51
|
Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 33:1595-1622. [DOI: 10.1080/09205063.2022.2068941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
52
|
Wen Y, Jian M, Huang J, Luo J, Qian L, Zhang J. Carbonene Fibers: Toward Next-Generation Fiber Materials. NANO LETTERS 2022; 22:6035-6047. [PMID: 35852935 DOI: 10.1021/acs.nanolett.1c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of human society has set unprecedented demands for advanced fiber materials, such as lightweight and high-performance fibers for reinforcement of composite materials in frontier fields and functional and intelligent fibers in wearable electronics. Carbonene materials composed of sp2-hybridized carbon atoms have been demonstrated to be ideal building blocks for advanced fiber materials, which are referred to as carbonene fibers. Carbonene fibers that generally include pristine carbonene fibers, composite carbonene fibers, and carbonene-modified fibers hold great promise in transferring the extraordinary properties of nanoscale carbonene materials to macroscopic applications. Herein, we give a comprehensive discussion on the conception, classification, and design strategies of carbonene fibers and then summarize recent progress regarding the preparations and applications of carbonene fibers. Finally, we provide insights into developing lightweight, high-performance, functional, and intelligent carbonene fibers for next-generation fiber materials in the near future.
Collapse
Affiliation(s)
- Yeye Wen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Jiankun Huang
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiajun Luo
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
53
|
You Y, Zheng A, Wei D, Xu X, Guan Y, Chen J. A small addition of reduced graphene oxide to protect fluorosilicone rubber from thermal oxidative degradation. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang You
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| | - Anna Zheng
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| | - Dafu Wei
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| | - Xiang Xu
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| | - Yong Guan
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| | - Jianding Chen
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials East China University of Science and Technology Shanghai China
| |
Collapse
|
54
|
Punset M, Brizuela A, Pérez-Pevida E, Herrero-Climent M, Manero JM, Gil J. Mechanical Characterization of Dental Prostheses Manufactured with PMMA-Graphene Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155391. [PMID: 35955326 PMCID: PMC9369515 DOI: 10.3390/ma15155391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/12/2023]
Abstract
The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young’s modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene’s morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10−7 for PMMA and 1.33 × 10−7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.
Collapse
Affiliation(s)
- Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Technical University of Catalonia (UPC), C. Jordi Girona 3-1, 08034 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Esteban Pérez-Pevida
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | | | - José Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Josep Trueta s/n., 08195 Barcelona, Spain
| |
Collapse
|
55
|
Development and Investigation of High Performance PVA/NiO and PVA/CuO Nanocomposites with Improved Physical, Dielectric and Mechanical Properties. MATERIALS 2022; 15:ma15155154. [PMID: 35897587 PMCID: PMC9331663 DOI: 10.3390/ma15155154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023]
Abstract
A series of polyvinyl alcohol (PVA)based composites with well dispersed nano fillers were fabricated and compared in terms of dielectric, mechanical, and optical properties. Specifically, NiO and CuO nano-fillers were utilized in a range of 0.2-0.6 wt% for thin film fabrication by solution deposition method. The characterization of nanocomposites was confirmed through FTIR, FESEM, and XRPD, whereas dielectric and mechanical properties were analyzed with respect to the filler concentrations. The bandgap of PVA/nano-filler composites reduced with an increase in NiO and CuO concentration from 0.2 to 0.6 wt%. The increase in the permittivity of the material was observed for 6 wt% of nano-fillers. The toughness of PVA/nano-filler composites was improved by increasing CuO and NiO concentration and Young's modulus of 30.9 and 27.2 MPa for 0.6 wt% of NiO and CuO-based nanocomposite, respectively, was observed. The addition of nano-fillers showed improved optical, dielectric, and mechanical properties.
Collapse
|
56
|
Al-Harthi MA, Hussain M. Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites. Polymers (Basel) 2022; 14:polym14152976. [PMID: 35893940 PMCID: PMC9332778 DOI: 10.3390/polym14152976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
The nanocomposites of poly(vinylidene fluoride) (PVDF) with pristine graphene nanoflakes (GNF) and a multi-wall carbon nanotube (MWCNT) were prepared by the solution casting method. Additionally, the GNF and MWCNT were functionalized by acid treatment, and nanocomposites of the acid-treated MWCNT/GNF and PVDF were prepared in the same method. The effect of the acid treatment of MWCNT and GNF on the mechanical, thermal and thermo-oxidative stability and the thermal conductivity of the MWCNT/GNF-PVDF nanocomposites was evaluated, and the results were compared with the untreated MWCNT/GNF-PVDF nanocomposites. In both cases, the amount of GNF and MWCNT was varied to observe and compare their thermal and mechanical properties. The functionalization of the GNF or MWCNT resulted in the change in the crystallization and melting behavior of the nanocomposites, as confirmed by the differential scanning calorimetry analysis. The addition of the functionalized GNF/MWCNT led to the improved thermal stability of the PVDF nanocomposites compared to that of the non-functionalized GNF/MWCNT-PVDF nanocomposites. The thermal and electrical conductivity of the functionalized and non-functionalized GNF/MWCNT-PVDF composites were also measured and compared. The functional groups, crystal structure, microstructure and morphology of the nanocomposites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.
Collapse
Affiliation(s)
- Mamdouh A. Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Correspondence: (M.A.A.-H.); (M.H.)
| | - Manwar Hussain
- Department of Materials and Chemical Engineering, Erica Campus, Hanyang University, Ansan 15588, Korea
- Correspondence: (M.A.A.-H.); (M.H.)
| |
Collapse
|
57
|
Jin C, Park J, Shirakawa H, Osaki M, Ikemoto Y, Yamaguchi H, Takahashi H, Ohashi Y, Harada A, Matsuba G, Takashima Y. Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. SOFT MATTER 2022; 18:5027-5036. [PMID: 35695164 DOI: 10.1039/d2sm00408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyurethane (PU) materials with movable crosslinking were prepared by a typical two-step synthetic process using an acetylated γ-cyclodextrin (TAcγCD) diol compound. The soft segment of PU is polytetrahydrofuran (PTHF), and the hard segment consists of hexamethylene diisocyanate (HDI) and 1,3-propylene glycol (POD). The synthesized PU materials exhibited the typical mechanical characteristics of a movable crosslinking network, and the presence of hydrogen bonds from the urethane bonds resulted in a synergistic effect. Two kinds of noncovalent bond crosslinking increased the Young's modulus of the material without affecting its toughness. Fourier transform infrared spectroscopy and X-ray scattering measurements were performed to analyze the effect of introducing movable crosslinking on the internal hydrogen bond and the microphase separation structure of PU, and the results showed that the carbonyl groups on TAcγCD could form hydrogen bonds with the PU chains and that the introduction of movable crosslinking weakened the hydrogen bonds between the hard segments of PU. When stretched, the movable crosslinking of the PU materials suppressed the orientation of polymer chains (shish-kebab orientation) in the tensile direction. The mechanical properties of the movable crosslinked PU materials show promise for future application in the industrial field.
Collapse
Affiliation(s)
- Changming Jin
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hidenori Shirakawa
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (SPring-8) Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Takahashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Yasumasa Ohashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
58
|
Xiang Q, Zhong B, Tan H, Navik R, Liu Z, Zhao Y. Improved Dispersibility of Graphene in an Aqueous Solution by Reduced Graphene Oxide Surfactant: Experimental Verification and Density Functional Theory Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8222-8231. [PMID: 35763677 DOI: 10.1021/acs.langmuir.2c00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is difficult to disperse graphene flakes well in an aqueous solution while maintaining conductivity due to its high hydrophobicity. Herein, we demonstrated that a well-dispersed state of graphene in an aqueous solution was realized by using reduced graphene oxide (rGO) with a suitable content of oxygen-functional groups. A rGO-dispersed graphene (rGO/G) film was fabricated from the graphene dispersion with good conductivity by using rGO with a C/O ratio of 2.48 as the surfactant. Also, the prepared rGO/G aerogel has a broad prospect. Density functional theory calculation revealed that the strong electrostatic repulsion, which was more potent than the van der Waals force and the π-π interaction, was the primary driving force promoting the dispersibility of graphene in an aqueous solution. Furthermore, the repulsion of the rGO/G dispersion decreased with the reduction of the oxygen-functional groups of rGO. Therefore, applying rGO with an appropriate content of oxygen-functional groups is an alternative option to improve the dispersibility of graphene in an aqueous medium while maintaining its original properties, from which many potential applications could be expected.
Collapse
Affiliation(s)
- Qixuan Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Boan Zhong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Zhiyuan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| |
Collapse
|
59
|
Al-Harthi MA, Hussain M. Effect of Fabrication Method on the Thermo Mechanical and Electrical Properties of Graphene Doped PVDF Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2315. [PMID: 35808150 PMCID: PMC9268272 DOI: 10.3390/nano12132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023]
Abstract
Nanocomposites of poly (vinylidene fluoride) PVDF with graphene nanoflakes (GNF) were prepared using two different routes. Initially, a mix-melting method was used to prepare composites, and their thermal and mechanical properties were evaluated to choose the better method for future experiment and properties investigation. Then, nanocomposite films were prepared by a simple solution-casting technique using a PVDF/graphene solution. In both cases, the amount of graphene was varied to observe and to compare their thermal and mechanical properties. The addition of graphene to the PVDF matrix resulted in changes in the crystallization and melting behaviors as confirmed by DSC analyses. Increasing the graphene content led to improved thermal stability of the PVDF nanocomposites prepared using both methods. Improvements in mechanical properties by the addition of graphene were also observed. Better performance was observed by the nanocomposites prepared by a mix-melting technique suggesting better dispersion and strong interface bonding between PVDF and graphene particles. Thermal and electrical conductivity were measured and compared. Microstructure and morphology were characterized using FTIR, XRD, and SEM analyses.
Collapse
Affiliation(s)
- Mamdouh A. Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Manwar Hussain
- Department of Materials and Chemical Engineering, Erica Campus, Hanyang University, Ansan 425020-426910, Korea
| |
Collapse
|
60
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
61
|
Zhang Y, Wang Y, Hou L, Yuan C. Recent Progress of Carbon-Based Anode Materials for Potassium Ion Batteries. CHEM REC 2022; 22:e202200072. [PMID: 35701096 DOI: 10.1002/tcr.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/30/2022] [Indexed: 11/12/2022]
Abstract
With the increasing demand for clean energy, rechargeable batteries with K+ as carriers have attracted wide attention due to their advantages of expandability and low cost. High-performance anode materials are the key to the development of potassium ion batteries (PIBs), improving their competitiveness and feasibility. Carbon materials have become promising anodes for PIBs due to their abundant resources, low cost, non-toxicity and electrochemical diversity. This article reviews the research progress of carbon based anode materials in recent years. Firstly, the unique characteristics of carbon as a competitive anode for advanced PIBs are discussed, which provides guidance for optimal design and exploration. Then, various carbon materials as the anodes towards PIBs are summarized in detail, and the involved problems and corresponding solutions are analyzed. Finally, the future development and perspective of advanced carbons for next-generation PIBs are proposed.
Collapse
Affiliation(s)
- Yamin Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yuyan Wang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
62
|
PLLA/Graphene Nanocomposites Membranes with Improved Biocompatibility and Mechanical Properties. COATINGS 2022. [DOI: 10.3390/coatings12060718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, nanocomposite membranes based on graphene and polylactide were evaluated for mechanical properties and biocompatibility. Single-layer graphene (SLG), graphene nanosheets (GNS), and poly L-lactic acid (PLLA) were prepared through layer-by-layer deposition and homogeneous mixing. The results revealed that PLLA/SLG nanocomposites and PLLA/GNS nanocomposites could show enhanced mechanical properties and biocompatibility. The addition of a tiny amount of SLG significantly improved Young’s modulus and tensile strength of the PLLA matrix by 15.9% and 32.8% respectively, while the addition of the same mass ratio of GNS boosted the elongation at break of the PLLA matrix by 79.7%. These results were ascribed to the crystallinity and interfacial interaction differences resulting from graphene incorporation. Also, improved biocompatibility was observed with graphene incorporation. Such nanocomposites membranes showed a lot of potential as environment-friendly and biomedical materials.
Collapse
|
63
|
Rahbarshendi F, Baybordiani A, Asgharzadeh H, Badr M, Hassannezhad K. The effect of graphene‐based nanofillers on the structure, thermal, and mechanical properties of poly(vinyl alcohol). J Appl Polym Sci 2022. [DOI: 10.1002/app.52664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Faezeh Rahbarshendi
- Nanostructured and Novel Materials Laboratory (NNML), Department of Materials Engineering University of Tabriz Tabriz Iran
| | - Ayda Baybordiani
- Nanostructured and Novel Materials Laboratory (NNML), Department of Materials Engineering University of Tabriz Tabriz Iran
| | - Hamed Asgharzadeh
- Nanostructured and Novel Materials Laboratory (NNML), Department of Materials Engineering University of Tabriz Tabriz Iran
| | - Milad Badr
- Research Center for Advanced Materials, Faculty of Materials Engineering Sahand University of Technology Tabriz Iran
| | - Kosar Hassannezhad
- Materials Science and Nano Engineering Sabanci University Istanbul Turkey
| |
Collapse
|
64
|
Su X, Pandey RK, Ma J, Lim WC, Ao CK, Liu C, Nakanishi H, Soh S. Self-assembly of graphene oxide flakes for smart and multifunctional coating with reversible formation of wrinkling patterns. SOFT MATTER 2022; 18:3546-3556. [PMID: 35445678 DOI: 10.1039/d1sm01834e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.
Collapse
Affiliation(s)
- Xinran Su
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Rakesh K Pandey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Junhao Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Wei Chun Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Changhui Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
65
|
Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study. J Mol Model 2022; 28:143. [PMID: 35543752 DOI: 10.1007/s00894-022-05134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Functionalization of graphene is the best way to create a high degree of dispersion and bonding to polymer matrix in order to obtain high performance composites. The effects of carboxyl (-COOH) functionalized graphene (FG) on the mechanical properties of its epoxy-based nanocomposites have been examined by molecular dynamics (MD) simulations. Simulations cells of nanocomposites with varying wt% of FG (1, 2, and 3 wt%) were constructed using Material Studio 6.0. The MD simulation findings of nanocomposites reveal that they have better mechanical properties such as elastic modulus, bulk modulus, shear modulus, and the Poisson's ratio than pure epoxy. Furthermore, the computational results of nanocomposites have been effectively confirmed with available experimental data. Therefore, the current MD simulation shows a decent computational sign for the existing experimental and simulation outcomes on mechanical properties of FG/epoxy nanocomposites.
Collapse
|
66
|
Rahmani S, Olad A, Rahmani Z. Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: study of drug delivery behavior. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Chatterjee N, Kumar P, Kumar K, Misra SK. What makes carbon nanoparticle a potent material for biological application? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1782. [PMID: 35194963 DOI: 10.1002/wnan.1782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
Carbon materials are generally utilized in the form of carbon allotropes and their characteristics are exploited as such or for improving the thermal, electrical, optical, and mechanical properties of other biomaterials. This has now found a broader share in conventional biomaterial space with the generation of nanodiamond, carbon dot, carbon nanoparticles (CNPs), and so forth. With properties of better biocompatibility, intrinsic optical emission, aqueous suspendability, and easier surface conjugation possibilities made CNPs as one of the fore most choice for biological applications especially for use in intracellular spaces. There are various reports available presenting methods of preparing, characterizing, and using CNPs for various biological applications but a collection of information on what makes CNP a suitable biomaterial to achieve those biological activities is yet to be provided in a significant way. Herein, a series of correlations among synthesis, characterization, and mode of utilization of CNP have been incorporated along with the variations in its use as agent for sensing, imaging, and therapy of different diseases or conditions. It is ensembled that how simplified and optimized methods of synthesis is correlated with specific characteristics of CNPs which were found to be suitable in the specific biological applications. These comparisons and correlations among various CNPs, will surely provide a platform to generate new edition of this nanomaterial with improvised applications and newer methods of evaluating structural, physical, and functional properties. This may ensure the eventual use of CNPs for human being for specific need in near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Piyush Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
68
|
P. S S, Mahesh TY, Pandey MK, Haponiuk JT, Thomas S, George SC. Tribological performance of ionic liquid modified graphene oxide/silicone rubber composite and the correlation of properties using machine learning methods. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarath P. S
- Centre for Nanoscience and Technology, Department of Basic Sciences Amal Jyothi College of Engineering Kottayam Kerala India
- Department of Polymer Technology Gdansk University of Technology Gdansk Poland
| | - Therese Yamuna Mahesh
- Department of Electronics and Communication Engineering Amal Jyothi College of Engineering Kottayam Kerala India
| | - Mrituanjay Kumar Pandey
- Directorate of Extramural Research and Intellectual Property Right Defence Research and Development Organisation (DRDO) New Delhi India
| | - Józef T. Haponiuk
- Department of Polymer Technology Gdansk University of Technology Gdansk Poland
| | - Sabu Thomas
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 Johannesburg South Africa
| | - Soney C. George
- Centre for Nanoscience and Technology, Department of Basic Sciences Amal Jyothi College of Engineering Kottayam Kerala India
| |
Collapse
|
69
|
Kumar V, Kumar A, Alam MN, Park S. Effect of graphite nanoplatelets surface area on mechanical properties of room‐temperature vulcanized silicone rubber nanocomposites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering Yeungnam University Gyeongsan South Korea
| | - Anuj Kumar
- School of Chemical Engineering Yeungnam University Gyeongsan South Korea
| | - Md. Najib Alam
- School of Mechanical Engineering Yeungnam University Gyeongsan South Korea
| | - Sang‐Shin Park
- School of Mechanical Engineering Yeungnam University Gyeongsan South Korea
| |
Collapse
|
70
|
Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. PHOTONICS 2022. [DOI: 10.3390/photonics9050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film has been successfully synthesized and prepared by spin coating techniques. Then, the properties and morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR results for GO–PVA thin film demonstrated the existence of important functional groups such as -CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200 to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor for pesticide detection.
Collapse
|
71
|
Hussain MZ, Khan S. Fabrication and tribological behavior of MnO 2/epoxy nanocomposites. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221079510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tribology is the study of moving surfaces, and it has a variety of effects on our lives. From an economic point of view, wear is one of the most important aspects of an industry’s viability. Parts of the machine can wear out, and they need to be replaced. This is especially important for polymer-based materials. Therefore, it is important to reduce maintenance costs and improve machine reliability in a variety of engineering applications through proper material selection. The present investigation deals with the fabrication of manganese dioxide (MnO2)/epoxy nanocomposite and investigates its tribological properties. The MnO2/epoxy nanocomposites were fabricated via a solution mixing technique. The phase identification and surface morphology of the sample was examined by X-ray diffractometer and field emission scanning electron microscope, respectively. The mass density, micro-hardness, and specific wear rate data of samples revealed that the mass density, micro-hardness, and wear resistance of the samples increased with the addition of MnO2 in the epoxy matrix. The nanocomposite sample containing 0.5 wt. % MnO2 loading in the epoxy matrix shows higher density, micro-hardness, and wear resistance compared to other samples. The result also shows that with the addition of MnO2 in the epoxy matrix, the coefficient of friction of the samples is increased. The percentage reduction in specific wear rate due to the addition of 0.5 wt. % MnO2 in neat epoxy is 68.10%, whereas the percentage increase in the coefficient of friction is 19.30%. The results of the analysis of variance show the effect of adding wt. % of MnO2 in the epoxy matrix is significant in the tribological responses. The worn surface analysis shows that the fatigue wear mode seems to be the dominating mode of wear for all samples as compared to the other modes of wear. The properties of MnO2/epoxy nanocomposite data revealed that the developed material may be used in the automotive industry as a structural material, fabrication of snow sled, ball bearing housing, or plastic gear materials with adequate lubrication.
Collapse
Affiliation(s)
- Md Z Hussain
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Sabah Khan
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
72
|
|
73
|
Beladi-Mousavi SM, Walder L. Materials and systems for polymer-based Metallocene batteries: Status and challenges. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
74
|
Ye C, Wang G, Yuan H, Li J, Ni K, Pan F, Guo M, Wu Y, Ji H, Zhang F, Qu B, Tang Z, Zhu Y. Microfluidic Oxidation of Graphite in Two Minutes with Capability of Real-Time Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107083. [PMID: 35167166 DOI: 10.1002/adma.202107083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Graphite oxide and its exfoliated counterpart, graphene oxide, are important precursors for the large-scale production of graphene-based materials and many relevant applications. The current batch-style preparation of graphite oxide suffers from safety concern, long reaction time, and nonuniform product quality, due to the large volume of reactors and slow energy exchange. Reaction in microchannels can largely enhance the oxidization efficiency of graphite due to the enhanced mass transfer and extremely quick energy exchange, by which the controllable oxidization of graphite is achieved in ≈2 min. Comprehensive characterizations show that the graphene oxide obtained through the microfluidic strategy has features like those prepared in laboratory beakers and industrial reactors, yet with the higher oxidization degree and more epoxy groups. More importantly, the microfluidic preparation allows for on-line monitoring of the oxidization by Raman spectroscopy, ready for the dynamical control of reaction condition and product quality. The capability of continuous preparation is also demonstrated by showing the assembly of fibers and reduction of graphene oxide in microfluidic channels, and the applicability of graphene oxide prepared from the microfluidic strategy for thermally and electrically conductive films.
Collapse
Affiliation(s)
- Chuanren Ye
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jieyun Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Ni
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Pan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Guo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yanhong Wu
- The Sixth Element (Changzhou) Materials Technology Co., Ltd., Changzhou, 213000, China
| | - Hengxing Ji
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bill Qu
- The Sixth Element (Changzhou) Materials Technology Co., Ltd., Changzhou, 213000, China
| | - Zhiyong Tang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwu Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
75
|
Thermal, mechanical and water barrier properties of graphene oxide/polyvinyl alcohol/polyol composite films. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Toto E, Laurenzi S, Santonicola MG. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers (Basel) 2022; 14:1030. [PMID: 35267853 PMCID: PMC8914833 DOI: 10.3390/polym14051030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization of (bio)molecules. Several techniques based on both top-down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and functionalized forms. These fillers can be further modified to enhance their integration with polymeric matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In this review article, we summarize recent trends in the design and fabrication of graphene/polymer nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity, and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological analytes with broad implications for human health, such as nucleic bases or viral genes, can also be detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules that are immobilized on the graphene nanomaterial as target for sensing is reviewed.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Susanna Laurenzi
- Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| |
Collapse
|
77
|
Wang W, Zhang Z, Zhao X, Ye L. Polyoxymethylene/Reduced Graphene Oxide-g-Melamine Nano-composites With Low Formaldehyde Emission: Intercalation Structure and Synergistic Thermal Oxidative Stabilization Effect. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
78
|
Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (Beijing) 2022; 3:e118. [PMID: 35281783 PMCID: PMC8906468 DOI: 10.1002/mco2.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene- (G-) and graphene oxide (GO)-based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid-phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G-based materials. Additionally, important criteria such as biocompatibility, bio-toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G-based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor-targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G-based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G- and GO-based nanosystems have been highlighted, and the recent advancements are deliberated.
Collapse
Affiliation(s)
- Ali Shafiee
- Department of ChemistryCape Breton UniversitySydneyCanada
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research InstitutePalacky University in OlomoucOlomoucCzech Republic
| |
Collapse
|
79
|
Abstract
The lightweight and high-strength functional nanocomposites are important in many practical applications. Natural biomaterials with excellent mechanical properties provide inspiration for improving the performance of composite materials. Previous studies have usually focused on the bionic design of the material's microstructure, sometimes overlooking the importance of the interphase in the nanocomposite system. In this Perspective, we will focus on the construction and control of the interphase in confined space and the connection between the interphase and the macroscopic properties of the materials. We shall survey the current understanding of the critical size of the interphase and discuss the general rules of interphase formation. We hope to raise awareness of the interphase concept and encourage more experimental and simulation studies on this subject, with the aim of an optimal design and controllable preparation of polymer nanocomposite materials.
Collapse
Affiliation(s)
- Jin Huang
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People’s Republic
of China
| | - Jiajia Zhou
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, People’s Republic of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Mingjie Liu
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
| |
Collapse
|
80
|
Shin SR, Lee DS. Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4′-Diphenylmethane Diisocyanate. NANOMATERIALS 2022; 12:nano12040685. [PMID: 35215012 PMCID: PMC8876485 DOI: 10.3390/nano12040685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
Abstract
The influence of graphene nanoplates (GNPs) obtained by the ecofriendly exfoliation of natural graphite has been addressed on the mechanical and thermal insulating properties of rigid polyurethane foams (RPUFs). Few-layer GNPs with few defects were prepared in polymeric 4,4′-diphenylmethane diisocyanate (pMDI) under ultrasonication to obtain a GNP/pMDI dispersion. GNP/pMDI dispersions with different GNP concentrations were used to prepare RPUF nanocomposites via in situ polymerization. An important finding is that the GNP/pMDI dispersion exhibits lyotropic liquid crystalline behavior. It was found that the unique orientation of GNPs above the concentration of 0.1 wt% in the dispersion affected the mechanical and thermal insulation properties of the RPUF nanocomposites. GNP/RPUF nanocomposites with GNP concentrations at 0.2 wt% or more showed better thermal insulating properties than neat RPUF. The lyotropic liquid crystalline ordering of GNPs provides stable nucleation for bubble formation during foaming and prevents bubble coalescence. This decreases the average cell size and increases the closed cell content, producing GNP/RPUF nanocomposites with low thermal conductivity. Furthermore, GNPs incorporated into RPUF act as a barrier to radiant heat transfer through the cells, which effectively reduces the thermal conductivity of the resulting nanocomposites. It is expected that the nanocomposite of RPUF investigated in this study can be applied practically to improve the performance of thermal insulation foams.
Collapse
Affiliation(s)
- Se-Ra Shin
- Research Institute, Jung-Woo Fine Corp., Ltd., 63-8, Seogam-ro 1-gil, Iksan 54586, Korea;
| | - Dai-Soo Lee
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-10-6660-7693
| |
Collapse
|
81
|
Zhang K, Zhou M, Cheng F, Lin Y, Zhu P, Li J, Tang K. Preparation and characterization of starch-based nanocomposites reinforced by graphene oxide self-assembled on the surface of silanecouplingagent modified cellulose nanocrystals. Int J Biol Macromol 2022; 198:187-193. [PMID: 34973977 DOI: 10.1016/j.ijbiomac.2021.12.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
The dispersion of cellulose nanocrystal (CNC) in starch matrix limited its application. In this study, CNC modified by silanecouplingagent before graphene oxide (GO) self-assembled on the surface of modified CNC, then CNC-GO as a filler was used to prepare starch-based nanocomposite films (CS/CNC-GO). The structure of CNC-GO and CS/CNC-GO films and the properties of CS/CNC-GO films were studied by FT-IR, Raman, SEM, surface potential, UV-Vis, moisture absorption and tensile tests. The results showed that GO was successfully self-assembled on the surface of CNC modified by silanecouplingagent. CNC-GO was superior to CNC in reinforcing the strength of starch film, improving the transmittance of starch film and decreasing moisture rate of starch film. Tensile strength, elongation at break and transmittance of CS/CNC-GO film with 5 wt% CNC-GO reached maximum, which was 53.96 MPa, 3.72% and 38.76%, respectively. Moisture rate of CS/CNC-GO film with 3 wt% CNC-GO reached minimum that was 12.13%. These were assigned to the more uniform dispersion of CNC-GO in the starch matrix and the stronger interfacial interaction between starch and CNC-GO.
Collapse
Affiliation(s)
- Kang Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Puxin Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiali Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kewen Tang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, China.
| |
Collapse
|
82
|
Gupta K, Kaushik A, Singhal S. Amelioration of adsorptive efficacy by synergistic assemblage of functionalized graphene oxide with esterified cellulose nanofibers for mitigation of pharmaceutical waste. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127541. [PMID: 34879528 DOI: 10.1016/j.jhazmat.2021.127541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
An effort has been undertaken for valorization of surplus biomass to synthesize sustainable and commercially competitive nanoadsorbents utilizing green synthetic strategies. This study encompasses a pioneering research on the comparative adsorption analysis of different modified forms of graphene oxide (GO) combined with functionalized cellulose nanofibers (CNF) derived from surplus biomass for elimination of noxious drug species from aqueous environment with a comprehensive study for evaluating the effect of loading percentage of functionalized GO. Characteristic assessments of the prepared nanocomposites were performed using FT-IR studies, powder XRD studies, FESEM analysis, EDS analysis and BET studies. The prepared nanohybrids were evaluated for their adsorptive performance for elimination of ciprofloxacin and ofloxacin and their performance was optimized in terms of adsorbent loading, pH and initial drug concentration. Further, investigation of adsorbent properties and the adsorption process was undertaken by studying different kinetic and isotherm models of adsorption. The adsorption potential of functionalized CNF was substantially ameliorated through its facile assemblage with functionalized GO. The experimental outcomes revealed that 20 wt% loading of carboxylated graphene oxide within the perforated surface of esterified cellulose nanofibres exhibited best adsorption performance with maximum removal capacity of 45.04 mg g-1 and 85.30 mg g-1 for ciprofloxacin and ofloxacin, respectively. The outstanding regenerability and reusability of nanocomposites present tremendous potential for development of inexpensive and sustainable sorbent materials for managing pharmaceutical pollution. Literature presents scarce data and insufficient number of reports which thoroughly compares the role of differently functionalized GO to potentiate the adsorptive performance of biomass based nanocellulose and its broad application prospects in wastewater remediation. This marks the novelty of the present investigation.
Collapse
Affiliation(s)
- Kanu Gupta
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sonal Singhal
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
83
|
Zhang S, Wu H, Yang L, Zhang G, Xie Y, Zhang L, Zhang W, Chang H. Two-dimensional magnetic atomic crystals. MATERIALS HORIZONS 2022; 9:559-576. [PMID: 34779810 DOI: 10.1039/d1mh01155c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) magnetic crystals show many fascinating physical properties and have potential device applications in many fields. In this paper, the preparation, physical properties and device applications of 2D magnetic atomic crystals are reviewed. First, three preparation methods are presented, including chemical vapor deposition (CVD) molecular beam epitaxy (MBE) and single-crystal exfoliation. Second, physical properties of 2D magnetic atomic crystals, including ferromagnetism, antiferromagnetism, magnetic regulation and anomalous Hall effect are presented. Third, the application of 2D magnetic atomic crystals in heterojunctions reluctance and other aspects are briefly introduced. Finally, the future development direction and possible challenges of 2D magnetic atomic crystals are briefly addressed.
Collapse
Affiliation(s)
- Shanfei Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuanmiao Xie
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Liang Zhang
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
84
|
Ledezma‐Rodríguez R, Hernández EH, Yáñez‐Macías R, Hernández ZG, Zúñiga GYR, Falcón MGG, Gallardo‐Vega C, Morones PG. Study of the dielectric heating of graphite oxide and its effect on the microwave‐assisted synthesis of Nylon‐6/graphite oxide polymeric hybrid nanocomposites. J Appl Polym Sci 2022. [DOI: 10.1002/app.51567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raquel Ledezma‐Rodríguez
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | | | - Roberto Yáñez‐Macías
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | - Zureima García Hernández
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | | | | | - Carlos Gallardo‐Vega
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | - Pablo González Morones
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| |
Collapse
|
85
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Omidifar N, Bahrani S, Vijayakameswara Rao N, Babapoor A, Gholami A, Chiang WH. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers (Basel) 2022; 14:617. [PMID: 35160606 PMCID: PMC8839953 DOI: 10.3390/polym14030617] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Today, nanomedicine seeks to develop new polymer composites to overcome current problems in diagnosing and treating common diseases, especially cancer. To achieve this goal, research on polymer composites has expanded so that, in recent years, interdisciplinary collaborations between scientists have been expanding day by day. The synthesis and applications of bioactive GQD-based polymer composites have been investigated in medicine and biomedicine. Bioactive GQD-based polymer composites have a special role as drug delivery carriers. Bioactive GQDs are one of the newcomers to the list of carbon-based nanomaterials. In addition, the antibacterial and anti-diabetic potentials of bioactive GQDs are already known. Due to their highly specific surface properties, π-π aggregation, and hydrophobic interactions, bioactive GQD-based polymer composites have a high drug loading capacity, and, in case of proper correction, can be used as an excellent option for the release of anticancer drugs, gene carriers, biosensors, bioimaging, antibacterial applications, cell culture, and tissue engineering. In this paper, we summarize recent advances in using bioactive GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic therapy, bioimaging, tissue engineering, bioactive GQD synthesis, and GQD green resuscitation, in addition to examining GQD-based polymer composites.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil 56199-11367, Iran;
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
86
|
Effect of hybrid fillers on the mechanical behavior of polypropylene based hybrid composites. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
Zheng Y, Xu H, Jing H, Ren Q, Liu Z, Gao Z, Ban Q. Graphene dispersed by pyrene‐terminated polyethylene glycol for reinforced epoxy composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yaochen Zheng
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Hui Xu
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Heshun Jing
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Qingxin Ren
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Zhiqing Liu
- Technology research and development Weihai Heliyuan Carbon Fiber Composite Technology Co., LTD Weihai P. R. China
| | - Zhengguo Gao
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Qingfu Ban
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| |
Collapse
|
88
|
Shang H, Ke L, Xu W, Shen M, Fan ZX, Zhang S, Wang Y, Tang D, Huang D, Yang HR, Zhou D, Xu H. Microwave-Assisted Direct Growth of Carbon Nanotubes at Graphene Oxide Nanosheets to Promote the Stereocomplexation and Performances of Polylactides. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenxuan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mengyuan Shen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhen-Xing Fan
- Beijing Naton Institute of Medical Technology Co., Ltd., Beijing 100194, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Hao-Ran Yang
- State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Dongmei Zhou
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
89
|
Graphene for Antimicrobial and Coating Application. Int J Mol Sci 2022; 23:ijms23010499. [PMID: 35008923 PMCID: PMC8745297 DOI: 10.3390/ijms23010499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Graphene is a versatile compound with several outstanding properties, providing a combination of impressive surface area, high strength, thermal and electrical properties, with a wide array of functionalization possibilities. This review aims to present an introduction of graphene and presents a comprehensive up-to-date review of graphene as an antimicrobial and coating application in medicine and dentistry. Available articles on graphene for biomedical applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect. The selected articles were included in this study. Extensive research on graphene in several fields exists. However, the available literature on graphene-based coatings in dentistry and medical implant technology is limited. Graphene exhibits high biocompatibility, corrosion prevention, antimicrobial properties to prevent the colonization of bacteria. Graphene coatings enhance adhesion of cells, osteogenic differentiation, and promote antibacterial activity to parts of titanium unaffected by the thermal treatment. Furthermore, the graphene layer can improve the surface properties of implants which can be used for biomedical applications. Hence, graphene and its derivatives may hold the key for the next revolution in dental and medical technology.
Collapse
|
90
|
Pacheco MP, Gómez ORT, Escamilla GC, Aranda SD, Velázquez MGN. Obtaining and characterization of bioplastics based on potato starch, aloe, and graphene. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
91
|
Chen L, Wu G, Huang Y, Bai C, Yu Y, Zhang J. High Loading Capacity and Wear Resistance of Graphene Oxide/Organic Molecule Assembled Multilayer Film. Front Chem 2021; 9:740140. [PMID: 34912777 PMCID: PMC8666596 DOI: 10.3389/fchem.2021.740140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Taking advantage of the strong charge interactions between negatively charged graphene oxide (GO) sheets and positively charged poly(diallyldimethylammonium chloride) (PDDA), self-assembled multilayer films of (GO/PDDA)n were created on hydroxylated silicon substrates by alternating electrostatic adsorption of GO and PDDA. The formation and structure of the films were analyzed by means of water contact angle measurement, thickness measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, tribological behaviors in micro- and macro- scale were investigated by AFM and a ball-on-plate tribometer, respectively. The results showed that (GO/PDDA)n multilayer films exhibited excellent friction-reducing and anti-wear abilities in both micro- and macro-scale, which was ascribed to the special structure in (GO/PDDA)n multilayer films, namely, a well-stacked GO-GO layered structure and an elastic 3D crystal stack in whole. Such a film structure is suitable for design molecular lubricants for MEMS and other microdevices.
Collapse
Affiliation(s)
- Li Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Gang Wu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Yin Huang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Changning Bai
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanlie Yu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junyan Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
92
|
Kagenda C, Lee JW, Memon FH, Ahmed F, Samantasinghar A, Akhtar MW, Khalique A, Choi KH. Silicone Elastomer Composites Fabricated with MgO and MgO-Multi-Wall Carbon Nanotubes with Improved Thermal Conductivity. NANOMATERIALS 2021; 11:nano11123418. [PMID: 34947767 PMCID: PMC8708344 DOI: 10.3390/nano11123418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023]
Abstract
The effect of multiwall carbon nanotubes (MWCNTs) and magnesium oxide (MgO) on the thermal conductivity of MWCNTs and MgO-reinforced silicone rubber was studied. The increment of thermal conductivity was found to be linear with respect to increased loading of MgO. In order to improve the thermal transportation of phonons 0.3 wt % and 0.5 wt % of MWCNTs were added as filler to MgO-reinforced silicone rubber. The MWCNTs were functionalized by hydrogen peroxide (H2O2) to activate organic groups onto the surface of MWCNTs. These functional groups improved the compatibility and adhesion and act as bridging agents between MWCNTs and silicone elastomer, resulting in the formation of active conductive pathways between MgO and MWCNTs in the silicone elastomer. The surface functionalization was confirmed with XRD and FTIR spectroscopy. Raman spectroscopy confirms the pristine structure of MWCNTs after oxidation with H2O2. The thermal conductivity is improved to 1 W/m·K with the addition of 20 vol% with 0.5 wt % of MWCNTs, which is an ~8-fold increment in comparison to neat elastomer. Improved thermal conductive properties of MgO-MWCNTs elastomer composite will be a potential replacement for conventional thermal interface materials.
Collapse
Affiliation(s)
- Christopher Kagenda
- Faculty of Science, Faculty of Chemistry, Chemical Engineering, Kyambogo University, Kampala P.O. Box 1, Uganda;
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju-si 54896, Korea
| | - Jae Wook Lee
- Advanced Micro Mechatronics Labortory, Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.W.L.); (F.H.M.); (F.A.); (A.S.)
| | - Fida Hussain Memon
- Advanced Micro Mechatronics Labortory, Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.W.L.); (F.H.M.); (F.A.); (A.S.)
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Faheem Ahmed
- Advanced Micro Mechatronics Labortory, Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.W.L.); (F.H.M.); (F.A.); (A.S.)
| | - Anupama Samantasinghar
- Advanced Micro Mechatronics Labortory, Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.W.L.); (F.H.M.); (F.A.); (A.S.)
| | - Muhammad Wasim Akhtar
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju-si 54896, Korea
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan;
- Correspondence: (M.W.A.); (K.H.C.)
| | - Abdul Khalique
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan;
| | - Kyung Hyun Choi
- Advanced Micro Mechatronics Labortory, Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (J.W.L.); (F.H.M.); (F.A.); (A.S.)
- Correspondence: (M.W.A.); (K.H.C.)
| |
Collapse
|
93
|
Li K, Battegazzore D, Pérez-Camargo RA, Liu G, Monticelli O, Müller AJ, Fina A. Polycaprolactone Adsorption and Nucleation onto Graphite Nanoplates for Highly Flexible, Thermally Conductive, and Thermomechanically Stiff Nanopapers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59206-59220. [PMID: 34851623 PMCID: PMC8678991 DOI: 10.1021/acsami.1c16201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 06/10/2023]
Abstract
Free-standing nanopapers based on graphene and its related materials have been widely studied and proposed for flexible heat spreader applications. Given that these materials are typically brittle, this work reports the exploitation of polycaprolactone (PCL) as a polymer binder to enhance resistance and flexibility of nanopapers based on graphite nanoplates (GNP), while maintaining a high thermal conductivity. Properties of nanopapers appear to correlate with the excellent PCL adhesion and strong nucleation of the surface of GNP flakes. Furthermore, different crystalline populations were observed for PCL within the nanopaper and were investigated in detail via differential scanning calorimetry advanced techniques and X-ray diffraction. These demonstrated the coexistence of conventional unoriented PCL crystals, oriented PCL crystals obtained as a consequence of the strong nucleation effect, and highly stable PCL fractions explained by the formation of crystalline pre-freezing layers, the latter having melting temperatures well above the equilibrium melting temperature for pristine PCL. This peculiar crystallization behavior of PCL, reported in this paper for the first time for a tridimensional structure, has a direct impact on material properties. Indeed, the presence of high thermal stability crystals, strongly bound to GNP flakes, coexisting with the highly flexible amorphous fraction, delivers an ideal solution for the strengthening and toughening of GNP nanopapers. Thermomechanical properties of PCL/GNP nanopapers, investigated both on a heating ramp and by creep tests at high temperatures, demonstrated superior stiffness well above the conventional melting temperature of PCL. At the same time, a thermal conductivity > 150 W/m·K was obtained for PCL/GNP nanopapers, representing a viable alternative to traditional metals in terms of heat dissipation, while affording flexibility and light weight, unmatched by conventional thermally conductive metals or ceramics. Besides the obtained performance, the formation of polymer crystals that are stable above the equilibrium melting temperature constitutes a novel approach in the self-assembly of highly ordered nanostructures based on graphene and related materials.
Collapse
Affiliation(s)
- Kun Li
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Daniele Battegazzore
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino-Alessandria Campus, viale Teresa Michel, 5, 15121 Alessandria, Italy
| | - Ricardo A. Pérez-Camargo
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Orietta Monticelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Basque
Foundation
for Science, IKERBASQUE, 48009 Bilbao, Spain
| | - Alberto Fina
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino-Alessandria Campus, viale Teresa Michel, 5, 15121 Alessandria, Italy
| |
Collapse
|
94
|
Mahmud Z, Nasrin A, Hassan M, Gomes VG. 3D‐printed polymer
nanocomposites with carbon quantum dots for enhanced properties and in situ monitoring of cardiovascular stents. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zaheri Mahmud
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Aklima Nasrin
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Mahbub Hassan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Vincent G. Gomes
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
- Nano Institute The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
95
|
Liu R, Nie Y, Ming Y, Hao T, Zhou Z. Simulations on polymer nanocomposite crystallization. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rongjuan Liu
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yongqiang Ming
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Tongfan Hao
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Zhiping Zhou
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
96
|
Ding G, Tai H, Chen C, Sun C, Tang Z. Two Birds with One Stone: Preparation of 4, 4-Diaminodiphenylmethane Functionalized GO@SiO 2 with Mechanical Reinforcement and UV Shielding Properties and Its Application in Thermoplastic Polyurethane. Polymers (Basel) 2021; 13:4220. [PMID: 34883723 PMCID: PMC8659490 DOI: 10.3390/polym13234220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
This study prepared 4,4-diaminodiphenylmethane (DDM)-functionalized graphene oxide (GO)@silica dioxide (SiO2) nano-composites through amidation reaction and low-temperature precipitation. The resulting modified GO, that was DDM-GO@SiO2. The study found that DDM-GO@SiO2 showed good dispersion and compatibility with thermoplastic polyurethane (TPU) substrates. Compared with pure TPU, the tensile strength of the TPU composites increased by 41% to 94.6 MPa at only 0.5 wt% DDM-GO@SiO2. In addition, even when a small amount of DDM-GO@SiO2 was added, the UV absorption of TPU composites increased significantly, TPU composites can achieve a UV shielding efficiency of 95.21% in the UV-A region. These results show that this type of material holds great promise for the preparation of functional coatings and film materials with high strength and weather resistance.
Collapse
Affiliation(s)
- Guoxin Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; (H.T.); (C.C.); (C.S.)
| | - Hongxu Tai
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; (H.T.); (C.C.); (C.S.)
| | - Chuanxin Chen
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; (H.T.); (C.C.); (C.S.)
| | - Chenfeng Sun
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; (H.T.); (C.C.); (C.S.)
| | - Zhongfeng Tang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
97
|
Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13:4198. [PMID: 34883701 PMCID: PMC8659840 DOI: 10.3390/polym13234198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
98
|
Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin. Polymers (Basel) 2021; 13:polym13213857. [PMID: 34771413 PMCID: PMC8586985 DOI: 10.3390/polym13213857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A novel polysilicone flame retardant (PMDA) has been synthesized and covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO-PMDA. The chemical structure and morphology of GO-PMDA was characterized and confirmed by the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), atomic force microscope (AFM), and thermogravimetric analysis (TGA). The results of dynamic mechanical analysis (DMA) indicated that the grafting of PMDA improved the dispersion and solubility of GO sheets in the epoxy resin (EP) matrix. The TGA and cone calorimeter measurements showed that compared with the GO, GO-PMDA could significantly improve the thermal stability and flame retardancy of EP. In comparison to pure EP, the peak heat release rate (pHRR) and total heat release (THR) of EP/GO-PMDA were reduced by 30.5% and 10.0% respectively. This greatly enhanced the flame retardancy of EP which was mainly attributed to the synergistic effect of GO-PMDA. Polysilicone can create a stable silica layer on the char surface of EP, which reinforces the barrier effect of graphene.
Collapse
|
99
|
Min-Dianey KAA, Le TK, Qadir A, M’Bouana NLP, Malik M, Kim SW, Choi JR, Pham PV. The Ripple Effect of Graphite Nanofilm on Stretchable Polydimethylsiloxane for Optical Sensing. NANOMATERIALS 2021; 11:nano11112934. [PMID: 34835698 PMCID: PMC8619932 DOI: 10.3390/nano11112934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Graphene-based optical sensing devices have been widely studied for their broad band absorption, high carrier mobility, and mechanical flexibility. Due to graphene’s weak light absorption, studies on graphene-based optical sensing thus far have focused on hybrid heterostructure devices to enhance photo-absorption. Such hybrid devices need a complicated integration process and lead to deteriorating carrier mobility as a result of heterogeneous interfaces. Rippled or wrinkled graphene has been studied in electronic and optoelectronic devices. However, concrete demonstrations of the impact of the morphology of nanofilms (e.g., graphite and graphene) associated with light absorption in optical sensing devices have not been fully examined. This study explored the optical sensing potential of a graphite nanofilm surface with ripples induced by a stretchable polydimethylsiloxane (PDMS) supporting layer under different stretch:release ratios and then transferred onto silicon, both under experimental conditions and via simulation. The optical sensing potential of the rippled graphite nanofilm was significantly enhanced (260 mA/W at the stretch–release state of 30%), as compared to the pristine graphite/PDMS (20 mA/W at the stretch–release state of 0%) under laser illumination at a wavelength of 532 nm. In addition, the results of our simulated computation also confirmed the improved light absorption of rippled graphite nanofilm surface-based optical sensing devices, which was comparable with the results found in the experiment.
Collapse
Affiliation(s)
- Kossi A. A. Min-Dianey
- Département de Physique, Faculté Des Sciences (FDS), Université de Lomé, Lomé 01BP1515, Togo;
| | - Top Khac Le
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Korea;
| | - Akeel Qadir
- Research Center of Smart Sensing Chips, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China;
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), and Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Department of Microsystems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | | | - Muhammad Malik
- Department of Electrical Engineering and Technology, Government College University, Faisalabad 38000, Pakistan;
| | - Sok Won Kim
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Korea;
- Correspondence: (S.W.K.); (J.R.C.); (P.V.P.)
| | - Jeong Ryeol Choi
- Department of Nanoengineering, Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.W.K.); (J.R.C.); (P.V.P.)
| | - Phuong V. Pham
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon 440746, Korea
- Correspondence: (S.W.K.); (J.R.C.); (P.V.P.)
| |
Collapse
|
100
|
Rasana N, Jayanarayanan K, Mohan HT, Keller T. Static and dynamic mechanical properties of nanosilica and multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene composites: theoretical mechanism of nanofiller reinforcement. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|