and over similar times following sucrose pellet self-administration. We found that the initial re-exposure to the self-administration test chambers elicited increased reward-seeking behavior in both sucrose and cocaine self-administering mice, with maximal responses found at 7days compared to 1 or 28days after self-administration with either reinforcer. However, following extinction training, reinstatement of cocaine seeking reinforced by response-contingent presentation of reward-associated cues (tone/light) was significantly higher after 28days compared to 1 or 7days following cocaine self-administration. In contrast, cue-induced reinstatement of sucrose-paired lever pressing did not increase over this time frame, demonstrating a drug-specific incubation effect not seen with a natural reward. Thus, C57BL/6J mice display incubation of cue-induced reinstatement of cocaine seeking similar to findings with rats, but only show a transient incubation of context-induced cocaine seeking.
Collapse
|
94
|
Nubukpo P, Ramoz N, Girard M, Malauzat D, Gorwood P. Determinants of Blood Brain-Derived Neurotrophic Factor Blood Levels in Patients with Alcohol Use Disorder. Alcohol Clin Exp Res 2017; 41:1280-1287. [PMID: 28485899 DOI: 10.1111/acer.13414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Blood brain-derived neurotrophic factor (BDNF) levels are influenced by both addiction and mood disorders, as well as somatic conditions, gender, and genetic polymorphisms, leading to widely varying results. Depressive symptoms and episodes are frequently observed in patients with alcohol use disorder, and vary widely over time, making it a challenge to determine which aspects are specifically involved in variations of serum BDNF levels in this population. METHODS We assessed 227 patients with alcohol dependence involved in a detoxification program, at baseline and after a follow-up of 6 months, for the Alcohol Use Disorders Identification Test score, the length of alcohol dependence, and the number of past detoxification programs. The Beck Depression Inventory and information on current tobacco and alcohol use, suicidal ideation, body mass index, age, gender, and psychotropic treatments were also collected. Serum BDNF (ELISA) and 2 genetic polymorphisms of the BDNF gene (Val33Met and rs962369) were analyzed. RESULTS The presence of the Met allele, 2 markers of the history of alcohol dependence (gamma glutamyl transferase and the number of past treatments in detoxification programs), and the presence of a depressive episode (but not depressive score) were significantly associated with the 2 blood levels of BDNF at baseline and after 6 months. After controlling for baseline BDNF levels, the presence of the Met allele and an ongoing depressive episode were the only variables associated with changes in BNDF levels after 6 months. CONCLUSIONS Low serum BDNF levels are associated with characteristics related to alcohol consumption and mood disorders, and variants of the BDNF gene in alcohol use disorder patients. The factors that most strongly influenced changes in serum BDNF levels following treatment in an alcohol detoxification program were variants of the BDNF gene and ongoing depression.
Collapse
Affiliation(s)
- Philippe Nubukpo
- Pôle d'Addictologie, Centre Hospitalier Esquirol, Limoges, France.,Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France
| | - Nicolas Ramoz
- Inserm UMR894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Murielle Girard
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France
| | - Dominique Malauzat
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France
| | - Philip Gorwood
- Inserm UMR894, Centre de Psychiatrie et Neurosciences, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, Université Paris Descartes, Paris Cedex, France
| |
Collapse
|
95
|
Gao XJ, Yuan K, Cao L, Yan W, Luo YX, Jian M, Liu JF, Fang Q, Wang JS, Han Y, Shi J, Lu L. AMPK signaling in the nucleus accumbens core mediates cue-induced reinstatement of cocaine seeking. Sci Rep 2017; 7:1038. [PMID: 28432301 PMCID: PMC5430902 DOI: 10.1038/s41598-017-01043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Relapse to drug seeking can be caused by exposure to drug-associated cues, provoking drug craving even after prolonged abstinence. Recent studies demonstrated that AMP-activated protein kinase (AMPK) regulates neuronal morphology and membrane excitability in neurons. Here, we investigated the role of AMPK activity in the nucleus accumbens (NAc) in relapse to cocaine seeking. We found that exposure to drug-related cues reinstated cocaine-seeking behavior and increased AMPK and p70s6k phosphorylation in the NAc core but not shell. Augmenting AMPK activity by intra-NAc core infusions of the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) or adenovirus expressing constitutively active subunits of AMPK decreased cue-induced reinstatement of cocaine seeking and inhibited the mammalian target of rapamycin complex 1 (mTORC1) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways. In contrast, inhibition of AMPK activity by intra-NAc core infusions of the AMPK inhibitor compound C or adenovirus expressing dominant-negative subunits of AMPK increased cue-induced reinstatement of cocaine seeking and enhanced mTORC1 and ERK1/2 activity. The regulation of AMPK activity in the NAc shell had no effect on cue-induced cocaine seeking. Altogether, these results indicate that AMPK activity in the NAc core is critical for the cue-induced reinstatement of cocaine seeking, which may be mediated by mTORC1 and ERK1/2 signaling.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lu Cao
- Affiliated Hospital and School of Pharmacy of Guizhou Medical University, Guiyang, China
| | - Wei Yan
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi-Xiao Luo
- Department of Pharmacy, Medical College, Hunan Normal University, Changsha, China
| | - Min Jian
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Qin Fang
- Affiliated Hospital and School of Pharmacy of Guizhou Medical University, Guiyang, China
| | - Ji-Shi Wang
- Affiliated Hospital and School of Pharmacy of Guizhou Medical University, Guiyang, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China. .,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China. .,Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China. .,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
96
|
Fredriksson I, Adhikary S, Steensland P, Vendruscolo LF, Bonci A, Shaham Y, Bossert JM. Prior Exposure to Alcohol Has No Effect on Cocaine Self-Administration and Relapse in Rats: Evidence from a Rat Model that Does Not Support the Gateway Hypothesis. Neuropsychopharmacology 2017; 42:1001-1011. [PMID: 27649640 PMCID: PMC5506787 DOI: 10.1038/npp.2016.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
The gateway hypothesis posits that initial exposure to legal drugs promotes subsequent addiction to illicit drugs. However, epidemiological studies are correlational and cannot rule out the alternative hypothesis of shared addiction vulnerability to legal and illegal drugs. We tested the gateway hypothesis using established rat alcohol exposure procedures and cocaine self-administration and reinstatement (relapse) procedures. We gave Wistar or alcohol-preferring (P) rats intermittent access to water or 20% alcohol in their homecage for 7 weeks (three 24-h sessions/week). We also exposed Wistar rats to air or intoxicating alcohol levels in vapor chambers for 14-h/day for 7 weeks. We then tested the groups of rats for acquisition of cocaine self-administration using ascending cocaine doses (0.125, 0.25, 0.5, 1.0 mg/kg/infusion) followed by a dose-response curve after acquisition of cocaine self-administration. We then extinguished lever pressing and tested the rats for reinstatement of drug seeking induced by cocaine-paired cues and cocaine priming (0, 2.5, 5, 10 mg/kg, i.p.). Wistar rats consumed moderate amounts of alcohol (4.6 g/kg/24 h), P rats consumed higher amounts of alcohol (7.6 g/kg/24 h), and Wistar rats exposed to alcohol vapor had a mean blood alcohol concentration of 176.2 mg/dl during the last week of alcohol exposure. Alcohol pre-exposure had no effect on cocaine self-administration, extinction responding, and reinstatement of drug seeking. Pre-exposure to moderate, high, or intoxicating levels of alcohol had no effect on cocaine self-administration and relapse to cocaine seeking. Our data do not support the notion that alcohol is a gateway drug to cocaine.
Collapse
Affiliation(s)
- Ida Fredriksson
- Cellular Neurobiology Branch, IRP-NIDA, NIH, Baltimore, MD, USA,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Sweta Adhikary
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Pia Steensland
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Antonello Bonci
- Cellular Neurobiology Branch, IRP-NIDA, NIH, Baltimore, MD, USA,Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA,NIDA, IRP Behavioral Neuroscience Branch 251 Bayview Blvd, Suite 200, Baltimore, MD 21044, USA, Tel: +1 410 740-2723, Fax: +1 410 740-2727, E-mail:
| | | |
Collapse
|
97
|
Drug Addiction and DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:105-125. [DOI: 10.1007/978-3-319-53889-1_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
98
|
|
99
|
Gauthier JM, Lin A, Nic Dhonnchadha BÁ, Spealman RD, Man HY, Kantak KM. Environmental enrichment facilitates cocaine-cue extinction, deters reacquisition of cocaine self-administration and alters AMPAR GluA1 expression and phosphorylation. Addict Biol 2017; 22:152-162. [PMID: 26384129 DOI: 10.1111/adb.12313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
This study investigated the combination of environmental enrichment (EE) with cocaine-cue extinction training on reacquisition of cocaine self-administration. Rats were trained under a second-order schedule for which responses were maintained by cocaine injections and cocaine-paired stimuli. During three weekly extinction sessions, saline was substituted for cocaine but cocaine-paired stimuli were presented. Rats received 4-h periods of EE at strategic time points during extinction training, or received NoEE. Additional control rats received EE or NoEE without extinction training. One week later, reacquisition of cocaine self-administration was evaluated for 15 sessions, and then GluA1 expression, a cellular substrate for learning and memory, was measured in selected brain regions. EE provided both 24 h before and immediately after extinction training facilitated extinction learning and deterred reacquisition of cocaine self-administration for up to 13 sessions. Each intervention by itself (EE alone or extinction alone) was ineffective, as was EE scheduled at individual time points (EE 4 h or 24 h before, or EE immediately or 6 h after, each extinction training session). Under these conditions, rats rapidly reacquired baseline rates of cocaine self-administration. Cocaine self-administration alone decreased total GluA1 and/or pSer845GluA1 expression in basolateral amygdala and nucleus accumbens. Extinction training, with or without EE, opposed these changes and also increased total GluA1 in ventromedial prefrontal cortex and dorsal hippocampus. EE alone increased pSer845GluA1 and EE combined with extinction training decreased pSer845GluA1 in ventromedial prefrontal cortex. EE might be a useful adjunct to extinction therapy by enabling neuroplasticity that deters relapse to cocaine self-administration.
Collapse
Affiliation(s)
- Jamie M. Gauthier
- Department of Psychological and Brain Sciences; Boston University; Boston MA USA
| | - Amy Lin
- Department of Biology; Boston University; Boston MA USA
| | | | - Roger D. Spealman
- Department of Psychiatry; McLean Hospital/Harvard Medical School; Belmont MA USA
| | - Heng-Ye Man
- Department of Biology; Boston University; Boston MA USA
| | - Kathleen M. Kantak
- Department of Psychological and Brain Sciences; Boston University; Boston MA USA
| |
Collapse
|
100
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|