51
|
Wen J, Chen Z, Zhao M, Zu S, Zhao S, Wang S, Zhang X. Cell Deformation at the Air-Liquid Interface Evokes Intracellular Ca 2+ Increase and ATP Release in Cultured Rat Urothelial Cells. Front Physiol 2021; 12:631022. [PMID: 33613324 PMCID: PMC7886682 DOI: 10.3389/fphys.2021.631022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Urothelial cells have been implicated in bladder mechanosensory transduction, and thus, initiation of the micturition reflex. Cell deformation caused by tension forces at an air-liquid interface (ALI) can induce an increase in intracellular Ca2+ concentration ([Ca2+]i) and ATP release in some epithelial cells. In this study, we aimed to examine the cellular mechanisms underlying ALI-induced [Ca2+]i increase in cultured urothelial cells. The ALI was created by stopping the influx of the perfusion but maintaining efflux. The [Ca2+]i increase was measured using the Ca2+ imaging method. The ALI evoked a reversible [Ca2+]i increase and ATP release in urothelial cells, which was almost abolished by GdCl3. The specific antagonist of the transient receptor potential vanilloid (TRPV4) channel (HC0674) and the antagonist of the pannexin 1 channel (10panx) both diminished the [Ca2+]i increase. The blocker of Ca2+-ATPase pumps on the endoplasmic reticulum (thapsigargin), the IP3 receptor antagonist (Xest-C), and the ryanodine receptor antagonist (ryanodine) all attenuated the [Ca2+]i increase. Degrading extracellular ATP with apyrase or blocking ATP receptors (P2X or P2Y) with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) significantly attenuated the [Ca2+]i increase. Our results suggest that both Ca2+ influx via TRPV4 or pannexin 1 and Ca2+ release from intracellular Ca2+ stores via IP3 or ryanodine receptors contribute to the mechanical responses of urothelial cells. The release of ATP further enhances the [Ca2+]i increase by activating P2X and P2Y receptors via autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
52
|
Hokanson JA, Langdale CL, Milliken PH, Sridhar A, Grill WM. Effects of intravesical prostaglandin E 2 on bladder function are preserved in capsaicin-desensitized rats. Am J Physiol Renal Physiol 2021; 320:F212-F223. [PMID: 33283648 PMCID: PMC7948121 DOI: 10.1152/ajprenal.00302.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E2 (PGE2) instilled into the bladder generates symptoms of urinary urgency in healthy women and reduces bladder capacity and urethral pressure in both humans and female rats. Systemic capsaicin desensitization, which causes degeneration of C-fibers, prevented PGE2-mediated reductions in bladder capacity, suggesting that PGE2 acts as an irritant (Maggi CA, Giuliani S, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A. Eur J Pharmacol 145: 105-112, 1988). In the present study, we instilled PGE2 in female rats after capsaicin desensitization but without the hypogastric nerve transection that was conducted in the Maggi et al. study. One week after capsaicin injection (125 mg/kg sc), rats underwent cystometric and urethral perfusion testing under urethane anesthesia with saline and 100 µM PGE2. Similar to naïve rats, capsaicin-desensitized rats exhibited a reduction in bladder capacity from 1.23 ± 0.08 mL to 0.70 ± 0.10 mL (P = 0.002, n = 9), a reduction in urethral perfusion pressure from 19.3 ± 2.1 cmH2O to 10.9 ± 1.2 cmH2O (P = 0.004, n = 9), and a reduction in bladder compliance from 0.13 ± 0.020 mL/cmH2O to 0.090 ± 0.014 mL/cmH2O (P = 0.011, n = 9). Thus, changes in bladder function following the instillation of PGE2 were not dependent on capsaicin-sensitive pathways. Further, these results suggest that urethral relaxation/weakness and/or increased detrusor pressure as a result of decreased compliance may contribute to urinary urgency and highlight potential targets for new therapies for overactive bladder.
Collapse
Affiliation(s)
- James A Hokanson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | | | - Arun Sridhar
- Galvani Bioelectronics, Stevenage, United Kingdom
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
53
|
Keil Stietz KP, Kennedy CL, Sethi S, Valenzuela A, Nunez A, Wang K, Wang Z, Wang P, Spiegelhoff A, Puschner B, Bjorling DE, Lein PJ. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol 2021; 2:1-18. [PMID: 34337439 PMCID: PMC8317607 DOI: 10.1016/j.crtox.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.
Collapse
Affiliation(s)
- Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA,Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA,Corresponding author at: Department of Comparative Biosciences University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Conner L. Kennedy
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Alexandra Nunez
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
54
|
Beider K, Rosenberg E, Dimenshtein-Voevoda V, Sirovsky Y, Vladimirsky J, Magen H, Ostrovsky O, Shimoni A, Bromberg Z, Weiss L, Peled A, Nagler A. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J Hematol Oncol 2020; 13:158. [PMID: 33239060 PMCID: PMC7687998 DOI: 10.1186/s13045-020-00993-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemoresistance remains a major treatment obstacle in multiple myeloma (MM). Novel new therapies are thus in need. Transient Receptor Potential Vanilloid type 1 (TRPV1) is a calcium-permeable ion channel that has been demonstrated to be expressed in solid tumors. Calcium channels have been shown to be involved in the regulation of cell proliferation, chemoresistance, migration and invasion. The aim of the current study was to evaluate its possible role in MM. Methods Pharmacological inhibitor was used to evaluate the role of TRPV1 in MM cell lines and primary MM cells. Flow cytometry, molecular analysis, fluorescent microscopy, proteomic analysis and xenograft in vivo model of MM with BM involvement were employed to assess the effect of TRPV1 inhibition and decipher its unique mechanism of action in MM. Results TRPV1 was found to be expressed by MM cell lines and primary MM cells. TRPV1 inhibition using the antagonist AMG9810-induced MM cell apoptosis and synergized with bortezomib, overcoming both CXCR4-dependent stroma-mediated and acquired resistance. In accordance, AMG9810 suppressed the expression and activation of CXCR4 in MM cells. TRPV1 inhibition increased mitochondrial calcium levels with subsequent mitochondrial ROS accumulation and depolarization. These effects were reversed by calcium chelation, suggesting the role of calcium perturbations in oxidative stress and mitochondrial destabilization. Furthermore, AMG9810 abolished bortezomib-induced accumulation of mitochondrial HSP70 and suppressed protective mitochondrial unfolded protein response. Proteomics revealed unique molecular signature related to the modification of ubiquitin signaling pathway. Consequently, 38 proteins related to the ubiquitylation machinery were downregulated upon combined bortezomib/AMG9810 treatment. Concomitantly, AMG9810 abolished bortezomib-induced ubiquitination of cytosolic and mitochondrial proteins. Furthermore, bortezomib/AMG9810 treatment induced mitochondrial accumulation of PINK1, significantly reduced the mitochondrial mass and promoted mitochondrial-lysosomal fusion, indicating massive mitophagy. Finally, in a recently developed xenograft model of systemic MM with BM involvement, bortezomib/AMG9810 treatment effectively reduced tumor burden in the BM of MM-bearing mice. Conclusions Altogether, our results unravel the mechanism mediating the strong synergistic anti-MM activity of bortezomib in combination with TRPV1 inhibition which may be translated into the clinic.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Evgenia Rosenberg
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Valeria Dimenshtein-Voevoda
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Yaarit Sirovsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Julia Vladimirsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Hila Magen
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Olga Ostrovsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Avichai Shimoni
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Zohar Bromberg
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| |
Collapse
|
55
|
Srivastava P, Lai HH, Mickle AD. Characterization of a method to study urodynamics and bladder nociception in male and female mice. Low Urin Tract Symptoms 2020; 13:319-324. [PMID: 33202486 DOI: 10.1111/luts.12365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abdominal electromyogram or visceromotor response (VMR) elicited by bladder distension is a validated as a measure of bladder nociception in mice, however it is not without its limitations. The aim of this study is to address some of these limitations and validate voiding evoked VMR as a measure of bladder nociception mice. METHODS Using both male and female C57BL/6 mice we assessed the VMR response to cytometry- induced voiding before and after instillation of 0.5% acetic acid into the bladder. We then delivered intravesical lidocaine to confirm the VMR response as nociceptive. VMR and correlative cystometric bladder pressures were analyzed. RESULTS We found that the VMR can be evoked by continuous fluid infusion into the bladder of both male and female mice. This response is potentiated after bladder injury and can be attenuated by administration of a local anesthetic, providing strong evidence that this method can be used to evaluate bladder nociception. Further, evaluation of cystometric pressure traces obtained during VMR recording revealed that intercontraction intervals were not altered after bladder injury in either male or female mice. However, we did observe a decrease in peak threshold pressures after bladder injury in female mice, which could be rescued by lidocaine administration. CONCLUSIONS In conclusion, this technique can measure the VMR and bladder nociception associated with voiding in both female and male mice. Although confounds still exist with the use of anesthesia, further exploration of non-anesthetized voiding-evoked VMR is warranted.
Collapse
Affiliation(s)
- Paulome Srivastava
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA
| | - Henry H Lai
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron D Mickle
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
56
|
Yoshiyama M, Kobayashi H, Takeda M, Araki I. Blockade of Acid-Sensing Ion Channels Increases Urinary Bladder Capacity With or Without Intravesical Irritation in Mice. Front Physiol 2020; 11:592867. [PMID: 33192609 PMCID: PMC7649782 DOI: 10.3389/fphys.2020.592867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
We conducted this study to examine whether acid-sensing ion channels (ASICs) are involved in the modulation of urinary bladder activity with or without intravesical irritation induced by acetic acid. All in vivo evaluations were conducted during continuous infusion cystometry in decerebrated unanesthetized female mice. During cystometry with a pH 6.3 saline infusion, an i.p. injection of 30 μmol/kg A-317567 (a potent, non-amiloride ASIC blocker) increased the intercontraction interval (ICI) by 30% (P < 0.001), whereas vehicle injection had no effect. An intravesical acetic acid (pH 3.0) infusion induced bladder hyperactivity, with reductions in ICI and maximal voiding pressure (MVP) by 79% (P < 0.0001) and 29% (P < 0.001), respectively. A-317567 (30 μmol/kg i.p.) alleviated hyperreflexia by increasing the acid-shortened ICI by 76% (P < 0.001). This dose produced no effect on MVP under either intravesical pH condition. Further analysis in comparison with vehicle showed that the increase in ICI (or bladder capacity) by the drug was not dependent on bladder compliance. Meanwhile, intravesical perfusion of A-317567 (100 μM) had no effect on bladder activity during pH 6.0 saline infusion cystometry, and drug perfusion at neither 100 μM nor 1 mM produced any effects on bladder hyperreflexia during pH 3.0 acetic acid infusion cystometry. A-317567 has been suggested to display extremely poor penetrability into the central nervous system and thus to be a peripherally active blocker. Taken together, our results suggest that blockade of ASIC signal transduction increases bladder capacity under normal intravesical pH conditions and alleviates bladder hyperreflexia induced by intravesical acidification and that the site responsible for this action is likely to be the dorsal root ganglia.
Collapse
Affiliation(s)
- Mitsuharu Yoshiyama
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Shintotsuka Hospital, Yokohama, Japan
| | - Hideki Kobayashi
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kobayashi Urology Clinic, Kai, Japan
| | - Masayuki Takeda
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Isao Araki
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kusatsu Public Health Center, Kusatsu, Japan
| |
Collapse
|
57
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
58
|
Abstract
Wild mushroom foraging involves a high risk of unintentional consumption of poisonous mushrooms which is a serious health concern. This problem arises due to the close morphological resemblances of toxic mushrooms with edible ones. The genus Inocybe comprises both edible and poisonous species and it is therefore important to differentiate them. Knowledge about their chemical nature will unambiguously determine their edibility and aid in an effective treatment in case of poisonings. In the present study, the presence of volatile toxic metabolites was verified in Inocybe virosa by gas chromatography. Methyl palmitate, phenol, 3,5-bis (1,1-dimethyl ethyl) and phytol were the identified compounds with suspected toxicity. The presence of the toxin muscarine was confirmed by liquid chromatography. The in vitro study showed that there was negligible effect of the digestion process on muscarine content or its toxicity. Therefore, the role of muscarine in the toxicity of Inocybe virosa was studied using a bioassay wherein metameters such as hypersalivation, immobility, excessive defecation, heart rate and micturition were measured. Administration of muscarine resulted in an earlier onset of symptoms and the extract showed a slightly stronger muscarinic effect in comparison to an equivalent dose of muscarine estimated in it. Further, the biological fate of muscarine was studied by pharmacokinetics and gamma scintigraphy in New Zealand white rabbits. Significant amount of the toxin was rapidly and effectively concentrated in the thorax and head region. This study closely explains the early muscarinic response such as miosis and salivation in mice. By the end of 24 h, a relatively major proportion of muscarine administered was accumulated in the liver which stands as an explanation to the hepatotoxicity of Inocybe virosa. This is one of the rare studies that has attempted to understand the toxic potential of muscarine which has previously been explored extensively for its pharmaceutical applications.
Collapse
|
59
|
Chen SF, Kuo HC. Will repeated botulinum toxin A improve detrusor overactivity and bladder compliance in patients with chronic spinal cord injury? Tzu Chi Med J 2020; 33:101-107. [PMID: 33912405 PMCID: PMC8059473 DOI: 10.4103/tcmj.tcmj_77_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
Chronic spinal cord injury (SCI) can induce neurogenic detrusor overactivity (NDO), leading to urinary incontinence and renal damage due to low bladder compliance and high detrusor pressure during the storage and voiding of urine. In 2011, Botox® (onabotulinumtoxinA, botulinum neurotoxin serotype A [BoNT-A]) was approved by the Food and Drug Administration for the treatment of NDO. Intradetrusor injection of BoNT-A has been shown to have clinical utility for the treatment of urinary incontinence, with consequent improvements in quality of life for patients. In the past 20 years, this treatment has been shown to be an effective treatment for patients with SCI refractory to antimuscarinic medication. The present review focused on publications in MEDLINE/PubMed relating to botulinum toxin to evaluate the treatment outcomes of repeated injection of BoNT-A, the mechanisms of action, results of clinical and urodynamic studies, and adverse effects.
Collapse
Affiliation(s)
- Sheng-Fu Chen
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
60
|
Zhong B, Ma S, Wang DH. Ablation of TRPV1 Elevates Nocturnal Blood Pressure in Western Diet-fed Mice. Curr Hypertens Rev 2020; 15:144-153. [PMID: 30381083 PMCID: PMC6635649 DOI: 10.2174/1573402114666181031141840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022]
Abstract
Background: This study tested the hypothesis that genetically ablation of transient receptor potential vanilloid type 1 (TRPV1) exacerbates impairment of baroreflex in mice fed a western diet (WD) and leads to distinct diurnal and nocturnal blood pressure patterns. Methods: TRPV1 gene knockout (TRPV1-/-) and wild-type (WT) mice were given a WD or normal diet (CON) for 4 months. Results: Capsaicin, a selective TRPV1 agonist, increased ipsilateral afferent renal nerve activity in WT but not TRPV1-/- mice. The sensitivity of renal sympathetic nerve activity and heart rate responses to baroreflex were reduced in TRPV1-/--CON and WT-WD and further decreased in TRPV1-/--WD compared to the WT-CON group. Urinary norepinephrine and serum insulin and leptin at day and night were increased in WT-WD and TRPV1-/--WD, with further elevation at night in TRPV1-/--WD. WD intake increased leptin, IL-6, and TNF-α in adipose tissue, and TNF-α antagonist III, R-7050, decreased leptin in TRPV1-/--WD. The urinary albumin level was higher in TRPV1-/--WD than WT-WD. Blood pressure was not dif-ferent during daytime among all groups, but increased at night in the TRPV1-/--WD group compared with other groups. Conclusions: TRPV1 ablation leads to elevated nocturnal but not diurnal blood pressure, which is probably attributed to fur-ther enhancement of sympathetic drives at night.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States.,Neuroscience Program, Michigan State University, East Lansing, Michigan MI 48824, United States.,Cell & Molecular Biology Program, Michigan State University, East Lansing, Michigan MI 48824, United States
| |
Collapse
|
61
|
Sun LH, Zhang WX, Xu Q, Wu H, Jiao CC, Chen XZ. Estrogen modulation of visceral pain. J Zhejiang Univ Sci B 2020; 20:628-636. [PMID: 31273960 DOI: 10.1631/jzus.b1800582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that females and males differ in their experience of pain. Gender differences have been found in the prevalence and severity of pain in both clinical and animal studies. Sex-related hormones are found to be involved in pain transmission and have critical effects on visceral pain sensitivity. Studies have pointed out the idea that serum estrogen is closely related to visceral nociceptive sensitivity. This review aims to summarize the literature relating to the role of estrogen in modulating visceral pain with emphasis on deciphering the potential central and peripheral mechanisms.
Collapse
Affiliation(s)
- Li-Hong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wen-Xin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Cui-Cui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xin-Zhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
62
|
Roberts MWG, Sui G, Wu R, Rong W, Wildman S, Montgomery B, Ali A, Langley S, Ruggieri MR, Wu C. TRPV4 receptor as a functional sensory molecule in bladder urothelium: Stretch-independent, tissue-specific actions and pathological implications. FASEB J 2020; 34:263-286. [PMID: 31914645 PMCID: PMC6973053 DOI: 10.1096/fj.201900961rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022]
Abstract
The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.
Collapse
Affiliation(s)
| | - Guiping Sui
- Guy's and St Thomas Hospitals NHS TrustLondonUK
| | - Rui Wu
- University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Weifang Rong
- Department of PhysiologyShanghai Jiaotong University School of MedicineShanghaiChina
| | | | | | | | | | | | - Changhao Wu
- School of Biosciences and MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
63
|
Suppression of Presynaptic Glutamate Release by Postsynaptic Metabotropic NMDA Receptor Signalling to Pannexin-1. J Neurosci 2019; 40:729-742. [PMID: 31818976 DOI: 10.1523/jneurosci.0257-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/22/2023] Open
Abstract
The impact of pannexin-1 (Panx1) channels on synaptic transmission is poorly understood. Here, we show that selective block of Panx1 in single postsynaptic hippocampal CA1 neurons from male rat or mouse brain slices causes intermittent, seconds long increases in the frequency of sEPSC following Schaffer collateral stimulation. The increase in sEPSC frequency occurred without an effect on evoked neurotransmission. Consistent with a presynaptic origin of the augmented glutamate release, the increased sEPSC frequency was prevented by bath-applied EGTA-AM or TTX. Manipulation of a previously described metabotropic NMDAR pathway (i.e., by preventing ligand binding to NMDARs with competitive antagonists or blocking downstream Src kinase) also increased sEPSC frequency similar to that seen when Panx1 was blocked. This facilitated glutamate release was absent in transient receptor potential vanilloid 1 (TRPV1) KO mice and prevented by the TRPV1 antagonist, capsazepine, suggesting it required presynaptic TRPV1. We show presynaptic expression of TRPV1 by immunoelectron microscopy and link TRPV1 to Panx1 because Panx1 block increases tissue levels of the endovanilloid, anandamide. Together, these findings demonstrate an unexpected role for metabotropic NMDARs and postsynaptic Panx1 in suppression of facilitated glutamate neurotransmission.SIGNIFICANCE STATEMENT The postsynaptic ion and metabolite channel, pannexin-1, is regulated by metabotropic NMDAR signaling through Src kinase. This pathway suppresses facilitated release of presynaptic glutamate during synaptic activity by regulating tissue levels of the transient receptor potential vanilloid 1 agonist anandamide.
Collapse
|
64
|
Girard BM, Campbell SE, Perkins M, Hsiang H, Tooke K, Drescher C, Hennig GW, Heppner TJ, Nelson MT, Vizzard MA. TRPV4 blockade reduces voiding frequency, ATP release, and pelvic sensitivity in mice with chronic urothelial overexpression of NGF. Am J Physiol Renal Physiol 2019; 317:F1695-F1706. [PMID: 31630542 DOI: 10.1152/ajprenal.00147.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential vanilloid family member 4 (TRPV4) transcript and protein expression increased in the urinary bladder and lumbosacral dorsal root ganglia of transgenic mice with chronic urothelial overexpression of nerve growth factor (NGF-OE). We evaluated the functional role of TRPV4 in bladder function with open-outlet cystometry, void spot assays, and natural voiding (Urovoid) assays with the TRPV4 antagonist HC-067047 (1 μM) or vehicle in NGF-OE and littermate wild-type (WT) mice. Blockade of TRPV4 at the level of the urinary bladder significantly (P ≤ 0.01) increased the intercontraction interval (2.2-fold) and void volume (2.6-fold) and decreased nonvoiding contractions (3.0-fold) in NGF-OE mice, with lesser effects (1.3-fold increase in the intercontraction interval and 1.3-fold increase in the void volume) in WT mice. Similar effects of TRPV4 blockade on bladder function in NGF-OE mice were demonstrated with natural voiding assays. Intravesical administration of HC-067047 (1 µM) significantly (P ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in littermate WT mice. Blockade of urinary bladder TRPV4 or intravesical infusion of brefeldin A significantly (P ≤ 0.01) reduced (2-fold) luminal ATP release from the urinary bladder in NGF-OE and littermate WT mice. The results of the present study suggest that TRPV4 contributes to luminal ATP release from the urinary bladder and increased voiding frequency and pelvic sensitivity in NGF-OE mice.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Susan E Campbell
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Megan Perkins
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Harrison Hsiang
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Katharine Tooke
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn Drescher
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Grant W Hennig
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas J Heppner
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
65
|
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 2019; 9:1087. [PMID: 31681615 PMCID: PMC6805766 DOI: 10.3389/fonc.2019.01087] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.
Collapse
Affiliation(s)
- Joanna Katarzyna Bujak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Daria Kosmala
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
66
|
Kimura Y, Honda M, Sasaki R, Yumioka T, Iwamoto H, Tsounapi P, Morizane S, Hikita K, Osaki M, Okada F, Takenaka A. The circadian rhythm of bladder clock genes in the spontaneously hypersensitive rat. PLoS One 2019; 14:e0220381. [PMID: 31344120 PMCID: PMC6658119 DOI: 10.1371/journal.pone.0220381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian expression rhythms of clock gene products in the bladder are reportedly hindered by clock gene abnormalities. However, the role of clock gene products in various pathological lower urinary tract conditions is unknown. The present study examined the relationship between clock genes and voiding dysfunction in spontaneous hypertensive rats (SHR). The voluntary voiding behavior study using metabolic cages was performed in 18-weeks old male Wistar rats (control group, n = 36) and SHR (SHR group, n = 36) under 12-h light/12-h dark conditions. Bladders were harvested every 4 h at six time points (n = 6 for each time point for each group), and we analyzed the messenger RNA (mRNA) expression of several clock genes: period 2 (Per2), cryptochrome 2 (Cry2), brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), nuclear receptor subfamily 1, group D, member 1 (Rev-erbα), mechanosensors: transient receptor potential vanilloid channel 1 (TRPV1), TRPV4, Piezo1, and vesicular nucleotide transporter (VNUT) using real-time polymerase chain reaction. Though 24-h urination frequency for both light and dark periods was significantly higher in the SHR group, urine volume per voiding was significantly lower versus control. In controls, urine volume per voiding was significantly lower during the dark period (active phase) than the light period (rest phase); this parameter did not significantly differ between active and rest phases for SHR. SHR bladders showed significantly higher expression of Cry2 and Clock during the active phase compared to controls. In the SHR group, TRPV1, TRPV4, Piezo1, and VNUT mRNA levels were significantly higher during the active phase compared to the control group. We speculate that Cry2 and Clock may be contributing factors in the decrease of bladder capacity during the active phase in SHR through increase of TRPV1, TRPV4, Piezo1, and VNUT expression, but further research will be necessary to elucidate the precise mechanisms.
Collapse
Affiliation(s)
- Yusuke Kimura
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- * E-mail:
| | - Masashi Honda
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ryo Sasaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tetsuya Yumioka
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hideto Iwamoto
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Panagiota Tsounapi
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shuichi Morizane
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Katsuya Hikita
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Atsushi Takenaka
- Division of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
67
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
68
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
69
|
Andersson KE. TRP Channels as Lower Urinary Tract Sensory Targets. Med Sci (Basel) 2019; 7:E67. [PMID: 31121962 PMCID: PMC6572419 DOI: 10.3390/medsci7050067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several members of the transient receptor potential (TRP) superfamily, including TRPV1, TRPV2, TRPV4, TRM4, TRPM8 and TRPA1, are expressed in the lower urinary tract (LUT), not only in neuronal fibers innervating the bladder and urethra, but also in the urothelial and muscular layers of the bladder and urethral walls. In the LUT, TRP channels are mainly involved in nociception and mechanosensory transduction. Animal studies have suggested the therapeutic potential of several TRP channels for the treatment of both bladder over- and underactivity and bladder pain disorders,; however translation of this finding to clinical application has been slow and the involvement of these channels in normal human bladder function, and in various pathologic states have not been established. The development of selective TRP channel agonists and antagonists is ongoing and the use of such agents can be expected to offer new and important information concerning both normal physiological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA.
- Institute of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| |
Collapse
|
70
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
71
|
Molecular Characteristics of Underactive Bladder. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
72
|
Cheng L, Li P, Patel Y, Gong Y, Guo ZL, Wu H, Malik S, Tjen-A-Looi SC. Moxibustion Modulates Sympathoexcitatory Cardiovascular Reflex Responses Through Paraventricular Nucleus. Front Neurosci 2019; 12:1057. [PMID: 30718997 PMCID: PMC6348372 DOI: 10.3389/fnins.2018.01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Electroacupuncture (EA) point specific (ST36-37) stimulation decreases cardiovascular reflex responses through supraspinal regions such as the hypothalamic paraventricular nucleus (PVN) while mechanical stimulation of acupoints decreases pressor responses through peripheral thermal transient receptor potential vanilloid type-1 (TRPV1). Moxibustion generating heat applied at acupoint in combination with antihypertensive drugs decreases elevated blood pressure. We hypothesized that moxibustion modulates sympathoexcitatory cardiovascular responses through the hypothalamic PVN and peripheral heat sensitive TRPV1 in the absence of antihypertensive drugs. Rats were anesthetized, ventilated, and heart rate and mean blood pressure were monitored. Gastric distention induced consistent pressor reflex responses every 10-min. Thirty-minutes of bilateral moxibustion at the acupoint ST36, overlying the deep peroneal nerves, reduced the gastric distention evoked elevation in blood pressure. Blood pressure reflex responses were not reduced by both EA and moxibustion at G39. The moxibustion inhibition but not EA inhibition of the cardiovascular responses was reversed with blockade of local heat sensitive TRPV1 at ST36. Accordingly, activation of thermal TRPV1 by moxibustion at an average of 44.2°C in contrast to 40°C reduced the pressor responses. Naloxone, an opioid receptor antagonist, microinjected into PVN inhibited transiently the effect of moxibustion. Thus, activation of peripheral heat sensitive TRPV1 mediated the moxibustion-inhibition, but not EA-inhibition, of sympathoexcitatory cardiovascular reflex responses through hypothalamic PVN opioid system.
Collapse
Affiliation(s)
- Ling Cheng
- Eastern Hospital Affiliated to Tongji University, Shanghai, China
| | - Peng Li
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Yash Patel
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Yiwei Gong
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Zhi-Ling Guo
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
73
|
Gil-Tommee C, Vidal-Martinez G, Annette Reyes C, Vargas-Medrano J, Herrera GV, Martin SM, Chaparro SA, Perez RG. Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp Neurol 2019; 311:265-273. [PMID: 30393144 PMCID: PMC6319267 DOI: 10.1016/j.expneurol.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/14/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Carolina Gil-Tommee
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - C Annette Reyes
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Gloria V Herrera
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Silver M Martin
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Stephanie A Chaparro
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA..
| |
Collapse
|
74
|
Zhang W, Drzymalski D, Sun L, Xu Q, Jiao C, Wang L, Xie S, Qian X, Wu H, Xiao F, Fu F, Feng Y, Chen X. Involvement of mGluR5 and TRPV1 in visceral nociception in a rat model of uterine cervical distension. Mol Pain 2018; 14:1744806918816850. [PMID: 30444177 PMCID: PMC6302284 DOI: 10.1177/1744806918816850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) and transient receptor potential vanilloid subtype 1 (TRPV1) have been shown to play critical roles in the transduction and modulation of cutaneous nociception in the central nervous system. However, little is known regarding the possible involvement of mGluR5 and TRPV1 in regulating visceral nociception from the uterine cervix. In this study, we used a rat model of uterine cervical distension to examine the effects of noxious stimuli to the uterine cervix on expression of spinal mGluR5 and TRPV1. Our findings included the following: (1) uterine cervical distension resulted in a stimulus-dependent increase in electromyographic, spinal c-Fos signal, and expression of mGluR5 and TRPV1 in the spinal cord; (2) intrathecal administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyri-dine significantly reduced the increased TRPV1 and c-Fos expression induced by uterine cervical distension; (3) the TRPV1 inhibitor SB-366791 inhibited increased spinal c-Fos expression but had no effect on the expression of mGluR5 in response to uterine cervical distension. Our findings indicate that the spinal mGluR5-TRPV1 pathway modulates nociceptive transmission in uterine cervical distension-induced pathological visceral pain.
Collapse
Affiliation(s)
- Wenxin Zhang
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Drzymalski
- 2 Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, MA, USA
| | - Lihong Sun
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Xu
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cuicui Jiao
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Wang
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shufang Xie
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaowei Qian
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wu
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xiao
- 3 Department of Anesthesia, Jiaxing Maternity and Child Care Hospital, Jiaxing, Zhejiang, China
| | - Feng Fu
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Feng
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhong Chen
- 1 Department of Anesthesia, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
75
|
Toktanis G, Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Potential therapeutic value of transient receptor potential channels in male urogenital system. Pflugers Arch 2018; 470:1583-1596. [PMID: 30194638 DOI: 10.1007/s00424-018-2188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes including light, mechanical or chemical stimuli, temperature, pH, or osmolarity. TRP channel proteins are a diverse family of proteins that are expressed in many tissues. We debated our recent knowledge about the expression, function, and regulation of TRP channels in the different parts of the male urogenital system in health and disease. Emerging evidence suggests that dysfunction of TRP channels significantly contributes to the pathophysiology of urogenital diseases. So far, there are many efforts underway to determine if these channels can be used as drug targets to reverse declines in male urogenital function. Furthermore, developing safe and efficacious TRP channel modulators is warranted for male urogenital disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Ecem Kaya-Sezginer
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Cukurova University, Adana, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
76
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
77
|
Dunton CL, Purves JT, Hughes FM, Jin H, Nagatomi J. Elevated hydrostatic pressure stimulates ATP release which mediates activation of the NLRP3 inflammasome via P2X 4 in rat urothelial cells. Int Urol Nephrol 2018; 50:1607-1617. [PMID: 30099658 PMCID: PMC6129973 DOI: 10.1007/s11255-018-1948-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Partial bladder outlet obstruction (pBOO) is a prevalent urological condition commonly accompanied by increased intravesical pressure, inflammation, and fibrosis. Studies have demonstrated that pBOO results in increased NLRP3 inflammasome and caspase-1 activation and that ATP is released from urothelial cells in response to elevated pressure. In the present study, we investigated the role of elevated pressure in triggering caspase-1 activation via purinergic receptors activation in urothelial cells. Rat urothelial cell line, MYP3 cells, was subjected to hydrostatic pressures of 15 cmH2O for 60 min, or 40 cmH2O for 1 min to simulate elevated storage and voiding pressure conditions, respectively. ATP concentration in the supernatant media and intracellular caspase-1 activity in cell lysates were measured. Pressure experiments were repeated in the presence of antagonists for purinergic receptors to determine the mechanism for pressure-induced caspase-1 activation. Exposure of MYP3 cells to both pressure conditions resulted in an increase in extracellular ATP levels and intracellular caspase-1 activity. Treatment with P2X7 antagonist led to a decrease in pressure-induced ATP release by MYP3 cells, while P2X4 antagonist had no effect but both antagonists inhibited pressure-induced caspase-1 activation. Moreover, when MYP3 cells were treated with extracellular ATP (500 µM), P2X4 antagonist inhibited ATP-induced caspase-1 activation, but not P2X7 antagonist. We concluded that pressure-induced extracellular ATP in urothelial cells is amplified by P2X7 receptor activation and ATP-induced-ATP release. The amplified ATP signal then activates P2X4 receptors, which mediate activation of the caspase-1 inflammatory response.
Collapse
Affiliation(s)
- Cody L Dunton
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - J Todd Purves
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jiro Nagatomi
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
78
|
Wen J, Zu S, Chen Z, Daugherty SL, de Groat WC, Liu Y, Yuan M, Cheng G, Zhang X. Reduced bladder responses to capsaicin and GSK-1016790A in retired-breeder female rats with diminished volume sensitivity. Am J Physiol Renal Physiol 2018; 315:F1217-F1227. [PMID: 30019934 DOI: 10.1152/ajprenal.00198.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Literature documents an age-related reduction of bladder sensory function. Transient receptor potential vanilloid (TRPV)1 or TRPV4 channels have been implicated in bladder mechanotransduction. To investigate contributions of TRPV1 or TRPV4 to the age-related reduction of bladder sensory function, bladder responses to capsaicin (CAP; TRPV1 agonist) and GSK-1016790A (GSK; TRPV4 agonist) in retired breeder (RB; 12-15 mo) and young adult (2-3 mo) female rats were compared using multiple methods. Metabolic cage and continuous infusion cystometry [cystometrogram (CMG)] recordings revealed that RB rats exhibit larger bladder capacity and lower voiding frequency. RB rats also have a greater intravesical pressure threshold for micturition; however, the voiding contraction strength was equivalent to that in young rats. CAP (1 μM) or GSK (20 nM) administered intravesically evoked smaller changes in all CMG parameters in RB rats. In vitro, CAP (1 μM) or GSK (20 nM) evoked smaller enhancement of bladder strip contractions, while the muscarinic receptor agonist carbachol (at 100, 300, and 1,000 nM) elicited greater amplitude contractions in RB rats. Patch-clamp recording revealed smaller CAP (100 nM) induced inward currents in bladder primary sensory neurons, and Ca2+ imaging revealed smaller GSK (20 nM) evoked increases in intracellular Ca2+ concentration in urothelial cells in RB rats. These results suggest that RB rats have a decreased bladder sensory function commonly observed in elderly women, and could be used as an animal model to study the underling mechanisms. Reduced functional expression of TRPV1 in bladder afferents or reduced functional expression of urothelial TRPV4 may be associated with the diminished sensory function.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Shulu Zu
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Zhenghao Chen
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Yuqiang Liu
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Mingzhen Yuan
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Guanghui Cheng
- Department of Central Research Laboratory, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Xiulin Zhang
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| |
Collapse
|
79
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
80
|
Capsaicin-Sensitive Sensory Nerves Indirectly Modulate Motor Function of the Urinary Bladder. Int Neurourol J 2018; 22:83-89. [PMID: 29991229 PMCID: PMC6059914 DOI: 10.5213/inj.1836078.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose The urinary bladder (UB) is innervated by both sensory and autonomic nerves. Recent studies have shown that sensory neuropeptides induced contractions in the detrusor muscle. Therefore, in a mouse model, we investigated the presence of interactions between the submucosal sensory nerves and the autonomic nerves that regulate the motor function of the detrusor muscle. Methods UB samples from male C57BL/6 mice were isolated, cut into strips, and mounted in an organ bath. Dose-response curves to norepinephrine and phenylephrine were studied in UB strips with and without mucosa, and the effects of preincubation with a receptor antagonist and various drugs on relaxation were also studied using tissue bath myography. Results Phenylephrine-induced relaxation of the UB strips showed concentration-related effects. This relaxation appeared in both mucosa-intact and mucosa-denuded UB strips, and was significantly inhibited by lidocaine, silodosin, and guanethidine (an adrenergic neuronal blocker). Meanwhile, phenylephrine-induced relaxation was inhibited by pretreatment with propranolol and calcitonin gene-related peptide (CGRP)–depletory capsaicin in UB strips with and without mucosa. Conclusions The present study suggests that phenylephrine activates the α-1A adrenergic receptor (AR) of the sensory nerve, and then activates capsaicin-sensitive sensory nerves to release an unknown substance that facilitates the release of norepinephrine from adrenergic nerves. Subsequently, norepinephrine stimulates β-ARs in the detrusor muscle in mice, leading to neurogenic relaxation of the UB. Further animal and human studies are required to prove this concept and to validate its clinical usefulness.
Collapse
|
81
|
Grundy L, Chess-Williams R, Brierley SM, Mills K, Moore KH, Mansfield K, Rose'Meyer R, Sellers D, Grundy D. NKA enhances bladder-afferent mechanosensitivity via urothelial and detrusor activation. Am J Physiol Renal Physiol 2018; 315:F1174-F1185. [PMID: 29897284 DOI: 10.1152/ajprenal.00106.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tachykinins are expressed within bladder-innervating sensory afferents and have been shown to generate detrusor contraction and trigger micturition. The release of tachykinins from these sensory afferents may also activate tachykinin receptors on the urothelium or sensory afferents directly. Here, we investigated the direct and indirect influence of tachykinins on mechanosensation by recording sensory signaling from the bladder during distension, urothelial transmitter release ex vivo, and direct responses to neurokinin A (NKA) on isolated mouse urothelial cells and bladder-innervating DRG neurons. Bath application of NKA induced concentration-dependent increases in bladder-afferent firing and intravesical pressure that were attenuated by nifedipine and by the NK2 receptor antagonist GR159897 (100 nM). Intravesical NKA significantly decreased bladder compliance but had no direct effect on mechanosensitivity to bladder distension (30 µl/min). GR159897 alone enhanced bladder compliance but had no effect on mechanosensation. Intravesical NKA enhanced both the amplitude and frequency of bladder micromotions during distension, which induced significant transient increases in afferent firing, and were abolished by GR159897. NKA increased intracellular calcium levels in primary urothelial cells but not bladder-innervating DRG neurons. Urothelial ATP release during bladder distention was unchanged in the presence of NKA, whereas acetylcholine levels were reduced. NKA-mediated activation of urothelial cells and enhancement of bladder micromotions are novel mechanisms for NK2 receptor-mediated modulation of bladder mechanosensation. These results suggest that NKA influences bladder afferent activity indirectly via changes in detrusor contraction and urothelial mediator release. Direct actions on sensory nerves are unlikely to contribute to the effects of NKA.
Collapse
Affiliation(s)
- Luke Grundy
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia.,Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kylie Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Kate H Moore
- Department of Urogynaecology, St. George Hospital, University of New South Wales , Sydney, New South Wales , Australia
| | - Kylie Mansfield
- Graduate School of Medicine, University of Wollongong , Wollongong, New South Wales , Australia
| | | | - Donna Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University , Gold Coast, Queensland , Australia
| | - David Grundy
- Department of Biomedical Science, University of Sheffield , Sheffield , United Kingdom
| |
Collapse
|
82
|
Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:675-694. [DOI: 10.1007/s00210-018-1510-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
83
|
Guo ZL, Fu LW, Su HF, Tjen-A-Looi SC, Longhurst JC. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses. Am J Physiol Regul Integr Comp Physiol 2018; 314:R655-R666. [PMID: 29351423 PMCID: PMC6008114 DOI: 10.1152/ajpregu.00405.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
Abstract
We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the DRG at these spinal levels with intrathecal injection of TRPV1-siRNA, expression of phosphorylated ERK in the DRG neuron was reduced in MA-treated, but not EA-treated animals. These data suggest that TRPV1 in Group III and IV bimodal sensory afferent nerves contributes to acupuncture inhibition of reflex increases in blood pressure and specifically plays an important role during MA but not EA.
Collapse
Affiliation(s)
- Zhi-Ling Guo
- Department of Medicine and Susan-Samueli Institute for Integrative Health, School of Medicine, University of California at Irvine , Irvine, California
| | - Liang-Wu Fu
- Department of Medicine and Susan-Samueli Institute for Integrative Health, School of Medicine, University of California at Irvine , Irvine, California
| | - Hou-Fen Su
- Department of Medicine and Susan-Samueli Institute for Integrative Health, School of Medicine, University of California at Irvine , Irvine, California
| | - Stephanie C Tjen-A-Looi
- Department of Medicine and Susan-Samueli Institute for Integrative Health, School of Medicine, University of California at Irvine , Irvine, California
| | - John C Longhurst
- Department of Medicine and Susan-Samueli Institute for Integrative Health, School of Medicine, University of California at Irvine , Irvine, California
| |
Collapse
|
84
|
Investigation of TRPV1 loss-of-function phenotypes in TRPV1 Leu206Stop mice generated by N-ethyl-N-nitrosourea mutagenesis. Biochem Biophys Res Commun 2018; 500:456-461. [PMID: 29660342 DOI: 10.1016/j.bbrc.2018.04.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022]
Abstract
N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca2+]i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided.
Collapse
|
85
|
Ryu JC, Tooke K, Malley SE, Soulas A, Weiss T, Ganesh N, Saidi N, Daugherty S, Saragovi U, Ikeda Y, Zabbarova I, Kanai AJ, Yoshiyama M, Farhadi HF, de Groat WC, Vizzard MA, Yoon SO. Role of proNGF/p75 signaling in bladder dysfunction after spinal cord injury. J Clin Invest 2018; 128:1772-1786. [PMID: 29584618 DOI: 10.1172/jci97837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Loss of bladder control is a challenging outcome facing patients with spinal cord injury (SCI). We report that systemic blocking of pro-nerve growth factor (proNGF) signaling through p75 with a CNS-penetrating small-molecule p75 inhibitor resulted in significant improvement in bladder function after SCI in rodents. The usual hyperreflexia was attenuated with normal bladder pressure, and automatic micturition was acquired weeks earlier than in the controls. The improvement was associated with increased excitatory input to the spinal cord, in particular onto the tyrosine hydroxylase-positive fibers in the dorsal commissure. The drug also had an effect on the bladder itself, as the urothelial hyperplasia and detrusor hypertrophy that accompany SCI were largely prevented. Urothelial cell loss that precedes hyperplasia was dependent on p75 in response to urinary proNGF that is detected after SCI in rodents and humans. Surprisingly, death of urothelial cells and the ensuing hyperplastic response were beneficial to functional recovery. Deleting p75 from the urothelium prevented urothelial death, but resulted in reduction in overall voiding efficiency after SCI. These results unveil a dual role of proNGF/p75 signaling in bladder function under pathological conditions with a CNS effect overriding the peripheral one.
Collapse
Affiliation(s)
- Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Katharine Tooke
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Susan E Malley
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Anastasia Soulas
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Tirzah Weiss
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Nisha Ganesh
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Nabila Saidi
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Stephanie Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Uri Saragovi
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Youko Ikeda
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irina Zabbarova
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitsuharu Yoshiyama
- Department of Urology, University of Yamanashi Graduate School of Medical Science, Chuo, Japan
| | - H Francis Farhadi
- Department of Neurological Surgery, Ohio State University, Columbus, Ohio, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
86
|
Eller-Smith OC, Nicol AL, Christianson JA. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front Cell Neurosci 2018; 12:35. [PMID: 29487504 PMCID: PMC5816755 DOI: 10.3389/fncel.2018.00035] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain.
Collapse
Affiliation(s)
- Olivia C Eller-Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea L Nicol
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
87
|
DeBerry JJ, Samineni VK, Copits BA, Sullivan CJ, Vogt SK, Albers KM, Davis BM, Gereau RW. Differential Regulation of Bladder Pain and Voiding Function by Sensory Afferent Populations Revealed by Selective Optogenetic Activation. Front Integr Neurosci 2018; 12:5. [PMID: 29483864 PMCID: PMC5816063 DOI: 10.3389/fnint.2018.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Bladder-innervating primary sensory neurons mediate reflex-driven bladder function under normal conditions, and contribute to debilitating bladder pain and/or overactivity in pathological states. The goal of this study was to examine the respective roles of defined subtypes of afferent neurons in bladder sensation and function in vivo via direct optogenetic activation. To accomplish this goal, we generated transgenic lines that express a Channelrhodopsin-2-eYFP fusion protein (ChR2-eYFP) in two distinct populations of sensory neurons: TRPV1-lineage neurons (Trpv1Cre;Ai32, the majority of nociceptors) and Nav1.8+ neurons (Scn10aCre;Ai32, nociceptors and some mechanosensitive fibers). In spinal cord, eYFP+ fibers in Trpv1Cre;Ai32 mice were observed predominantly in dorsal horn (DH) laminae I-II, while in Scn10aCre;Ai32 mice they extended throughout the DH, including a dense projection to lamina X. Fiber density correlated with number of retrogradely-labeled eYFP+ dorsal root ganglion neurons (82.2% Scn10aCre;Ai32 vs. 62% Trpv1Cre;Ai32) and degree of DH excitatory synaptic transmission. Photostimulation of peripheral afferent terminals significantly increased visceromotor responses to noxious bladder distension (30–50 mmHg) in both transgenic lines, and to non-noxious distension (20 mmHg) in Scn10aCre;Ai32 mice. Depolarization of ChR2+ afferents in Scn10aCre;Ai32 mice produced low- and high-amplitude bladder contractions respectively in 53% and 27% of stimulation trials, and frequency of high-amplitude contractions increased to 60% after engagement of low threshold (LT) mechanoreceptors by bladder filling. In Trpv1Cre;Ai32 mice, low-amplitude contractions occurred in 27% of trials before bladder filling, which was pre-requisite for light-evoked high-amplitude contractions (observed in 53.3% of trials). Potential explanations for these observations include physiological differences in the thresholds of stimulated fibers and their connectivity to spinal circuits.
Collapse
Affiliation(s)
- Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vijay K Samineni
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, United States
| | - Bryan A Copits
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, United States
| | - Christopher J Sullivan
- Department of Neurobiology, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States
| | - Sherri K Vogt
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, United States
| | - Kathryn M Albers
- Department of Neurobiology, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Center for Pain Research, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian M Davis
- Department of Neurobiology, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Center for Pain Research, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, United States
| |
Collapse
|
88
|
Ikezawa M, Tajika Y, Ueno H, Murakami T, Inoue N, Yorifuji H. Loss of VAMP5 in mice results in duplication of the ureter and insufficient expansion of the lung. Dev Dyn 2018; 247:754-762. [DOI: 10.1002/dvdy.24618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maiko Ikezawa
- Department of Rehabilitation Science, Graduate School of Health Science; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
- Department of Anatomy, Graduate School of Medicine; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
| | - Yuki Tajika
- Department of Anatomy, Graduate School of Medicine; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
| | - Hitoshi Ueno
- Department of Anatomy, Graduate School of Medicine; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
| | - Tohru Murakami
- Department of Anatomy, Graduate School of Medicine; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
| | - Naokazu Inoue
- Research Institute for Microbial Diseases; Osaka University; Suita Osaka Japan
| | - Hiroshi Yorifuji
- Department of Anatomy, Graduate School of Medicine; Gunma University; 39-22 Showa-machi 3-chome, Maebashi Gunma Japan
| |
Collapse
|
89
|
Grundy L, Daly DM, Chapple C, Grundy D, Chess-Williams R. TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder. Sci Rep 2018; 8:197. [PMID: 29317663 PMCID: PMC5760578 DOI: 10.1038/s41598-017-18136-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1-/-) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1-/- mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1-/- mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1-/- mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms.
Collapse
Affiliation(s)
- Luke Grundy
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
- Visceral Pain Group, University of Adelaide, SAHMRI, Adelaide, Australia
| | - Donna M Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|
90
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
91
|
TRPV1 alterations in urinary bladder dysfunction in a rat model of STZ-induced diabetes. Life Sci 2018; 193:207-213. [DOI: 10.1016/j.lfs.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
|
92
|
Kitamura N, Nishino M, Fujii A, Hashizume K, Nakamura J, Kondo H, Ohuchi A, Hase T, Murase T. Perilla extract improves frequent urination in spontaneously hypertensive rats with enhancement of the urothelial presence and anti-inflammatory effects. Int J Urol 2017; 25:298-304. [PMID: 29268303 DOI: 10.1111/iju.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effects of perilla extract on urinary symptoms in spontaneously hypertensive rats as a model of spontaneous overactive bladder. METHODS Spontaneously hypertensive rats were randomly divided into two groups and fed either a control diet or a perilla extract-containing diet. Cystometry, gene expression and histological analyses were carried out to evaluate the effects of perilla extract after 2-week feeding of either the control or the perilla extract diet. The expression of inflammation-related genes in the human urothelial cell line HT-1376 and the normal human bladder epithelial cell was measured after the treatment with perillaldehyde, the main component of perilla extract, or perillic acid, the final metabolite of perillaldehyde. RESULTS A significant 27% increase in the micturition interval and decreased expression of nerve growth factor, tumor necrosis factor-α, interleukin-1β and transient receptor potential V1 were observed in the perilla group compared with the control group. The level of uroplakin 3A was 40% higher in the perilla group than in the control group. The urothelium in the control group was thin or defective, but it was almost completely intact in the perilla group. Perillaldehyde and perillic acid suppressed the induction of nerve growth factor and tumor necrosis factor-α by interleukin-1β in HT-1376 and normal human bladder epithelial cells. CONCLUSIONS The present findings suggest that perilla extract improves frequent urination, and this improvement seems to be mediated, at least in part, by enhancement of the urothelial presence and by the anti-inflammatory effects of perilla.
Collapse
Affiliation(s)
- Naoya Kitamura
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Machiko Nishino
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Akihiko Fujii
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | | - Junji Nakamura
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Hidehiko Kondo
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Atsushi Ohuchi
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Tadashi Hase
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
93
|
Bao D, Zhao W, Dai C, Wan H, Cao Y. H89 dihydrochloride hydrate and calphostin C lower the body temperature through TRPV1. Mol Med Rep 2017; 17:1599-1608. [PMID: 29257197 PMCID: PMC5780100 DOI: 10.3892/mmr.2017.8078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/31/2017] [Indexed: 01/04/2023] Open
Abstract
The transient receptor potential vanilloid (TRPV1) serves as a negative regulator of body temperature, and during fever conditions its expression can lead to a decrease in temperature. TRPV1 is regulated by a variety of enzymes; however, it is currently unclear whether the regulation of TRPV1 phosphorylation may serve a role in the increase in TRPV1 expression during fever. In the present study, using an in vivo experimental method, rat brain ventricles were injected with the protein kinase A (PKA) antagonist, H89, and the protein kinase C (PKC) antagonist, calphostin C, and fever was induced using lipopolysaccharide (LPS) in order to detect the expression of TRPV1 and phosphorylated (p-)TRPV1, the intracellular Ca2+ concentration [(Ca2+)i] of hypothalami and rat body temperature. The results demonstrated that following the generation of fever using LPS, the expressions of TRPV1 and p-TRPV1, and hypothalamic [Ca2+]i markedly increased. In addition, following an injection with the PKA or PKC antagonist, the temperature increased further due to the inhibition of p-TRPV1. Thus, it was hypothesized that PKA and PKC may be involved in TRPV1 phosphorylation, resulting in a temperature reduction during LPS-induced fever conditions.
Collapse
Affiliation(s)
- Dongyan Bao
- Department of Physiology, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Wenqing Zhao
- Department of Physiology, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Congcong Dai
- Department of Physiology, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Hongmei Wan
- Department of Physiology, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Cao
- Department of Physiology, China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
94
|
Aizawa N, Igawa Y. Pathophysiology of the underactive bladder. Investig Clin Urol 2017; 58:S82-S89. [PMID: 29279880 PMCID: PMC5740034 DOI: 10.4111/icu.2017.58.s2.s82] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Underactive bladder (UAB), which has been described as a symptom complex suggestive of detrusor underactivity, is usually characterized by prolonged urination time with or without a sensation of incomplete bladder emptying, usually with hesitancy, reduced sensation on filling, and slow stream often with storage symptoms. Several causes such as aging, bladder outlet obstruction, diabetes mellitus, neurologic disorders, and nervous injury to the spinal cord, cauda equine, and peripheral pelvic nerve have been assumed to be responsible for the development of UAB. Several contributing factors have been suggested in the pathophysiology of UAB, including myogenic failure, efferent and/or afferent dysfunctions, and central nervous system dysfunction. In this review article, we have described relationships between individual contributing factors and the pathophysiology of UAB based on previous reports. However, many pathophysiological uncertainties still remain, which require more investigations using appropriate animal models.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
95
|
Kadekawa K, Majima T, Shimizu T, Wada N, de Groat WC, Kanai AJ, Goto M, Yoshiyama M, Sugaya K, Yoshimura N. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice. Am J Physiol Renal Physiol 2017. [PMID: 28637786 DOI: 10.1152/ajprenal.00097.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1) spinal intact (SI)-control, 2) SI-capsaicin pretreatment (Cap), 3) SCI-control, and 4) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice.
Collapse
Affiliation(s)
- Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Southern Knights' Laboratory, Okinawa, Japan.,Okinawa Kyodo Hospital, Okinawa, Japan
| | - Tsuyoshi Majima
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Momokazu Goto
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Mitsuharu Yoshiyama
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, University of Yamanashi Graduate School of Medical Science, Chuo, Japan
| | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; .,Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
96
|
Actions and Regulation of Ionotropic Cannabinoid Receptors. ADVANCES IN PHARMACOLOGY 2017; 80:249-289. [PMID: 28826537 DOI: 10.1016/bs.apha.2017.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost three decades have passed since the identification of the two specific metabotropic receptors mediating cannabinoid pharmacology. Thereafter, many cannabinoid effects, both at central and peripheral levels, have been well documented and characterized. However, numerous evidences demonstrated that these pharmacological actions could not be attributable solely to the activation of CB1 and CB2 receptors since several important cannabimimetic actions have been found in biological systems lacking CB1 or CB2 gene such as in specific cell lines or transgenic mice. It is now well accepted that, beyond their receptor-mediated effects, these molecules can act also via CB1/CB2-receptor-independent mechanism. Cannabinoids have been demonstrated to modulate several voltage-gated channels (including Ca2+, Na+, and various type of K+ channels), ligand-gated ion channels (i.e., GABA, glycine), and ion-transporting membranes proteins such as transient potential receptor class (TRP) channels. The first direct, cannabinoid receptor-independent interaction was reported on the function of serotonin 5-HT3 receptor-ion channel complex. Similar effects were reported also on the other above mentioned ion channels. In the early ninety, studies searching for endogenous modulators of L-type Ca2+ channels identified anandamide as ligand for L-type Ca2+ channel. Later investigations indicated that other types of Ca2+ currents are also affected by endocannabinoids, and, in the late ninety, it was discovered that endocannabinoids activate the vanilloid receptor subtype 1 (TRPV1), and nowadays, it is known that (endo)cannabinoids gate at least five distinct TRP channels. This chapter focuses on cannabinoid regulation of ion channels and lays special emphasis on their action at transient receptor channels.
Collapse
|
97
|
Stretch-induced actomyosin contraction in epithelial tubes: Mechanotransduction pathways for tubular homeostasis. Semin Cell Dev Biol 2017; 71:146-152. [PMID: 28610943 DOI: 10.1016/j.semcdb.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
Many tissues in our body have a tubular shape and are constantly exposed to various stresses. Luminal pressure imposes tension on the epithelial and myoepithelial or smooth muscle cells surrounding the lumen of the tubes. Contractile forces generated by actomyosin assemblies within these cells oppose the luminal pressure and must be calibrated to maintain tube diameter homeostasis and tissue integrity. In this review, we discuss mechanotransduction pathways that can lead from sensation of cell stretch to activation of actomyosin contractility, providing rapid mechanochemical feedback for proper tubular tissue function.
Collapse
|
98
|
Janssen DAW, Schalken JA, Heesakkers JPFA. Urothelium update: how the bladder mucosa measures bladder filling. Acta Physiol (Oxf) 2017; 220:201-217. [PMID: 27804256 DOI: 10.1111/apha.12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
AIM This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. METHODS Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. RESULTS Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. CONCLUSIONS Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling.
Collapse
Affiliation(s)
- D. A. W. Janssen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. A. Schalken
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. P. F. A. Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
99
|
Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Auton Neurosci 2017; 209:59-70. [PMID: 28506502 DOI: 10.1016/j.autneu.2017.05.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/30/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
Traumatic spinal cord injury (SCI) has widespread physiological effects beyond the disruption of sensory and motor function, notably the loss of normal autonomic and cardiovascular control. Injury at or above the sixth thoracic spinal cord segment segregates critical spinal sympathetic neurons from supraspinal modulation which can result in a syndrome known as autonomic dysreflexia (AD). AD is defined as episodic hypertension and concomitant baroreflex-mediated bradycardia initiated by unmodulated sympathetic reflexes in the decentralized cord. This condition is often triggered by noxious yet unperceived visceral or somatic stimuli below the injury level and if severe enough can require immediate medical attention. Herein, we review the pathophysiological mechanisms germane to the development of AD, including maladaptive plasticity of neural circuits mediating abnormal sympathetic reflexes and hypersensitization of peripheral vasculature that collectively contribute to abnormal hemodynamics after SCI. Further, we discuss the systemic effects of recurrent AD and pharmacological treatments used to manage such episodes. Contemporary research avenues are then presented to better understand the relative contributions of underlying mechanisms and to elucidate the effects of recurring AD on cardiovascular and immune functions for developing more targeted and effective treatments to attenuate the development of this insidious syndrome following high-level SCI.
Collapse
Affiliation(s)
- Khalid C Eldahan
- Department of Physiology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - Alexander G Rabchevsky
- Department of Physiology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
100
|
Agonist-dependence of functional properties for common nonsynonymous variants of human transient receptor potential vanilloid 1. Pain 2017; 157:1515-1524. [PMID: 26967694 DOI: 10.1097/j.pain.0000000000000556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal receptor activated by capsaicin, heat, and acid, which plays critical roles in thermosensation and pain. In addition, TRPV1 also contributes to multiple pathophysiological states in respiratory, cardiovascular, metabolic, and renal systems. These contributions are further supported by evidence that variations in the human TRPV1 (hTRPV1) gene are associated with various physiological and pathological phenotypes. However, it is not well understood how the variations in hTRPV1 affect channel functions. In this study, we examined functional consequences of amino acid variations of hTRPV1 induced by 5 nonsynonymous single-nucleotide polymorphisms (SNPs) that most commonly exist in the human population. Using electrophysiological assays in HEK293 cells, we examined 9 parameters: activation, Ca permeation, and desensitization after activation by capsaicin, acid, and heat. Our results demonstrated that the 5 SNPs differentially affected functional properties of hTRPV1 in an agonist-dependent manner. Based upon the directionality of change of each phenotype and cumulative changes in each SNP, we classified the 5 SNPs into 3 presumptive functional categories: gain of function (hTRPV1 Q85R, P91S, and T469I), loss of function (I585V), and mixed (M315I). These results reveal a spectrum of functional variation among common hTRPV1 polymorphisms in humans and may aid mechanistic interpretation of phenotypes associated with nonsynonymous hTRPV1 SNPs under pathophysiological conditions.
Collapse
|