51
|
Li H, Mo P, Zhang J, Xie Z, Liu X, Chen H, Yang L, Liu M, Zhang H, Wang P, Zhang Z. Methionine biosynthesis enzyme MoMet2 is required for rice blast fungus pathogenicity by promoting virulence gene expression via reducing 5mC modification. PLoS Genet 2023; 19:e1010927. [PMID: 37733784 PMCID: PMC10547190 DOI: 10.1371/journal.pgen.1010927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.
Collapse
Affiliation(s)
- Huimin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Pengcheng Mo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jun Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhuoer Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
52
|
Wu XM, Zhang BS, Zhao YL, Wu HW, Gao F, Zhang J, Zhao JH, Guo HS. DeSUMOylation of a Verticillium dahliae enolase facilitates virulence by derepressing the expression of the effector VdSCP8. Nat Commun 2023; 14:4844. [PMID: 37563142 PMCID: PMC10415295 DOI: 10.1038/s41467-023-40384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.
Collapse
Affiliation(s)
- Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
53
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
54
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
55
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
56
|
Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:570-587. [PMID: 36917011 DOI: 10.1111/mpp.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Mansi Singh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
57
|
Ji C, Song F, He C, An J, Huang S, Yu H, Lu H, Xiao S, Bucher M, Pan Z. Integrated miRNA-mRNA analysis reveals candidate miRNA family regulating arbuscular mycorrhizal symbiosis of Poncirus trifoliata. PLANT, CELL & ENVIRONMENT 2023; 46:1805-1821. [PMID: 36760042 DOI: 10.1111/pce.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Over 70% land plants live in mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, and maintenance of symbiosis requires transcriptional and post-transcriptional regulation. The former has been widely studied, whereas the latter mediated by symbiotic microRNAs (miRNAs) remains obscure, especially in woody plants. Here, we performed high-throughput sequencing of the perennial woody citrus plant Poncirus trifoliata and identified 3750 differentially expressed genes (DEGs) and 42 miRNAs (DEmiRs) upon AM fungal colonization. By analyzing cis-regulatory elements in the promoters of the DEGs, we predicted 329 key AM transcription factors (TFs). A miRNA-mRNA regulatory network was then constructed by integrating these data. Several candidate miRNA families of P. trifoliata were identified whose members target known symbiotic genes, such as miR167h-AMT2;3 and miR156e-EXO70I, or key TFs, such as miR164d-NAC and miR477a-GRAS, thus are involved in AM symbiotic processes of fungal colonization, arbuscule development, nutrient exchange and phytohormone signaling. Finally, analysis of selected miRNA family revealed that a miR159b conserved in mycorrhizal plant species and a Poncirus-specific miR477a regulate AM symbiosis. The role of miR477a was likely to target GRAS family gene RAD1 in citrus plants. Our results not only revealed that miRNA-mRNA network analysis, especially miRNA-TF analysis, is effective in identifying miRNA family regulating AM symbiosis, but also shed light on miRNA-mediated post-transcriptional regulation of AM symbiosis in woody citrus plants.
Collapse
Affiliation(s)
- Chuanya Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Fang Song
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuan He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jianyong An
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Shengyu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huimin Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Hang Lu
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Shunyuan Xiao
- Department of Plant Science and Landscape Architecture, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
58
|
Hudzik C, Maguire S, Guan S, Held J, Axtell MJ. Trans-species microRNA loci in the parasitic plant Cuscuta campestris have a U6-like snRNA promoter. THE PLANT CELL 2023; 35:1834-1847. [PMID: 36896651 PMCID: PMC10226579 DOI: 10.1093/plcell/koad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/09/2023] [Accepted: 02/12/2023] [Indexed: 05/30/2023]
Abstract
Small regulatory RNAs can move between organisms and regulate gene expression in the recipient. Whether the trans-species small RNAs being exported are distinguished from the normal endogenous small RNAs of the source organism is not known. The parasitic plant Cuscuta campestris (dodder) produces many microRNAs that specifically accumulate at the host-parasite interface, several of which have trans-species activity. We found that induction of C. campestris interface-induced microRNAs is similar regardless of host species and occurs in C. campestris haustoria produced in the absence of any host. The loci-encoding C. campestris interface-induced microRNAs are distinguished by a common cis-regulatory element. This element is identical to a conserved upstream sequence element (USE) used by plant small nuclear RNA loci. The properties of the interface-induced microRNA primary transcripts strongly suggest that they are produced via U6-like transcription by RNA polymerase III. The USE promotes accumulation of interface-induced miRNAs (IIMs) in a heterologous system. This promoter element distinguishes C. campestris IIM loci from other plant small RNAs. Our data suggest that C. campestris IIMs are produced in a manner distinct from canonical miRNAs. All confirmed C. campestris microRNAs with documented trans-species activity are interface-induced and possess these features. We speculate that RNA polymerase III transcription of IIMs may allow these miRNAs to be exported to hosts.
Collapse
Affiliation(s)
- Collin Hudzik
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sean Maguire
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Jeremy Held
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
59
|
Qu Q, Liu N, Su Q, Liu X, Jia H, Liu Y, Sun M, Cao Z, Dong J. MicroRNAs involved in the trans-kingdom gene regulation in the interaction of maize kernels and Fusarium verticillioides. Int J Biol Macromol 2023:125046. [PMID: 37245767 DOI: 10.1016/j.ijbiomac.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Maize ear rot is a widespread disease and the main pathogen is Fusarium verticillioides. Plant microRNAs (miRNAs) have great effects on disease resistance and it has been reported that maize miRNA participates in defense responses in maize ear rot. However, the trans-kingdom regulation of miRNAs between maize and F. verticillioides remains uncharacterized. In this study, the relationship between miRNA-like RNAs (milRNAs) of F. verticillioides and pathogenicity was investigated, followed by sRNA analysis and degradome sequencing of miRNA profiles and the target genes of maize and F. verticillioides after inoculation. It was found that the milRNA biogenesis positively regulated the pathogenicity of F. verticillioides by knocking out the gene FvDicer2-encoded Dicer-like protein in F. verticillioides. Following inoculation with F. verticillioides, 284 known and 6571 novel miRNAs were obtained in maize, including 28 miRNAs differentially expressed at multiple time points. The target genes of maize differentially expressed miRNAs in F. verticillioides mediated multiple pathways, including autophagy and MAPK signaling pathway. Fifty-one novel F. verticillioides milRNAs were predicted to target 333 genes in maize involved in MAPK signaling pathways, plant hormone signaling transduction and plant-pathogen interaction pathways. Additionally, the miR528b-5p in maize targeted the mRNA of FvTTP which encoded a twice transmembrane protein in F. verticillioides. The FvTTP-knockout mutants displayed decreased pathogenicity and reduced synthesis of fumonisins. Thus, by interfering with the translation of FvTTP, the miR528b-5p inhibited F. verticillioides infection. These findings suggested a novel function of miR528 in resisting F. verticillioides infection. The miRNAs identified in this research and their putative target genes can be used to further elucidate the trans-kingdom functions of microRNAs in plant pathogen interaction.
Collapse
Affiliation(s)
- Qing Qu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Ning Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Qianfu Su
- Jilin Academy of Agricultural Sciences, Jilin 130033, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hui Jia
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Yuwei Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China
| | - Manli Sun
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Zhiyan Cao
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| | - Jingao Dong
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| |
Collapse
|
60
|
Hassani SB, Latifi M, Aliniaeifard S, Sohrabi Bonab S, Nasiri Almanghadim N, Jafari S, Mohebbifar E, Ahangir A, Seifikalhor M, Rezadoost H, Bosacchi M, Rastogi A, Bernard F. Response to Cadmium Toxicity: Orchestration of Polyamines and microRNAs in Maize Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1991. [PMID: 37653908 PMCID: PMC10223431 DOI: 10.3390/plants12101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is a heavy metal that is widely contaminating the environment due to its uses in industries as corrosive reagents, paints, batteries, etc. Cd can easily be absorbed through plant roots and may have serious negative impacts on plant growth. To investigate the mechanisms utilized by plants to cope with Cd toxicity, an experiment was conducted on maize seedlings. We observed that the plant growth and photosynthetic mechanism were negatively influenced during 20 days of Cd stress. The expression levels of ornithine decarboxylase (ORDC) increased in the six seedlings under Cd exposure compared to the control. However, Cd toxicity led to an increase in putrescine (Put) content only on day 15 when compared to the control plants. In fact, with the exception of day 15, the increases in the ORDC transcript levels did not show a direct correlation with the observed increases in Put content. Spermidine and Spermine levels were reduced on day 6 by Cd application, which was parallel with suppressed Spermidine synthase gene. However, an increase in Spermidine and Spermine levels was observed on day 12 along with a significant elevation in Spermidine synthase expression. On day 6, Cd was observed to start accumulating in the root with an increase in the expression of microRNA 528; while on day 15, Cd started to be observed in the shoot part with an increase in microRNA 390 and microRNA 168. These results imply that different miRNAs may regulate polyamines (PAs) in maize under Cd toxicity, suggesting a plant-derived strategy to commit a PAs/miRNA-regulated mechanism/s in different developmental stages (time points) in response to Cd exposure.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Mojgan Latifi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran 33916-53755, Iran
| | - Shabnam Sohrabi Bonab
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Neda Nasiri Almanghadim
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sara Jafari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Elham Mohebbifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Anahita Ahangir
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | | | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Massimo Bosacchi
- Park at the Danforth Plant Science Center, KWS Gateway Research Center, LLC, BRDG, Saint Louis, MO 95618, USA
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Françoise Bernard
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| |
Collapse
|
61
|
Su X, Yan S, Zhao W, Liu H, Jiang Q, Wei Y, Guo H, Yin M, Shen J, Cheng H. Self-assembled thiophanate-methyl/star polycation complex prevents plant cell-wall penetration and fungal carbon utilization during cotton infection by Verticillium dahliae. Int J Biol Macromol 2023; 239:124354. [PMID: 37028625 DOI: 10.1016/j.ijbiomac.2023.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
No effective fungicides are available for the management of Verticillium dahliae, which causes vascular wilt disease. In this study, a star polycation (SPc)-based nanodelivery system was used for the first time to develop a thiophanate-methyl (TM) nanoagent for the management of V. dahliae. SPc spontaneously assembled with TM through hydrogen bonding and Van der Waals forces to decrease the particle size of TM from 834 to 86 nm. Compared to TM alone, the SPc-loaded TM further reduced the colony diameter of V. dahliae to 1.12 and 0.64 cm, and the spore number to 1.13 × 108 and 0.72 × 108 cfu/mL at the concentrations of 3.77 and 4.71 mg/L, respectively. The TM nanoagents disturbed the expression of various crucial genes in V. dahliae, and contributed to preventing plant cell-wall degradation and carbon utilization by V. dahliae, which mainly impaired the infective interaction between pathogens and plants. TM nanoagents remarkably decreased the plant disease index and the fungal biomass in the root compared to TM alone, and its control efficacy was the best (61.20 %) among the various formulations tested in the field. Furthermore, SPc showed negligible acute toxicity toward cotton seeds. To the best of our knowledge, this study is the first to design a self-assembled nanofungicide that efficiently inhibits V. dahliae growth and protects cotton from the destructive Verticillium wilt.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Weisong Zhao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, PR China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
62
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
63
|
Li H, Zhang P, Li D, Chen B, Li J, Wang T. The Expression Patterns of Exogenous Plant miRNAs in Chickens. Genes (Basel) 2023; 14:genes14030760. [PMID: 36981030 PMCID: PMC10048663 DOI: 10.3390/genes14030760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: MicroRNAs (miRNAs) are involved in a variety of biological processes, such as cell proliferation, cell differentiation, and organ development. Recent studies have shown that plant miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease; however, little is known about plant miRNAs in chickens. (2) Methods: Here, we analyzed miRNA sequencing data, with the use of five Chinese native chicken breeds and six different tissues (heart, liver, spleen, lung, kidney, and leg muscle), and used Illumina sequencing to detect the expression of plant miRNAs in the pectoralis muscles at fourteen developmental stages of Tibetan chickens. (3) Results: The results showed that plant miRNAs are detectable in multiple tissues and organs in different chicken breeds. Surprisingly, we found that plant miRNAs, such as tae-miR2018, were detectable in free-range Tibetan chicken embryos at different stages. The results of gavage feeding experiments also showed that synthetic tae-miR2018 was detectable in caged Tibetan chickens after ingestion. The analysis of tae-miR2018 showed that its target genes were related to skeletal muscle organ development, regulation of mesodermal cell fate specification, growth factor activity, negative regulation of the cell cycle, and regulation of growth, indicating that exogenous miRNA may regulate the development of chicken embryos. Further cell cultures and exogenous miRNA uptake assay experiments showed that synthetic wheat miR2018 can be absorbed by chicken myoblasts. (4) Conclusions: Our study found that chickens can absorb and deposit plant miRNAs in various tissues and organs. The plant miRNAs detected in embryos may be involved in the development of chicken embryos.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science, Xichang University, Xichang 615013, China
| | - Pu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang 615013, China
| | - Jing Li
- College of Agricultural and Life Sciences, Kunming University, Kunming 650214, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
64
|
Qin S, Veloso J, Puccetti G, van Kan JAL. Molecular characterization of cross-kingdom RNA interference in Botrytis cinerea by tomato small RNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1107888. [PMID: 36968352 PMCID: PMC10031073 DOI: 10.3389/fpls.2023.1107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have suggested that plants can modulate gene expression in pathogenic fungi by producing small RNAs (sRNAs) that can be translocated into the fungus and mediate gene silencing, which may interfere with the infection mechanism of the intruder. We sequenced sRNAs and mRNAs in early phases of the Solanum lycopersicum (tomato)-Botrytis cinerea interaction and examined the potential of plant sRNAs to silence their predicted mRNA targets in the fungus. Almost a million unique plant sRNAs were identified that could potentially target 97% of all fungal genes. We selected three fungal genes for detailed RT-qPCR analysis of the correlation between the abundance of specific plant sRNAs and their target mRNAs in the fungus. The fungal Bcspl1 gene, which had been reported to be important for the fungal virulence, showed transient down-regulation around 20 hours post inoculation and contained a unique target site for a single plant sRNA that was present at high levels. In order to study the functionality of this plant sRNA in reducing the Bcspl1 transcript level, we generated a fungal mutant that contained a 5-nucleotide substitution that would abolish the interaction between the transcript and the sRNA without changing the encoded protein sequence. The level of the mutant Bcspl1 transcript showed a transient decrease similar to wild type transcript, indicating that the tomato sRNA was not responsible for the downregulation of the Bcspl1 transcript. The virulence of the Bcspl1 target site mutant was identical to the wild type fungus.
Collapse
Affiliation(s)
- Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Javier Veloso
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Departamento de Biología Funcional, Escuela Politécnica Superior de Ingeniería, Universidad de Santiago de Compostela, Lugo, Spain
| | - Guido Puccetti
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
65
|
Zhang M, Chen Y, Xing H, Ke W, Shi Y, Sui Z, Xu R, Gao L, Guo G, Li J, Xing J, Zhang Y. Positional cloning and characterization reveal the role of a miRNA precursor gene ZmLRT in the regulation of lateral root number and drought tolerance in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:772-790. [PMID: 36354146 DOI: 10.1111/jipb.13408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Agronomy College of Shandong Agricultural University, Taian, 271018, China
| | - Hongyan Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Yantai Science and Technology Innovation Promotion Center, Yantai, 264003, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ganggang Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
66
|
Global Molecular Response of Paracoccidioides brasiliensis to Zinc Deprivation: Analyses at Transcript, Protein and MicroRNA Levels. J Fungi (Basel) 2023; 9:jof9030281. [PMID: 36983449 PMCID: PMC10056003 DOI: 10.3390/jof9030281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Zinc is one of the main micronutrients for all organisms. One of the defense mechanisms used by the host includes the sequestration of metals used in fungal metabolism, such as iron and zinc. There are several mechanisms that maintain the balance in the intracellular zinc supply. MicroRNAs are effector molecules of responses between the pathogen and host, favoring or preventing infection in many microorganisms. Fungi of the Paracoccidioides genus are thermodimorphic and the etiological agents of paracoccidioidomycosis (PCM). In the current pandemic scenario world mycosis studies continue to be highly important since a significant number of patients with COVID-19 developed systemic mycoses, co-infections that complicated their clinical condition. The objective was to identify transcriptomic and proteomic adaptations in Paracoccidioides brasiliensis during zinc deprivation. Nineteen microRNAs were identified, three of which were differentially regulated. Target genes regulated by those microRNAs are elements of zinc homeostasis such as ZRT1, ZRT3 and COT1 transporters. Transcription factors that have zinc in their structure are also targets of those miRNAs. Transcriptional and proteomic data suggest that P. brasiliensis undergoes metabolic remodeling to survive zinc deprivation and that miRNAs may be part of the regulatory process.
Collapse
|
67
|
Wu F, Huang Y, Jiang W, Jin W. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal factors targeting the virulence genes of Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2023; 14:1072181. [PMID: 36818832 PMCID: PMC9933504 DOI: 10.3389/fpls.2023.1072181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Recent evidence shows that small RNAs are transferred from a species to another through cross-species transmission and exhibit biological activities in the receptor. In this study, we focused on tomato-derived sRNAs play a role of defense against Botrytis cinerea. Bioinformatics method was firstly employed to identify tomato-encoded sRNAs as the cross-species antifungal factors targeting B. cinerea genes. Then the expression levels of some identifed sRNAs were checked in B. cinerea-infected plant using qRT-PCR method. Exogenic RNA-induced gene silences analysis were performed to investigate the antifungal roles of the sRNAs, and the target genes in B. cinerea of antifungal sRNAs would be confirmed by using co-expression analysis. Results showed that a total of 21 B.cinerea-induced sRNAs with high abundance were identified as the cross-kingdom regulator candidates. Among them, three sRNAs containing a miRNA (miR396a-5p) and two siRNA (siR3 and siR14) were selected for experimental validation and bioassay analysis. qRT-PCR confirmed that all of these 3 sRNAs were induced in tomato leaves by B. cinerea infection. Correspondingly, 4 virulence genes of B. cinerea respectively targeted by these 3 sRNAs were down-regulated. Bioassay revealed that all of these 3 cross-species sRNAs could inhibit the virulence and spore gemination of B. cinerea. Correspondingly, the coding genes of B. cinerea targeted by these sRNAs were also down-regulated. Moreover, the virulence inhibition by double strand sRNA was more effective than that by single strand sRNA. The inhibition efficiency of sRNA against B. cinerea increased with the increase of its concentration. Our findings provide new evidence into the coevolution of pathogens and host plants, as well as new directions for the use of plant-derived sRNAs to control pathogens.
Collapse
|
68
|
Lv J, Liu S, Zhang X, Zhao L, Zhang T, Zhang Z, Feng Z, Wei F, Zhou J, Zhao R, Feng H, Zhu H, Li C, Zhang Y. VdERG2 was involved in ergosterol biosynthesis, nutritional differentiation and virulence of Verticillium dahliae. Curr Genet 2023; 69:25-40. [PMID: 36416932 DOI: 10.1007/s00294-022-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tao Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhigang Zhang
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruiyuan Zhao
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Caihong Li
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China.
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
69
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
70
|
Luo M, Sun X, Xu M, Tian Z. Identification of miRNAs Involving Potato- Phytophthora infestans Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:461. [PMID: 36771544 PMCID: PMC9921761 DOI: 10.3390/plants12030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
sRNAs (small RNAs) play an important role in regulation of plant immunity against a variety of pathogens. In this study, sRNA sequencing analysis was performed to identify miRNAs (microRNAs) during the interaction of potato and Phytophthora infestans. Totally, 171 potato miRNAs were identified, 43 of which were annotated in the miRNA database and 128 were assigned as novel miRNAs in this study. Those potato miRNAs may target 878 potato genes and half of them encode resistance proteins. Fifty-three potato miRNAs may target 194 P. infestans genes. Three potato miRNAs (novel 72, 133, and 140) were predicted to have targets only in the P. infestans genome. miRNAs transient expression and P. infestans inoculation assay showed that miR396, miR166, miR6149-5P, novel133, or novel140 promoted P. infestans colonization, while miR394 inhibited colonization on Nicotiana benthamiana leaves. An artificial miRNA target (amiRNA) degradation experiment demonstrated that miR394 could target both potato gene (PGSC0003DMG400034305) and P. infestans genes. miR396 targets the multicystatin gene (PGSC0003DMG400026899) and miR6149-5p could shear the galactose oxidase F-box protein gene CPR30 (PGSC0003DMG400021641). This study provides new information on the aspect of cross-kingdom immune regulation in potato-P. infestans interaction at the sRNAs regulation level.
Collapse
Affiliation(s)
- Ming Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Xinyuan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Meng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| |
Collapse
|
71
|
Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020342. [PMID: 36679055 PMCID: PMC9864873 DOI: 10.3390/plants12020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.
Collapse
|
72
|
Barathi S, Sabapathi N, Aruljothi KN, Lee JH, Shim JJ, Lee J. Regulatory Small RNAs for a Sustained Eco-Agriculture. Int J Mol Sci 2023; 24:ijms24021041. [PMID: 36674558 PMCID: PMC9863784 DOI: 10.3390/ijms24021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Small RNA (sRNA) has become an alternate biotechnology tool for sustaining eco-agriculture by enhancing plant solidity and managing environmental hazards over traditional methods. Plants synthesize a variety of sRNA to silence the crucial genes of pests or plant immune inhibitory proteins and counter adverse environmental conditions. These sRNAs can be cultivated using biotechnological methods to apply directly or through bacterial systems to counter the biotic stress. On the other hand, through synthesizing sRNAs, microbial networks indicate toxic elements in the environment, which can be used effectively in environmental monitoring and management. Moreover, microbes possess sRNAs that enhance the degradation of xenobiotics and maintain bio-geo-cycles locally. Selective bacterial and plant sRNA systems can work symbiotically to establish a sustained eco-agriculture system. An sRNA-mediated approach is becoming a greener tool to replace xenobiotic pesticides, fertilizers, and other chemical remediation elements. The review focused on the applications of sRNA in both sustained agriculture and bioremediation. It also discusses limitations and recommends various approaches toward future improvements for a sustained eco-agriculture system.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kandasamy Nagarajan Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| |
Collapse
|
73
|
Qin S, Veloso J, Baak M, Boogmans B, Bosman T, Puccetti G, Shi‐Kunne X, Smit S, Grant‐Downton R, Leisen T, Hahn M, van Kan JAL. Molecular characterization reveals no functional evidence for naturally occurring cross-kingdom RNA interference in the early stages of Botrytis cinerea-tomato interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:3-15. [PMID: 36168919 PMCID: PMC9742496 DOI: 10.1111/mpp.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant immune responses are triggered during the interaction with pathogens. The fungus Botrytis cinerea has previously been reported to use small RNAs (sRNAs) as effector molecules capable of interfering with the host immune response. Conversely, a host plant produces sRNAs that may interfere with the infection mechanism of an intruder. We used high-throughput sequencing to identify sRNAs produced by B. cinerea and Solanum lycopersicum (tomato) during early phases of interaction and to examine the expression of their predicted mRNA targets in the other organism. A total of 7042 B. cinerea sRNAs were predicted to target 3185 mRNAs in tomato. Of the predicted tomato target genes, 163 were indeed transcriptionally down-regulated during the early phase of infection. Several experiments were performed to study a causal relation between the production of B. cinerea sRNAs and the down-regulation of predicted target genes in tomato. We generated B. cinerea mutants in which a transposon region was deleted that is the source of c.10% of the fungal sRNAs. Furthermore, mutants were generated in which both Dicer-like genes (Bcdcl1 and Bcdcl2) were deleted and these displayed a >99% reduction of transposon-derived sRNA production. Neither of these mutants was significantly reduced in virulence on any plant species tested. Our results reveal no evidence for any detectable role of B. cinerea sRNAs in the virulence of the fungus.
Collapse
Affiliation(s)
- Si Qin
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Javier Veloso
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
- FISAPLANTUniversity of A CoruñaA CoruñaSpain
| | - Mirna Baak
- Bioinformatics GroupWageningen UniversityWageningenNetherlands
| | - Britt Boogmans
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Tim Bosman
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Guido Puccetti
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | | | - Sandra Smit
- Bioinformatics GroupWageningen UniversityWageningenNetherlands
| | | | - Thomas Leisen
- Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Matthias Hahn
- Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| |
Collapse
|
74
|
Dalakouras A, Katsaouni A, Avramidou M, Dadami E, Tsiouri O, Vasileiadis S, Makris A, Georgopoulou ME, Papadopoulou KK. A beneficial fungal root endophyte triggers systemic RNA silencing and DNA methylation of a host reporter gene. RNA Biol 2023; 20:20-30. [PMID: 36573793 PMCID: PMC9809956 DOI: 10.1080/15476286.2022.2159158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A growing body of evidence suggests that RNA interference (RNAi) plays a pivotal role in the communication between plants and pathogenic fungi, where a bi-directional trans-kingdom RNAi is established to the advantage of either the host or the pathogen. Similar mechanisms acting during plant association with non-pathogenic symbiotic microorganisms have been elusive to this date. To determine whether root endophytes can induce systemic RNAi responses to their host plants, we designed an experimental reporter-based system consisting of the root-restricted, beneficial fungal endophyte, Fusarium solani strain K (FsK) and its host Nicotiana benthamiana. Since not all fungi encode the RNAi machinery, we first needed to validate that FsK does so, by identifying its core RNAi enzymes (2 Dicer-like genes, 2 Argonautes and 4 RNA-dependent RNA polymerases) and by showing its susceptibility to in vitro RNAi upon exogenous application of double stranded RNAs (dsRNAs). Upon establishing this, we transformed FsK with a hairpin RNA (hpRNA) construct designed to target a reporter gene in its host N. benthamiana. The hpRNA was processed by FsK RNAi machinery predominantly into 21-24-nt small RNAs that triggered RNA silencing but not DNA methylation in the fungal hyphae. Importantly, when the hpRNA-expressing FsK was used to inoculate N. benthamiana, systemic RNA silencing and DNA methylation of the host reporter gene was recorded. Our data suggest that RNAi signals can be translocated by root endophytes to their hosts and can modulate gene expression during mutualism, which may be translated to beneficial phenotypes.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece,Hellenic Agricultural Organization Demeter, Institute of Industrial and Forage Crops, Larissa, Greece,CONTACT Athanasios Dalakouras University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece; Hellenic Agricultural Organization Demeter, Institute of Industrial and Forage Crops, Larissa, Greece
| | - Afrodite Katsaouni
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Marianna Avramidou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Elena Dadami
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Olga Tsiouri
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Athanasios Makris
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | | | | |
Collapse
|
75
|
Wang F, Lu T, Zhu L, Cao A, Xie S, Chen X, Shen H, Xie Q, Li R, Zhu J, Jin X, Li H. Multicopper oxidases GbAO and GbSKS are involved in the Verticillium dahliae resistance in Gossypium barbadense. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153887. [PMID: 36543064 DOI: 10.1016/j.jplph.2022.153887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Tianxin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China; College of Science, Qiongtai Normal University, Haikou, 571127, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
76
|
Krohmaly KI, Freishtat RJ, Hahn AL. Bioinformatic and experimental methods to identify and validate bacterial RNA-human RNA interactions. J Investig Med 2023; 71:23-31. [PMID: 36162901 DOI: 10.1136/jim-2022-002509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Ample evidence supports the importance of the microbiota on human health and disease. Recent studies suggest that extracellular vesicles are an important means of bacterial-host communication, in part via the transport of small RNAs (sRNAs). Bacterial sRNAs have been shown to co-precipitate with human and mouse RNA-induced silencing complex, hinting that some may regulate gene expression as eukaryotic microRNAs do. Bioinformatic tools, including those that can incorporate an sRNA's secondary structure, can be used to predict interactions between bacterial sRNAs and human messenger RNAs (mRNAs). Validation of these potential interactions using reproducible experimental methods is essential to move the field forward. This review will cover the evidence of interspecies communication via sRNAs, bioinformatic tools currently available to identify potential bacterial sRNA-host (specifically, human) mRNA interactions, and experimental methods to identify and validate those interactions.
Collapse
Affiliation(s)
- Kylie I Krohmaly
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Division of Emergency Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Andrea L Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Division of Infectious Diseases, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
77
|
Ste-Croix DT, Bélanger RR, Mimee B. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biol 2023; 20:614-628. [PMID: 37599428 PMCID: PMC10443972 DOI: 10.1080/15476286.2023.2244790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.
Collapse
Affiliation(s)
- Dave T. Ste-Croix
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
- Département de Phytologie, Université Laval, Québec, Canada
| | - Richard R. Bélanger
- Département de Phytologie, Université Laval, Québec, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Benjamin Mimee
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
| |
Collapse
|
78
|
Jain N, Shiv A, Sinha N, Singh PK, Prasad P, Balyan HS, Gupta PK. Leaf rust responsive miRNA and their target genes in wheat. Funct Integr Genomics 2022; 23:14. [PMID: 36550370 DOI: 10.1007/s10142-022-00928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Small RNA sequencing (sRNA-seq) and degradome analysis were used for the identification of miRNAs and their target host genes in a pair of near-isogenic lines (NILs), which differed for the presence of leaf rust resistance gene Lr28. The study led to identification of (i) 506 known and 346 novel miRNAs; and (ii) 5054 target genes including 4557 in silico predicted and 497 degradome-based genes using 105 differentially expressed (DE) miRNAs. A subset of 128 targets (67 in silico + 61 degradome-based) was differentially expressed in RNA-seq data that was generated by us earlier using the same pair of NILs; among these 128 targets, 58 target genes exhibited an inverse relationship with the DE miRNAs (expression of miRNAs and activation/suppression of target genes). Eight miRNAs which belonged to the conserved miRNA families and were known to be induced in response to fungal diseases in plants included the following: miR156, miR158, miR159, miR168, miR169, miR172, miR319, miR396. The target genes belonged to the following classes of genes known to be involved in downstream disease resistance pathways; peroxidases, sugar transporters, auxin response signaling, oxidation-reduction, etc. It was also noticed that although a majority of miRNAs and target genes followed the above classical inverse relationship, there were also examples, where no such relationship was observed. Among the target genes, there were also 51 genes that were not only regulated by miRNAs, but were also differentially methylated at sequences including the following segments: promotors, introns, TSS, exons. The results of the present study suggest a complex interplay among miRNA genes, target genes, and various epigenetic controls, which regulate the expression of genes involved in downstream pathways for disease resistance.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - P K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Pramod Prasad
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
79
|
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, Zhang W, Tan XL. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms232416200. [PMID: 36555841 PMCID: PMC9785534 DOI: 10.3390/ijms232416200] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogen interactions induce a signal transmission series that stimulates the plant's host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.
Collapse
|
80
|
Liegertová M, Semerádtová A, Kocholatá M, Průšová M, Němcová L, Štofik M, Kříženecká S, Malý J, Janoušková O. Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology. Sci Rep 2022; 12:21768. [PMID: 36526668 PMCID: PMC9870906 DOI: 10.1038/s41598-022-26335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The slug Arion vulgaris has attracted major attention as one of the worst invasive herbivore pests in Europe and is renowned for the stiff mucus it secretes for locomotion. In this study we focused on the isolation and characterisation of extracellular vesicles, specifically exosomes and exosome-like vesicles, from Arion secretions. We developed a method for slug mucus collection and subsequent vesicle isolation by ultracentrifugation. The isolated vesicles with an average diameter of ~ 100 nm carry abundant proteins and short RNAs, as well as adhesion molecules similar to mammalian galectins. We demonstrated that the slug extracellular vesicles are internalised by plant cells and human cancer cells in in vitro assays and are loadable by bioactive compounds, which makes them an interesting tool for utilisation in biotechnology.
Collapse
Affiliation(s)
- Michaela Liegertová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic ,grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Kocholatá
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Průšová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Lenka Němcová
- grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Sylvie Kříženecká
- grid.424917.d0000 0001 1379 0994Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Jan Malý
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Olga Janoušková
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| |
Collapse
|
81
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
82
|
Yan Y. Insights into Mobile Small-RNAs Mediated Signaling in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3155. [PMID: 36432884 PMCID: PMC9698838 DOI: 10.3390/plants11223155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In higher plants, small RNA (sRNA)-mediated RNA interfering (RNAi) is involved in a broad range of biological processes. Growing evidence supports the model that sRNAs are mobile signaling agents that move intercellularly, systemically and cross-species. Recently, considerable progress has been made in terms of characterization of the mobile sRNAs population and their function. In this review, recent progress in identification of new mobile sRNAs is assessed. Here, critical questions related to the function of these mobile sRNAs in coordinating developmental, physiological and defense-related processes is discussed. The forms of mobile sRNAs and the underlying mechanisms mediating sRNA trafficking are discussed next. A concerted effort has been made to integrate these new findings into a comprehensive overview of mobile sRNAs signaling in plants. Finally, potential important areas for both basic science and potential applications are highlighted for future research.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
83
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
84
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Chen X. Exploring new strategies in diseases resistance of horticultural crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Horticultural crops are susceptible to various biotic stressors including fungi, oomycetes, bacteria, viruses, and root-knot nematodes. These pathogens limit the growth, development, yield, and quality of horticultural crops, and also limit their adaptability and geographic distribution. The continuous cropping model in horticultural facilities exacerbates soil-borne diseases, and severely restricts yield, quality, and productivity. Recent progress in the understanding of mechanisms that confer tolerance to different diseases through innovative strategies including host-induced gene silencing (HIGS), targeting susceptibility genes, and rootstocks grafting applications are reviewed to systematically explore the resistance mechanisms against horticultural plant diseases. Future work should successfully breed resistant varieties using these strategies combined with molecular biologic methods.
Collapse
|
85
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
86
|
Mueth NA, Hulbert SH. Small RNAs target native and cross-kingdom transcripts on both sides of the wheat stripe rust interaction. Genomics 2022; 114:110526. [PMID: 36427746 DOI: 10.1016/j.ygeno.2022.110526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The wheat stripe rust fungus (Puccinia striiformis f.sp. tritici) threatens global wheat production. Small RNAs (sRNAs) modulate plant defense induction, and RNA exchange between host and microbe causes cross-kingdom gene silencing, but few examples are known in rust fungi. This study combined sRNA, parallel analysis of RNA ends, and gene expression data to discover sRNA-target pairs on each side of the interaction. Specific wheat 24 nt sRNAs were suppressed, while particular 35 nt fragments were strongly induced upon infection. Wheat sRNAs cleaved fungal transcripts coding for a ribosomal protein and a glycosyl hydrolase effector. Fungal microRNA-like and phased 21 nt sRNAs originated from long inverted repeats near protein coding genes. Fungal sRNAs targeted native transcripts: transposons and kinases; and cross-kingdom transcripts: a wheat nucleotide-binding domain leucine-rich repeat receptor (NLR) and multiple defense-related transcription factor families. This work sheds light on host-microbe coevolution and delivers prospects for developing pathogen control biotechnology.
Collapse
Affiliation(s)
- Nicholas A Mueth
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| | - Scot H Hulbert
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
87
|
Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. Cell Rep 2022; 41:111527. [PMID: 36288711 DOI: 10.1016/j.celrep.2022.111527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
The growing threat of insecticide resistance prompts the urgent need to develop additional tools for mosquito control. Entomopathogenic fungi provide an eco-friendly alternative to chemical insecticides. One limitation to the use of mycoinsecticides is their relatively low virulence. Here, we report an approach for suppressing mosquito immunity and increasing fungal virulence. We engineered Beauveria bassiana to express Aedes immunosuppressive microRNAs (miRNAs) to induce host RNA interference (RNAi) immune responses. We show that engineered strains can produce and deliver the miRNAs into host cells to activate cross-kingdom RNAi during infection and suppress mosquito immunity by targeting multiple host genes, thereby dramatically increasing fungal virulence against Aedes aegypti and Galleria mellonella larvae. Importantly, expressing host miRNAs also significantly increases fungal virulence against insecticide-resistant mosquitoes, creating potential for insecticide-resistance management. This pathogen-mediated RNAi (pmRNAi)-based approach provides an innovative strategy to enhance the efficacy of fungal insecticides and eliminate the likelihood of resistance development.
Collapse
|
88
|
Kong X, Yang M, Le BH, He W, Hou Y. The master role of siRNAs in plant immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:1565-1574. [PMID: 35869407 PMCID: PMC9452763 DOI: 10.1111/mpp.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brandon H. Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wenrong He
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Yingnan Hou
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
89
|
Tang Q, Huang C, Huang H, Xia Z, Yang Y, Jiang X, Wang D, Chen Z. Integrated Sequencing Data, Annotation, and Targeting Analysis of mRNAs and MicroRNAs from Tea Leaf During Infection by Tea Leaf Spot Pathogen, Epicoccum nigrum. PLANT DISEASE 2022; 106:2741-2745. [PMID: 35977394 DOI: 10.1094/pdis-04-22-0761-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Qin Tang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chen Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongke Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhongqiu Xia
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuqin Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xinyue Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
90
|
Xu Y, Wang R, Ma P, Cao J, Cao Y, Zhou Z, Li T, Wu J, Zhang H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1446-1460. [PMID: 35700097 PMCID: PMC9452762 DOI: 10.1111/mpp.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides-responsive miRNA designated zma-unmiR4 in maize kernels. The expression of zma-unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma-unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma-unmiR4-mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence-related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma-unmiR4-ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Yufang Xu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Renjie Wang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peipei Ma
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jiansheng Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yan Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zijian Zhou
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Tao Li
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jianyu Wu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Huiyong Zhang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
91
|
Pradhan M, Requena N. Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102259. [PMID: 35841651 DOI: 10.1016/j.pbi.2022.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.
Collapse
Affiliation(s)
- Maitree Pradhan
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
92
|
Hong Y, Zhang Y, Cui J, Meng J, Chen Y, Zhang C, Yang J, Luan Y. The lncRNA39896-miR166b-HDZs module affects tomato resistance to Phytophthora infestans. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1979-1993. [PMID: 35929655 DOI: 10.1111/jipb.13339] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The yield and quality of tomatoes (Solanum lycopersicum) is seriously affected by Phytophthora infestans. The long non-coding RNA (lncRNA) Sl-lncRNA39896 is induced after P. infestans infection and was previously predicted to act as an endogenous target mimic (eTM) for the microRNA Sl-miR166b, which function in stress responses. Here, we further examined the role of Sl-lncRNA39896 and Sl-miR166b in tomato resistance to P. infestans. Sl-miR166b levels were higher in Sl-lncRNA39896-knockout mutants than in wild-type plants, and the mutants displayed enhanced resistance to P. infestans. A six-point mutation in the region of Sl-lncRNA39896 that binds to Sl-miR166b disabled the interaction, suggesting that Sl-lncRNA39896 acts as an eTM for Sl-miR166b. Overexpressing Sl-miR166b yielded a similar phenotype to that produced by Sl-lncRNA39896-knockout, whereas silencing of Sl-miR166b impaired resistance. We verified that Sl-miR166b cleaved transcripts of its target class III homeodomain-leucine zipper genes SlHDZ34 and SlHDZ45. Silencing of SlHDZ34/45 decreased pathogen accumulation in plants infected with P. infestans. Additionally, jasmonic acid and ethylene contents were elevated following infection in the plants with enhanced resistance. Sl-lncRNA39896 is the first known lncRNA to negatively regulate resistance to P. infestans in tomato. We propose a novel mechanism in which the lncRNA39896-miR166b-HDZ module modulates resistance to P. infestans.
Collapse
Affiliation(s)
- Yuhui Hong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chengwei Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100000, China
| | - Jinxiao Yang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100000, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
93
|
Fan X, Zhang W, Zhang K, Zhang J, Long Q, Wu Y, Zhang K, Zhu L, Chen D, Guo R. In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Front Microbiol 2022; 13:1003294. [PMID: 36246221 PMCID: PMC9557207 DOI: 10.3389/fmicb.2022.1003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Asian honey bee Apis cerana is the original host for Nosema ceranae, a unicellular fungal parasite that causes bee nosemosis throughout the world. Currently, interaction between A. cerana and N. ceranae is largely unknown. Our group previously prepared A. c. cerana workers’ midguts at 7 days post inoculation (dpi) and 10 dpi with N. ceranae spores as well as corresponding un-inoculated workers’ midguts, followed by cDNA library construction and a combination of RNAs-seq and small RNA-seq. Meanwhile, we previously prepared clean spores of N. ceranae, which were then subjected to cDNA library construction and deep sequencing. Here, based on the gained high-quality transcriptome datasets, N. ceranae differentially expressed mRNAs (DEmiRNAs) targeted by host DEmiRNAs, and A. c. cerana DEmRNAs targeted by microsporidian DEmiRNAs were deeply investigated, with a focus on targets involved in N. ceranae glycolysis/glyconeogenesis as well as virulence factors, and A. c. cerana energy metabolism and immune response. In A. c. cerana worker’s midguts at 7 (10) dpi (days post inoculation), eight (seven) up-regulated and six (two) down-regulated miRNAs were observed to target 97 (44) down-regulated and 60 (15) up-regulated N. ceranae mRNAs, respectively. Additionally, two up-regulated miRNAs (miR-60-y and miR-676-y) in host midgut at 7 dpi could target genes engaged in N. ceranae spore wall protein and glycolysis/gluconeogenesis, indicating potential host miRNA-mediated regulation of microsporidian virulence factor and energy metabolism. Meanwhile, in N. ceranae at 7 (10) dpi, 121 (110) up-regulated and 112 (104) down-regulated miRNAs were found to, respectively, target 343 (247) down-regulated and 138 (110) down-regulated mRNAs in A. c. cerana workers’ midguts. These targets in host were relevant to several crucial cellular and humoral immune pathways, such as phagasome, endocytosis, lysosomes, regulation of autophagy, and Jak–STAT signaling pathway, indicative of the involvement of N. ceranae DEmiRNAs in regulating these cellular and humoral immune pathways. In addition, N. ceranae miR-21-x was up-regulated at 7 dpi and had a target relative to oxidative phosphorylation, suggesting that miR-21-x may be used as a weapon to modulate this pivotal energy metabolism pathway. Furthermore, potential targeting relationships between two pairs of host DEmiRNAs-microsporidian DEmRNAs and two pairs of microsporidian DEmiRNAs-host DEmRNAs were validated using RT-qPCR. Our findings not only lay a foundation for exploring the molecular mechanism underlying cross-kingdom regulation between A. c. cerana workers and N. ceranae, but also offer valuable insights into Asian honey bee-microsporidian interaction.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kuihao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- *Correspondence: Rui Guo,
| |
Collapse
|
94
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
95
|
Lu S, Zhang H, Guo F, Yang Y, Shen X, Chen B. SsUbc2, a determinant of pathogenicity, functions as a key coordinator controlling global transcriptomic reprogramming during mating in sugarcane smut fungus. Front Microbiol 2022; 13:954767. [PMID: 36204604 PMCID: PMC9530204 DOI: 10.3389/fmicb.2022.954767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The basidiomycete fungus Sporisorium scitamineum is the causative agent of sugarcane smut disease. Mating between two strains of the opposite mating type is essential for filamentous growth and infection in sugarcane plants. However, the mechanisms underlying mating and pathogenicity are still not well understood. In this work we used gene disruption to investigate the role of Ssubc2, the gene encoding a kinase regulator in S. scitamineum. Deletion of Ssubc2 did not alter the haploid cell morphology or growth rate in vitro or tolerance to stress, but mutants with both alleles deleted lost mating ability and infectivity. Deletion of one Ssubc2 allele in a pair with a wild-type strain resulted in impaired mating and reduced virulence. Transcriptome profiling revealed that about a third of genes underwent reprogramming in the wild types during mating. Although gene expression reprogramming occurred in the pairing of Ssubc2-null mutants, their transcriptomic profile differed significantly from that of the wild types, in which 625 genes differed from those present in the wild types that seemed to be among the required genes for a successful mating. These genes include those known to regulate mating and pathogenicity, such as components of the MAPK pathway and hgl1. Additionally, a total of 908 genes were differentially expressed in an out-of-control manner in the mutants. We conclude that SsUbc2 functions as a key factor to coordinate the reprogramming of gene expression at the global level and is essential for the transition from monokaryotic basidial growth to dikaryotic hyphal growth through mating.
Collapse
Affiliation(s)
- Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Haoyang Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Feng Guo
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yanfang Yang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaorui Shen
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Baoshan Chen,
| |
Collapse
|
96
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
97
|
Li X, Mu K, Yang S, Wei J, Wang C, Yan W, Yuan F, Wang H, Han D, Kang Z, Zeng Q. Reduction of Rhizoctonia cerealis Infection on Wheat Through Host- and Spray-Induced Gene Silencing of an Orphan Secreted Gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:803-813. [PMID: 36102883 DOI: 10.1094/mpmi-04-22-0075-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhizoctonia cerealis is a soilborne fungus that can cause sharp eyespot in wheat, resulting in massive yield losses found in many countries. Due to the lack of resistant cultivars, fungicides have been widely used to control this pathogen. However, chemical control is not environmentally friendly and is costly. Meanwhile, the lack of genetic transformation tools has hindered the functional characterization of virulence genes. In this study, we attempted to characterize the function of virulence genes by two transient methods, host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), which use RNA interference to suppress the pathogenic development. We identified ten secretory orphan genes from the genome. After silencing these ten genes, only the RcOSP1 knocked-down plant significantly inhibited the growth of R. cerealis. We then described RcOSP1 as an effector that could impair wheat biological processes and suppress pathogen-associated molecular pattern-triggered immunity in the infection process. These findings confirm that HIGS and SIGS can be practical tools for researching R. cerealis virulence genes. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Jiajing Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Congnawei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
98
|
Loreti E, Perata P. Mobile plant microRNAs allow communication within and between organisms. THE NEW PHYTOLOGIST 2022; 235:2176-2182. [PMID: 35794849 PMCID: PMC10114960 DOI: 10.1111/nph.18360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 05/06/2023]
Abstract
Plant microRNAs (miRNAs) are small regulatory RNAs that are encoded by endogenous miRNA genes and regulate gene expression through gene silencing, by inducing degradation of their target messenger RNA or by inhibiting its translation. Some miRNAs are mobile molecules inside the plant, and increasing experimental evidence has demonstrated that miRNAs represent molecules that are exchanged between plants, their pathogens, and parasitic plants. It has also been shown that miRNAs are secreted into the external growing medium and that these miRNAs regulate gene expression and the phenotype of nearby receiving plants, thus defining a new concept in plant communication. However, the mechanism of miRNA secretion and uptake by plant cells still needs to be elucidated.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNRNational Research CouncilVia Moruzzi56124PisaItaly
| | - Pierdomenico Perata
- PlantLab, Center of Plant SciencesSant'Anna School of Advanced StudiesVia Giudiccioni 1056010San Giuliano TermePisaItaly
| |
Collapse
|
99
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
100
|
Zand Karimi H, Innes RW. Molecular mechanisms underlying host-induced gene silencing. THE PLANT CELL 2022; 34:3183-3199. [PMID: 35666177 PMCID: PMC9421479 DOI: 10.1093/plcell/koac165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/08/2022] [Indexed: 05/05/2023]
Abstract
Host-induced gene silencing (HIGS) refers to the silencing of genes in pathogens and pests by expressing homologous double-stranded RNAs (dsRNA) or artificial microRNAs (amiRNAs) in the host plant. The discovery of such trans-kingdom RNA silencing has enabled the development of RNA interference-based approaches for controlling diverse crop pathogens and pests. Although HIGS is a promising strategy, the mechanisms by which these regulatory RNAs translocate from plants to pathogens, and how they induce gene silencing in pathogens, are poorly understood. This lack of understanding has led to large variability in the efficacy of various HIGS treatments. This variability is likely due to multiple factors, such as the ability of the target pathogen or pest to take up and/or process RNA from the host, the specific genes and target sequences selected in the pathogen or pest for silencing, and where, when, and how the dsRNAs or amiRNAs are produced and translocated. In this review, we summarize what is currently known about the molecular mechanisms underlying HIGS, identify key unanswered questions, and explore strategies for improving the efficacy and reproducibility of HIGS treatments in the control of crop diseases.
Collapse
Affiliation(s)
- Hana Zand Karimi
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|