51
|
Medeiros P, de Freitas RL, Silva MO, Coimbra NC, Melo-Thomas L. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy. Neuroscience 2016; 337:17-26. [PMID: 27595886 DOI: 10.1016/j.neuroscience.2016.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However, neither the intracollicular microinjection of AM251 at the lowest (50pmol/0.2μl) nor at the highest (200pmol/0.2μl) concentration was able to block the systemic haloperidol-induced catalepsy. Furthermore, the intracollicular administration of AM251 at 100pmol/0.2μl was able to decrease the duration of catalepsy as compared to AM251 at 50pmol/0.2μl- and AM251 at 200pmol/0.2-μl-treated group. The latency for stepping down from the horizontal bar - induced by haloperidol administration - was decreased when microinjection of AEA at 50pmol/0.2μl was preceded with blockade of CB1 receptor with AM251 (100pmol/0.2μl). Our results strengthen the involvement of CB1-signaled endocannabinoid mechanisms of the IC in the neuromodulation of catalepsy induced by systemic administration of the dopaminergic receptors non-selective antagonist haloperidol.
Collapse
Affiliation(s)
- P Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Department of Neurocience and Behavioral Sciences, Division of Neurology, Post-Graduation Section, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of Biosciences, Federal University of São Paulo (UNIFESP), Av. D. Ana Costa, 95, Vila Mathias, Santos, São Paulo 11060-001, Brazil
| | - R L de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neurobiology of Emotions Research Center (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - M O Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - N C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neurobiology of Emotions Research Center (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Department of Neurocience and Behavioral Sciences, Division of Neurology, Post-Graduation Section, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - L Melo-Thomas
- Laboratory of Experimental and Physiological Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Department of Biosciences, Federal University of São Paulo (UNIFESP), Av. D. Ana Costa, 95, Vila Mathias, Santos, São Paulo 11060-001, Brazil.
| |
Collapse
|
52
|
Madasu MK, Okine BN, Olango WM, Rea K, Lenihan R, Roche M, Finn DP. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Pharmacol Res 2016; 113:44-54. [PMID: 27520401 DOI: 10.1016/j.phrs.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Negative affective state has a significant impact on pain, and genetic background is an important moderating influence on this interaction. The Wistar-Kyoto (WKY) inbred rat strain exhibits a stress-hyperresponsive, anxiety/depressive-like phenotype and also displays a hyperalgesic response to noxious stimuli. Transient receptor potential subfamily V member 1 (TRPV1) within the midbrain periaqueductal grey (PAG) plays a key role in regulating both aversive and nociceptive behaviour. In the present study, we investigated the role of TRPV1 in the sub-columns of the PAG in formalin-evoked nociceptive behaviour in WKY versus Sprague-Dawley (SD) rats. TRPV1 mRNA expression was significantly lower in the dorsolateral (DL) PAG and higher in the lateral (L) PAG of WKY rats, compared with SD counterparts. There were no significant differences in TRPV1 mRNA expression in the ventrolateral (VL) PAG between the two strains. TRPV1 mRNA expression significantly decreased in the DLPAG and increased in the VLPAG of SD, but not WKY rats upon intra-plantar formalin administration. Intra-DLPAG administration of either the TRPV1 agonist capsaicin, or the TRPV1 antagonist 5'-Iodoresiniferatoxin (5'-IRTX), significantly increased formalin-evoked nociceptive behaviour in SD rats, but not in WKY rats. The effects of capsaicin were likely due to TRPV1 desensitisation, given their similarity to the effects of 5'-IRTX. Intra-VLPAG administration of capsaicin or 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, and similar effects were seen with 5'-IRTX in WKY rats. Intra-LPAG administration of 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, but not in WKY rats. These results indicate that modulation of inflammatory pain by TRPV1 in the PAG occurs in a sub-column-specific manner. The data also provide evidence for differences in the expression of TRPV1, and differences in the effects of pharmacological modulation of TRPV1 in specific PAG sub-columns, between WKY and SD rats, suggesting that TRPV1 expression and/or functionality in the PAG plays a role in hyper-responsivity to noxious stimuli in a genetic background prone to negative affect.
Collapse
Affiliation(s)
- Manish K Madasu
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Bright N Okine
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Weredeselam M Olango
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Róisín Lenihan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
53
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
54
|
Kiritoshi T, Ji G, Neugebauer V. Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats. J Neurosci 2016; 36:837-50. [PMID: 26791214 PMCID: PMC4719019 DOI: 10.1523/jneurosci.4047-15.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical brain regions, such as the amygdala, are emerging as important players in neuropsychiatric disorders and pain. This study identifies a novel mechanism and rescue strategy for impaired medial prefrontal cortical function in an animal model of arthritis pain. Specifically, an integrative approach of optogenetics, pharmacology, electrophysiology, and behavior is used to advance the novel concept that a breakdown of metabotropic glutamate receptor subtype mGluR5 and endocannabinoid signaling in infralimbic pyramidal cells fails to control abnormal amygdala-driven synaptic inhibition in the arthritis pain model. Restoring endocannabinoid signaling allows mGluR5 activation to increase infralimbic output hence inhibit pain behaviors and mitigate pain-related cognitive deficits.
Collapse
Affiliation(s)
| | | | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, Texas 79430-6592
| |
Collapse
|
55
|
Gobira PH, Almeida-Santos AF, Guimaraes FS, Moreira FA, Aguiar DC. Role of the endocannabinoid 2-arachidonoylglycerol in aversive responses mediated by the dorsolateral periaqueductal grey. Eur Neuropsychopharmacol 2016; 26:15-22. [PMID: 26628106 DOI: 10.1016/j.euroneuro.2015.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
2-arachidonoylglycerol (2-AG) is an endogenous ligand of the cannabinoid CB1 receptor. This endocannabinoid and its hydrolyzing enzyme, monoacylglycerol lipase (MAGL), are present in encephalic regions related to psychiatric disorders, including the midbrain dorsolateral periaqueductal grey (dlPAG). The dlPAG is implicated in panic disorder and its stimulation results in defensive responses proposed as a model of panic attacks. The present work verified if facilitation of 2-AG signalling in the dlPAG counteracts panic-like responses induced by local chemical stimulation. Intra-dlPAG injection of 2-AG prevented panic-like response induced by the excitatory amino acid N-methyl-d-aspartate (NMDA). This effect was mimicked by the 2-AG hydrolysis inhibitor (MAGL preferring inhibitor) URB602. The anti-aversive effect of URB602 was reversed by the CB1 receptor antagonist, AM251. Additionally, a combination of sub-effective doses of 2-AG and URB602 also prevented NMDA-induced panic-like response. Finally, immunofluorescence assay showed a significant increase in c-Fos positive cells in the dlPAG after local administration of NMDA. This response was also prevented by URB602. These data support the hypothesis that 2-AG participates in anti-aversive mechanisms in the dlPAG and reinforce the proposal that facilitation of endocannabinoid signalling could be a putative target for developing additional treatments against panic and other anxiety-related disorders.
Collapse
Affiliation(s)
- P H Gobira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - F S Guimaraes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil; Center of Interdisciplinary Research of Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - D C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
56
|
Uliana DL, Hott SC, Lisboa SF, Resstel LBM. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning. Neuropharmacology 2015; 103:257-69. [PMID: 26724373 DOI: 10.1016/j.neuropharm.2015.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
Abstract
Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.
Collapse
Affiliation(s)
- D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - S C Hott
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - S F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil.
| | - L B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
57
|
Todd SM, Arnold JC. Neural correlates of interactions between cannabidiol and Δ(9) -tetrahydrocannabinol in mice: implications for medical cannabis. Br J Pharmacol 2015; 173:53-65. [PMID: 26377899 DOI: 10.1111/bph.13333] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ(9) -tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC. However, our understanding of CBD and THC interactions is limited and the brain circuitry mediating interactions between CBD and THC are unknown. The aim of this study was to investigate whether CBD modulated the functional effects and c-Fos expression induced by THC, using a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols. EXPERIMENTAL APPROACH Male C57BL/6 mice were treated with vehicle, CBD, THC or a combination of CBD and THC (10 mg·kg(-1) i.p. for both cannabinoids) to examine effects on locomotor activity, anxiety-related behaviour, body temperature and brain c-Fos expression (a marker of neuronal activation). KEY RESULTS CBD potentiated THC-induced locomotor suppression but reduced the hypothermic and anxiogenic effects of THC. CBD alone had no effect on these measures. THC increased brain activation as measured by c-Fos expression in 11 of the 35 brain regions studied. CBD co-administration suppressed THC-induced c-Fos expression in six of these brain regions. This effect was most pronounced in the medial preoptic nucleus and lateral periaqueductal gray. Treatment with CBD alone diminished c-Fos expression only in the central nucleus of the amygdala compared with vehicle. CONCLUSIONS AND IMPLICATIONS These data confirm that CBD modulated the pharmacological actions of THC and provide new information regarding brain regions involved in the interaction between CBD and THC.
Collapse
Affiliation(s)
- S M Todd
- Brain and Mind Centre, University of Sydney, Sydney, Australia.,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - J C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia.,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| |
Collapse
|
58
|
|
59
|
Simone JJ, Malivoire BL, McCormick CM. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats. Neuroscience 2015; 306:123-37. [PMID: 26311003 DOI: 10.1016/j.neuroscience.2015.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/29/2015] [Accepted: 08/15/2015] [Indexed: 12/16/2022]
Abstract
There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.
Collapse
Affiliation(s)
- J J Simone
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - B L Malivoire
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - C M McCormick
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
60
|
Batista PA, Fogaça MV, Guimarães FS. The endocannabinoid, endovanilloid and nitrergic systems could interact in the rat dorsolateral periaqueductal gray matter to control anxiety-like behaviors. Behav Brain Res 2015; 293:182-8. [PMID: 26187694 DOI: 10.1016/j.bbr.2015.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 12/21/2022]
Abstract
Cannabinoid compounds usually produce biphasic effects in the modulation of emotional responses. Low doses of the endocannabinoid anandamide (AEA) injected into the dorsolateral periaqueductal gray matter (dlPAG) induce anxiolytic-like effects via CB1 receptors activation. However, at higher doses the drug loses this effect, in part by activating Transient Receptor Potential Vanilloid Type 1 (TRPV1). Activation of these latter receptors could induce the formation of nitric oxide (NO). Thus, the present study tested the hypothesis that at high doses AEA loses it anxiolytic-like effect by facilitating, probably via TRPV1 receptor activation, the formation of NO. Male Wistar rats received combined injections into the dlPAG of vehicle, the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin or the NO scavenger carboxy-PTIO (c-PTIO), followed by vehicle or AEA, and were submitted to the elevated plus maze (EPM) or the Vogel conflict test (VCT). A low dose (5pmol) of AEA produced an anxiolytic-like effect that disappeared at higher doses (50 and 200pmol). The anxiolytic-like effects of these latter doses, however, were restored after pre-treatment with a low and ineffective dose of c-PTIO in both animal models. In addition, the combined administration of ineffective doses of 6-iodo-nordihydrocapsaicin (1nmol) and c-PTIO (0.3nmol) produced an anxiolytic-like response. Therefore, these results support the hypothesis that intra-dlPAG injections of high doses of AEA lose their anxiolytic effects by favoring TRPV1 receptors activity and consequent NO formation, which in turn could facilitate defensive responses.
Collapse
Affiliation(s)
- Priscila A Batista
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), Brazil
| | - Manoela V Fogaça
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), Brazil.
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), Brazil
| |
Collapse
|
61
|
Viana TG, Hott SC, Resstel LB, Aguiar DC, Moreira FA. Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats. Psychopharmacology (Berl) 2015; 232:1545-53. [PMID: 25388290 DOI: 10.1007/s00213-014-3793-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022]
Abstract
RATIONALE Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli. OBJECTIVES The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks. METHODS All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry. RESULTS The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG. CONCLUSIONS The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.
Collapse
Affiliation(s)
- Thércia G Viana
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
62
|
Tahmasebi L, Komaki A, Karamian R, Shahidi S, Sarihi A, Salehi I, Nikkhah A. The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats. Eur J Pharmacol 2015; 757:68-73. [PMID: 25843413 DOI: 10.1016/j.ejphar.2015.03.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/12/2023]
Abstract
Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus. In this study, we examined the hippocampal effects of co-administrating WIN55-212-2 and capsaicin, which are CB1 and TRPV1 agonists, respectively, on the induction of LTP in the dentate gyrus (DG) of rats. LTP in the hippocampal area was induced by high-frequency stimulation (HFS). Our results indicated that the cannabinoid agonist reduced both field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude after HFS with respect to the control group, whereas the vanilloid agonist increased these parameters along with the increased induction of LTP as compared to the control group. We also showed that the co-administration of cannabinoid and vanilloid agonists had different effects on fEPSP slope and PS amplitude. It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.
Collapse
Affiliation(s)
- Lida Tahmasebi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ruhollah Karamian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nikkhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
63
|
da Silva JA, Biagioni AF, Almada RC, de Souza Crippa JA, Cecílio Hallak JE, Zuardi AW, Coimbra NC. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon. Eur J Pharmacol 2015; 758:153-63. [PMID: 25841876 DOI: 10.1016/j.ejphar.2015.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 01/17/2023]
Abstract
Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.
Collapse
Affiliation(s)
- Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil
| | - Audrey Francisco Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Jaime Eduardo Cecílio Hallak
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Antônio Waldo Zuardi
- Department of Neurosciences and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto 14050-220, São Paulo, Brazil; Neurobiology of Emotions Research Centre (NAP-USP-NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, São Paulo, Brazil.
| |
Collapse
|
64
|
Involvement of TRPV1 channels in the periaqueductal grey on the modulation of innate fear responses. Acta Neuropsychiatr 2015; 27:97-105. [PMID: 25529842 DOI: 10.1017/neu.2014.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The transient receptor potential vanilloid type-1 channel (TRPV1) is expressed in the midbrain periaqueductal grey (PAG), a region of the brain related to aversive responses. TRPV1 antagonism in the dorsolateral PAG (dlPAG) induces anxiolytic-like effects in models based on conflict situations. No study, however, has investigated whether these receptors could contribute to fear responses to proximal threat. Thus, we tested the hypothesis that TRPV1 in the PAG could mediate fear response in rats exposed to a predator. METHODS We verified whether exposure to a live cat (a natural predator) would activate TRPV1-expressing neurons in the PAG. Double-staining immunohistochemistry was used as a technique to detect c-Fos, a marker of neuronal activation, and TRPV1 expression. We also investigated whether intra-dlPAG injections of the TRPV1 antagonist, capsazepine (CPZ), would attenuate the behavioural consequences of predator exposure. RESULTS Exposure to a cat increased c-Fos expression in TRPV1-positive neurons, mainly in the dorsal columns of the PAG, suggesting that TRPV1-expressing neurons are activated by threatening stimuli. Accordingly, local injection of CPZ inhibited the fear responses. CONCLUSION These data support the hypothesis that TRPV1 channels mediate fear reactions in the dlPAG. This may have an implication for the development of TRPV1-antagonists as potential drugs for the treatment of certain psychiatric disorders.
Collapse
|
65
|
Batista LA, Bastos JR, Moreira FA. Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses. J Psychopharmacol 2015; 29:335-43. [PMID: 25601395 DOI: 10.1177/0269881114566259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Panic attacks, a major feature of panic disorder, can be modelled in rats by exposing animals to stimuli that induce escape reactions, such as the elevated T-maze or the activation of the dorsolateral periaqueductal grey. Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats. Local injection of the CB1 agonist, arachidonoyl 2-Chloroethylamide (0.005-0.5 pmol), attenuated the escape response from the open arm of the elevated T-maze, a panicolytic effect. The anandamide hydrolysis inhibitor, URB597 (0.3-3 nmol), did not induce consistent results. In the test of dorsolateral periaqueductal grey stimulation with d,l-homocysteic acid, arachidonoyl 2-Chloroethylamide, at the lowest dose, attenuated the escape reaction. The highest dose of URB597 also inhibited this response, contrary to the result obtained in the elevated T-maze. This effect was reversed by the CB1 antagonist, AM251 (100 pmol). The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey. The effect of the anandamide hydrolysis inhibitor, however, could be detected only in a model employing direct stimulation of this structure. Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.
Collapse
Affiliation(s)
- Luara A Batista
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Juliana R Bastos
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
66
|
Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats. Behav Brain Res 2015; 279:9-16. [DOI: 10.1016/j.bbr.2014.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/07/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022]
|
67
|
Anxiogenic-like effects induced by hemopressin in rats. Pharmacol Biochem Behav 2015; 129:7-13. [DOI: 10.1016/j.pbb.2014.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
|
68
|
Perna G, Schruers K, Alciati A, Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs 2014; 24:491-505. [DOI: 10.1517/13543784.2014.996286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giampaolo Perna
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 3University of Miami, Leonard Miller School of Medicine, Department of Psychiatry and Behavioral Sciences, Miami, FL, USA
| | - Koen Schruers
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 4Faculty of Psychology, University of Leuven, Center for Learning and Experimental Psychology, Loeven, Belgium
| | - Alessandra Alciati
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| | - Daniela Caldirola
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| |
Collapse
|
69
|
Galdino G, Romero T, Pinho da Silva JF, Aguiar D, de Paula AM, Cruz J, Parrella C, Piscitelli F, Duarte I, Di Marzo V, Perez A. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg 2014; 119:702-715. [PMID: 24977916 DOI: 10.1213/ane.0000000000000340] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. METHODS Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RESULTS RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. CONCLUSIONS The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.
Collapse
Affiliation(s)
- Giovane Galdino
- From the Department of Pharmacology, Department of Physiology, Institute of Biological Sciences, Department of Physics, and Department of Biochemistry, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
71
|
Inhibition of endocannabinoid neuronal uptake and hydrolysis as strategies for developing anxiolytic drugs. Behav Pharmacol 2014; 25:425-33. [DOI: 10.1097/fbp.0000000000000073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
Supraspinal TRPV1 modulates the emotional expression of abdominal pain. Pain 2014; 155:2153-60. [PMID: 25139591 DOI: 10.1016/j.pain.2014.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 01/26/2023]
Abstract
The transient receptor potential vanilloid receptor type-1 (TRPV1) is critically involved in peripheral nociceptive processes of somatic and visceral pain. However, the role of the capsaicin receptor in the brain regarding visceral pain remains elusive. Here, we studied the contribution of TRPV1 to abdominal pain transmission at different nociceptive pathway levels using TRPV1 knock-out mice, resiniferatoxin-mediated deletion of TRPV1-positive primary sensory neurons, and intracerebral TRPV1 antagonism. We found that constitutive genetic TRPV1 deletion or peripheral TRPV1 deletion reduced acetic acid-evoked abdominal constrictions, without affecting referred abdominal hyperalgesia or allodynia in an acute pancreatitis model of visceral pain. Notably, intracerebral TRPV1 antagonism by SB 366791 significantly reduced chemical and inflammatory spontaneous abdominal nocifensive responses, as observed by reduced expressions of nociceptive facial grimacing, illustrating the affective component of pain. In addition to the established role of cerebral TRPV1 in anxiety, fear, or emotional stress, we demonstrate here for the first time that TRPV1 in the brain modulates visceral nociception by interfering with the affective component of abdominal pain.
Collapse
|
73
|
Cannabinoid modulation of predator fear: involvement of the dorsolateral periaqueductal gray. Int J Neuropsychopharmacol 2014; 17:1193-206. [PMID: 24438603 DOI: 10.1017/s1461145713001788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of systemic or intra-dorsolateral periaqueductal gray (dlPAG) administration of CB1 agonists on behavioural changes induced in rats by predator (a live cat) exposure, a model of panic responses. Since nitric oxide (NO) and cannabinoid neurotransmission are proposed to interact in the dlPAG to modulate defensive responses, we also investigated if NO is involved in the biphasic effects of anandamide (AEA) injected into the dlPAG. The results showed that systemic administration of WIN55,212-2 or intra-dlPAG AEA attenuated the defensive behaviours caused by cat exposure. Both compounds produced biphasic curves. The cannabinoid receptor type 1 (CB1) antagonist AM251 prevented the panicolytic effect of AEA whereas a neuronal NOS inhibitor turned the ineffective high dose of AEA into an effective one. These results suggest that modulation of the cannabinoid system could be a target in the treatment of panic disorders. However, the biphasic effects of these compounds could limit their therapeutic potential.
Collapse
|
74
|
Almeida V, Peres FF, Levin R, Suiama MA, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC. Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr Res 2014; 153:150-9. [PMID: 24556469 DOI: 10.1016/j.schres.2014.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mariana B Calzavara
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil.
| |
Collapse
|
75
|
Ji G, Neugebauer V. CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model. Eur J Neurosci 2014; 39:455-66. [PMID: 24494685 PMCID: PMC4288820 DOI: 10.1111/ejn.12432] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 12/29/2022]
Abstract
The medial prefrontal cortex (mPFC) serves executive control functions and forms direct connections with subcortical areas such as the amygdala. Our previous work showed abnormal inhibition of mPFC pyramidal cells and hyperactivity of amygdala output neurons in an arthritis pain model. To restore mPFC activity and hence control pain-related amygdala hyperactivity this study focused on CB1 and mGluR5 receptors, which are important modulators of cortical functions. Extracellular single-unit recordings of infralimbic mPFC pyramidal cells and of amygdala output neurons in the laterocapsular division of the central nucleus (CeLC) were made in anesthetised adult male rats. mPFC neurons were classified as 'excited' or 'inhibited' based on their response to brief innocuous and noxious test stimuli. After arthritis pain induction, background activity and evoked responses of excited neurons and background activity and inhibition of inhibited neurons decreased. Stereotaxic application of an mGluR5-positive allosteric modulator (N-cyclobutyl-6-((3-fluorophenyl)ethynyl) nicotinamide hydrochloride, VU0360172) into the mPFC increased background and evoked activity of excited, but not inhibited, mPFC neurons under normal conditions but not in arthritis. A selective CB1 receptor agonist (arachidonyl-2-chloroethylamide) alone had no effect but restored the facilitatory effects of VU0360172 in the pain model. Coactivation of CB1 and mGluR5 in the mPFC inhibited the pain-related activity increase of CeLC neurons but had no effect under normal conditions. The data suggest that excited mPFC neurons are inversely linked to amygdala output (CeLC) and that CB1 can increase mGluR5 function in this subset of mPFC neurons to engage cortical control of abnormally enhanced amygdala output in pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1069, USA
| | | |
Collapse
|
76
|
Medial prefrontal cortex Transient Receptor Potential Vanilloid Type 1 (TRPV1) in the expression of contextual fear conditioning in Wistar rats. Psychopharmacology (Berl) 2014; 231:149-57. [PMID: 23922023 DOI: 10.1007/s00213-013-3211-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Contextual fear is evoked by re-exposing an animal to an environment that has been previously paired with an aversive or unpleasant stimulus. It can be assessed by freezing and cardiovascular changes such as increase in mean arterial pressure and heart rate. A marked increase in neuronal activity is associated with contextual fear conditioning, especially in limbic structures involved with defense reactions, such as the ventral portion of medial prefrontal cortex. OBJECTIVE Given the fact that transient receptor potential vanilloid type 1 (TRPV1) receptors could be involved in the expression of defensive behavior, the present work tested the hypothesis that TRPV1 manipulation in the ventromedial prefrontal cortex (vMPFC) modulates the expression of contextual conditioned fear. METHODS Male Wistar rats received bilateral microinjections into the vMPFC of the TRPV1 receptor antagonists capsazepine (1, 10, and 60 nmol/200 nL) or 6-iodonordihydrocapsaicin (3 nmol/200 nL), and the TRPV1 agonist capsaicin (1 nmol/200 nL) preceded by vehicle or 6-iodonordihydrocapsaicin before re-exposure to the experimental chamber for 10 min, 48 h after conditioning in two different protocols distinct by their aversiveness. RESULTS Both antagonists reduced the freezing and cardiovascular responses in the high aversive protocol. Capsaicin caused an increase in fear-associated responses that could be blocked by 6-iodonordihydrocapsaicin. CONCLUSIONS Our results indicate that TRPV1 receptors located in the vMPFC have a tonic involvement in the modulation of the expression of contextual fear conditioning.
Collapse
|
77
|
Lisboa S, Magesto A, Aguiar J, Resstel L, Guimarães F. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 2013; 75:86-94. [DOI: 10.1016/j.neuropharm.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
78
|
Galdino G, Romero TRL, Silva JFP, Aguiar DC, de Paula AM, Cruz JS, Parrella C, Piscitelli F, Duarte ID, Di Marzo V, Perez AC. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology 2013; 77:313-24. [PMID: 24148812 DOI: 10.1016/j.neuropharm.2013.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. Additionally, pretreatment (s.c., i.t. and i.c.v.) with endocannabinoid metabolizing enzyme inhibitors (MAFP and JZL184) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified this antinociceptive effect. These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels.
Collapse
Affiliation(s)
- Giovane Galdino
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil.
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| | - José Felipe P Silva
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| | - Ana Maria de Paula
- Biophotonics Lab, Department of Physics, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Jader S Cruz
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| | - Cosimo Parrella
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei 34, Compresorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei 34, Compresorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Igor D Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei 34, Compresorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Andrea C Perez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Ave. Antônio Carlos 6627, 31270-100 Belo Horizonte, Brazil
| |
Collapse
|
79
|
Gobira PH, Aguiar DC, Moreira FA. Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activities in the elevated T-maze. Pharmacol Biochem Behav 2013; 110:33-9. [DOI: 10.1016/j.pbb.2013.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/10/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023]
|
80
|
Köles L, Garção P, Zádori ZS, Ferreira SG, Pinheiro BS, da Silva-Santos CS, Ledent C, Köfalvi A. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain. Brain Res Bull 2013; 97:126-35. [PMID: 23831917 DOI: 10.1016/j.brainresbull.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 02/01/2023]
Abstract
Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.
Collapse
Key Words
- 3Rs
- 4-AP
- 4-aminopyridine
- 7-, 14-, 29- and 60-day-old
- 7D, 14D, 29D, 60D
- ACEA
- ARC
- ARRIVE
- AUC
- American Radiolabeled Chemicals
- Animal Research: Reporting In Vivo Experiments
- BCA
- BSA
- CB(1) cannabinoid receptor
- CB(1)R
- DMSO
- DPM
- DTT
- Dopamine
- ECF
- EDTA
- EGTA
- FR%
- Federation for Laboratory Animal Science Associations
- Felasa
- GABA
- Glutamate
- HEPES
- KHR
- KO
- Krebs-HEPES-Ringer
- LiGTP
- MAO B
- MgATP
- N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)
- N-arachidonyl dopamine
- NADA
- NO
- PMSF
- PVDF
- RTX
- SDS
- SEM
- Serotonin
- Striatum
- TBS-T
- TRPV(1) vanilloid receptor
- TRPV(1)R and TRPV(4)R
- Tris
- Tris-buffered saline with Tween 20
- WT
- aCSF
- arachidonyl-2′-chloroethylamide
- area-under-the-curve
- artificial cerebrospinal fluid
- bicinchoninic acid
- bovine serum albumin
- cannabinoid receptor type 1
- dimethyl sulfoxide
- disintegration per minute
- dithiothreitol
- enhanced chemi-fluorescence
- ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
- ethylenediaminetetraacetic acid
- fractional release %
- knockout
- lithium guanozine triphosphate
- magnesium adenosine triphosphate
- monoamine oxidase B
- nitric oxide
- phenylmethanesulfonyl fluoride
- polyvinylidene difluoride
- replacement, reduction, refinement
- resiniferatoxin
- sEPSCs
- sodium dodecyl sulfate
- spontaneous excitatory postsynaptic currents
- standard error of the mean
- transient release potential receptor vanilloid type 4
- tris(hydroxymethyl)aminomethane
- wild-type
- γ-aminobutyric acid
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Almeida-Santos AF, Gobira PH, Rosa LC, Guimaraes FS, Moreira FA, Aguiar DC. Modulation of anxiety-like behavior by the endocannabinoid 2-arachidonoylglycerol (2-AG) in the dorsolateral periaqueductal gray. Behav Brain Res 2013; 252:10-7. [PMID: 23714073 DOI: 10.1016/j.bbr.2013.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
Anandamide and 2-arachidonoylglycerol (2-AG) are the two main endocannabinoids, exerting their effects by activating type 1 (CB1r) and type 2 (CB2r) cannabinoid receptors. Anandamide inhibits anxiety-like responses through the activation of CB1r in certain brain regions, including the dorsolateral periaqueductal gray (dlPAG). 2-AG also attenuates anxiety-like responses, although the neuroanatomical sites for these effects remained unclear. Here, we tested the hypothesis that enhancing 2-AG signaling in the dlPAG would induce anxiolytic-like effects. The mechanisms involved were also investigated. Male Wistar rats received intra-dlPAG injections of 2-AG, URB602 (inhibitor of the 2-AG hydrolyzing enzyme, mono-acylglycerol lipase--MGL), AM251 (CB1r antagonist) and AM630 (CB2r antagonist). The behavior was analyzed in the elevated plus maze after the following treatments. Exp. 1: vehicle (veh) or 2-AG (5 pmol, 50 pmol, and 500 pmol). Exp. 2: veh or URB602 (30 pmol, 100 pmol or 300 pmol). Exp. 3: veh or AM251 (100 pmol) followed by veh or 2-AG (50 pmol). Exp. 4: veh or AM630 (1000 pmol) followed by veh or 2-AG. Exp. 5: veh or AM251 followed by veh or URB602 (100 pmol). Exp. 6: veh or AM630 followed by veh or URB602. 2-AG (50 pmol) and URB602 (100 pmol) significantly increased the exploration of the open arms of the apparatus, indicating an anxiolytic-like effect. These behavioral responses were prevented by CB1r (AM251) or CB2r (AM630) antagonists. Our results showed that the augmentation of 2-AG levels in the dlPAG induces anxiolytic-like effects. The mechanism seems to involve both CB1r and CB2r receptors.
Collapse
Affiliation(s)
- A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
82
|
Mascarenhas DC, Gomes KS, Nunes-de-Souza RL. Anxiogenic-like effect induced by TRPV1 receptor activation within the dorsal periaqueductal gray matter in mice. Behav Brain Res 2013; 250:308-15. [PMID: 23707246 DOI: 10.1016/j.bbr.2013.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 01/17/2023]
Abstract
Pharmacological manipulation of TRPV1 (Transient Receptor Potential Vanilloid type-1) receptors has been emerging as a novel target in the investigation of anxiety states. Here, we attempt to show the role played by the TRPV1 receptors within the dorsal periaqueductal gray matter (dPAG), a midbrain structure strongly involved in the modulation of anxiety. Anxiety was assessed by recording spatiotemporal [percent open arm entries (%OE) and percent open arm time (%OT)] and ethological [e.g., head dipping (HD), stretched-attend postures (SAP)] measures in mice exposed to the elevated plus-maze (EPM). Mice received an intra-dPAG injection of the TRPV1 agonist capsaicin (0, 0.01, 0.1 or 1.0nmol/0.2μL; Experiment 1) or antagonist capsazepine (0, 10, 30 or 60nmol/0.2μL; Experiment 2), or combined injections of capsazepine (30nmol) and capsaicin (1.0nmol) (Experiment 3), and were exposed to the EPM to record spatiotemporal and ethological measures. While capsaicin produced an anxiogenic-like effect (it reduced %OE and %OT and frequency of SAP and HD in the open arms), capsazepine did not change any behavior in the EPM. However, when injected before capsaicin (1.0nmol), intra-dPAG capsazepine (30nmol-a dose devoid of intrinsic effects) antagonized completely the anxiogenic-like effect of the TRPV1 agonist. These results suggest that the anxiogenic-like effect produced by capsaicin is primarily due to TRPV1 activation within the dPAG in mice, but that dPAG TRPV1 receptors do not exert a tonic control over defensive behavior in mice exposed to the EPM.
Collapse
|
83
|
Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimarães FS. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2013; 367:3364-78. [PMID: 23108553 DOI: 10.1098/rstb.2011.0389] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects.
Collapse
Affiliation(s)
- Alline Cristina Campos
- Group of Neuroimmunology, Laboratory of Immunopharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
84
|
Fogaça MV, Gomes FV, Moreira FA, Guimarães FS, Aguiar DC. Effects of glutamate NMDA and TRPV1 receptor antagonists on the biphasic responses to anandamide injected into the dorsolateral periaqueductal grey of Wistar rats. Psychopharmacology (Berl) 2013. [PMID: 23183551 DOI: 10.1007/s00213-012-2927-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RATIONALE The endocannabinoid and endovanniloid anandamide (AEA) exerts biphasic effects when injected into the dorsolateral periaqueductal grey (dlPAG) in rats submitted to threatening situations. Whereas lower doses of AEA induce anxiolytic-like effects by activating cannabinoid CB1 receptors, no effects are observed with higher doses, possibly due to the simultaneous activation of transient receptor potential vanilloid type 1 (TRPV1) receptors. This activation would facilitate glutamatergic neurotransmission. OBJECTIVE Considering that the blockade of TRPV1 or NMDA receptors in the dlPAG induces anxiolytic-like effects, we tested the hypothesis that facilitation of glutamate transmission through TRPV1 is responsible for the lack of anxiolytic-like effect observed with high AEA doses. METHODS Male Wistar rats with a unilateral cannula aimed at the dlPAG received injections of an ineffective dose of AP7 (an NMDA antagonist, 1 nmol) or capsazepine (CPZ, a TRPV1 antagonist, 10 nmol), followed by a high dose of AEA (50 and 200 pmol) and were exposed to the elevated plus maze (EPM) or the Vogel conflict test (VCT). RESULTS AP7, CPZ, or AEA did not induce any significant effects when administered alone. However, AP7 or CPZ prior to AEA significantly increased the percentage of entries and time spent in the open arms of EPM and the number of punished licks in the VCT suggesting an anxiolytic-like effect. CONCLUSIONS These results suggest that the lack of anxiolytic-like effect of higher AEA doses is due to facilitation of glutamate release in the dlPAG, probably via activation of TRPV1 receptors in this structure.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049900, Brazil
| | | | | | | | | |
Collapse
|
85
|
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol Ther 2013; 138:18-37. [DOI: 10.1016/j.pharmthera.2012.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
86
|
Almeida-Santos AF, Moreira FA, Guimarães FS, Aguiar DC. Role of TRPV1 receptors on panic-like behaviors mediated by the dorsolateral periaqueductal gray in rats. Pharmacol Biochem Behav 2013; 105:166-72. [PMID: 23474373 DOI: 10.1016/j.pbb.2013.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 12/23/2022]
Abstract
The transient receptors potential vanilloid type 1 channels (TRPV1) are expressed in several brain regions related to defensive behaviors, including the dorsolateral periaqueductal gray (dlPAG). The endocannabinoid anandamide, in addition to its agonist activity at cannabinoid type 1 (CB1), is also proposed as an endogenous agonist of these receptors, through which it could facilitate anxiety-like responses. The aim of this work was to test the hypothesis that TRPV1 in the dlPAG of rats would mediate panic-like responses in two models, namely the escape responses induced by chemical stimulation of this structure or by exposure to the elevated T-Maze (ETM). Antagonism of TRPV1 with capsazepine injected into the dlPAG reduced the defense response induced by local NMDA-injection, suggesting an anti-aversive effect. In the ETM, capsazepine inhibited escape response, suggesting a panicolytic-like effect. Interestingly, this effect was prevented by a CB1 antagonist (AM251). The present study showed that antagonism of TRPV1 in the dlPAG induces panicolytic-like effects, which can be prevented by a CB1 antagonist. Therefore, these antiaversive effects of TRPV1 blockade may ultimately occur due to a predominant action of anandamide through CB1 receptors.
Collapse
Affiliation(s)
- A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
87
|
Fogaça MV, Aguiar DC, Moreira FA, Guimarães FS. The endocannabinoid and endovanilloid systems interact in the rat prelimbic medial prefrontal cortex to control anxiety-like behavior. Neuropharmacology 2012; 63:202-10. [DOI: 10.1016/j.neuropharm.2012.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/15/2012] [Accepted: 03/09/2012] [Indexed: 01/16/2023]
|
88
|
When a TRP goes bad: transient receptor potential channels in addiction. Life Sci 2012; 92:410-4. [PMID: 22820171 DOI: 10.1016/j.lfs.2012.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022]
Abstract
Drug addiction is a psychiatric disease state, wherein a drug is impulsively and compulsively self-administered despite negative consequences. This repeated administration results in permanent changes to nervous system physiology and architecture. The molecular pathways affected by addictive drugs are complex and inter-dependent on each other. Recently, various new proteins and protein families have been discovered to play a role in drug abuse. Emerging players in this phenomenon include TRP (Transient Receptor Potential) family channels, which are primarily known to function in sensory systems. Several TRP family channels identified in both vertebrates and invertebrates are involved in psychostimulant-induced plasticity, suggesting their involvement in drug dependence. This review summarizes various observations, both from studies in humans and other organisms, which support a role for these channels in the development of drug-related behaviors.
Collapse
|
89
|
Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties, Functional Features, and Emerging Specificities of the Two Major Endocannabinoids. Mol Neurobiol 2012; 46:374-92. [DOI: 10.1007/s12035-012-8299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
90
|
Kiritoshi T, Sun H, Ren W, Stauffer SR, Lindsley CW, Conn PJ, Neugebauer V. Modulation of pyramidal cell output in the medial prefrontal cortex by mGluR5 interacting with CB1. Neuropharmacology 2012; 66:170-8. [PMID: 22521499 DOI: 10.1016/j.neuropharm.2012.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 01/20/2023]
Abstract
The medial prefrontal cortex (mPFC) serves executive cognitive functions such as decision-making that are impaired in neuropsychiatric disorders and pain. We showed previously that amygdala-driven abnormal inhibition and decreased output of mPFC pyramidal cells contribute to pain-related impaired decision-making (Ji et al., 2010). Therefore, modulating pyramidal output is desirable therapeutic goal. Targeting metabotropic glutamate receptor subtype mGluR5 has emerged as a cognitive-enhancing strategy in neuropsychiatric disorders, but synaptic and cellular actions of mGluR5 in the mPFC remain to be determined. The present study determined synaptic and cellular actions of mGluR5 to test the hypothesis that increasing mGluR5 function can enhance pyramidal cell output. Whole-cell voltage- and current-clamp recordings were made from visually identified pyramidal neurons in layer V of the mPFC in rat brain slices. Both the prototypical mGluR5 agonist CHPG and a positive allosteric modulator (PAM) for mGluR5 (VU0360172) increased synaptically evoked spiking (E-S coupling) in mPFC pyramidal cells. The facilitatory effects of CHPG and VU0360172 were inhibited by an mGluR5 antagonist (MTEP). CHPG, but not VU0360172, increased neuronal excitability (frequency-current [F-I] function). VU0360172, but not CHPG, increased evoked excitatory synaptic currents (EPSCs) and amplitude, but not frequency, of miniature EPSCs, indicating a postsynaptic action. VU0360172, but not CHPG, decreased evoked inhibitory synaptic currents (IPSCs) through an action that involved cannabinoid receptor CB1, because a CB1 receptor antagonist (AM281) blocked the inhibitory effect of VU0360172 on synaptic inhibition. VU0360172 also increased and prolonged CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI). Activation of CB1 with ACEA decreased inhibitory transmission through a presynaptic mechanism. The results show that increasing mGluR5 function enhances mPFC output. This effect can be accomplished by increasing excitability with an orthosteric agonist (CHPG) or by increasing excitatory synaptic drive and CB1-mediated presynaptic suppression of synaptic inhibition ("dis-inhibition") with a PAM (VU0360172). Therefore, mGluR5 may be a useful target in conditions of impaired mPFC output. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555-1069, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Fogaça MV, Lisboa SF, Aguiar DC, Moreira FA, Gomes FV, Casarotto PC, Guimarães FS. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res 2012; 45:357-65. [PMID: 22392189 PMCID: PMC3854170 DOI: 10.1590/s0100-879x2012007500029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Abstract
This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.
Collapse
Affiliation(s)
- M V Fogaça
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | | | | | | | | | |
Collapse
|