51
|
Luckhart C, Philippe TJ, Le François B, Vahid-Ansari F, Geddes SD, Béïque JC, Lagace DC, Daigle M, Albert PR. Sex-dependent adaptive changes in serotonin-1A autoreceptor function and anxiety in Deaf1-deficient mice. Mol Brain 2016; 9:77. [PMID: 27488351 PMCID: PMC4973060 DOI: 10.1186/s13041-016-0254-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022] Open
Abstract
The C (-1019) G rs6295 promoter polymorphism of the serotonin-1A (5-HT1A) receptor gene is associated with major depression in several but not all studies, suggesting that compensatory mechanisms mediate resilience. The rs6295 risk allele prevents binding of the repressor Deaf1 increasing 5-HT1A receptor gene transcription, and the Deaf1-/- mouse model shows an increase in 5-HT1A autoreceptor expression. In this study, Deaf1-/- mice bred on a mixed C57BL6-BALB/c background were compared to wild-type littermates for 5-HT1A autoreceptor function and behavior in males and females. Despite a sustained increase in 5-HT1A autoreceptor binding levels, the amplitude of the 5-HT1A autoreceptor-mediated current in 5-HT neurons was unaltered in Deaf1-/- mice, suggesting compensatory changes in receptor function. Consistent with increased 5-HT1A autoreceptor function in vivo, hypothermia induced by the 5-HT1A agonist DPAT was augmented in early generation male but not female Deaf1-/- mice, but was reduced with succeeding generations. Loss of Deaf1 resulted in a mild anxiety phenotype that was sex-and test-dependent, with no change in depression-like behavior. Male Deaf1 knockout mice displayed anxiety-like behavior in the open field and light-dark tests, while female Deaf1-/- mice showed increased anxiety only in the elevated plus maze. These data show that altered 5-HT1A autoreceptor regulation in male Deaf1-/- mice can be compensated for by generational adaptation of receptor response that may help to normalize behavior. The sex dependence of Deaf1 function in mice is consistent with a greater role for 5-HT1A autoreceptors in sensitivity to depression in men.
Collapse
Affiliation(s)
- Christine Luckhart
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Tristan J Philippe
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Sean D Geddes
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), Ottawa, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H-8M5, Canada.
| |
Collapse
|
52
|
Pet-1 Switches Transcriptional Targets Postnatally to Regulate Maturation of Serotonin Neuron Excitability. J Neurosci 2016; 36:1758-74. [PMID: 26843655 DOI: 10.1523/jneurosci.3798-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1(-/-) neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. Five-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturation through secondary postmitotic regulatory factors. The early postnatal switch in Pet-1 targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. SIGNIFICANCE STATEMENT The regulatory mechanisms that control functional maturation of neurons are poorly understood. We show that in addition to inducing brain serotonin (5-HT) synthesis and reuptake, the Pet-1 ETS (E26 transformation-specific) factor subsequently globally coordinates postmitotic expression trajectories of genes necessary for maturation of 5-HT neuron excitability. Further, Pet-1 switches its transcriptional targets as 5-HT neurons mature from 5-HT synthesis genes to G-protein-coupled receptors, which are necessary for afferent synaptic modulation of 5-HT neuron excitability. Our findings uncover gene-specific switching of downstream targets as a previously unrecognized regulatory strategy through which continuously expressed transcription factors control acquisition of neuronal identity at different stages of development.
Collapse
|
53
|
Donaldson ZR, le Francois B, Santos TL, Almli LM, Boldrini M, Champagne FA, Arango V, Mann JJ, Stockmeier CA, Galfalvy H, Albert PR, Ressler KJ, Hen R. The functional serotonin 1a receptor promoter polymorphism, rs6295, is associated with psychiatric illness and differences in transcription. Transl Psychiatry 2016; 6:e746. [PMID: 26926882 PMCID: PMC4872437 DOI: 10.1038/tp.2015.226] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
The G/C single-nucleotide polymorphism in the serotonin 1a receptor promoter, rs6295, has previously been linked with depression, suicide and antidepressant responsiveness. In vitro studies suggest that rs6295 may have functional effects on the expression of the serotonin 1a receptor gene (HTR1A) through altered binding of a number of transcription factors. To further explore the relationship between rs6295, mental illness and gene expression, we performed dual epidemiological and biological studies. First, we genotyped a cohort of 1412 individuals, randomly split into discovery and replication cohorts, to examine the relationship between rs6295 and five psychiatric outcomes: history of psychiatric hospitalization, history of suicide attempts, history of substance or alcohol abuse, current posttraumatic stress disorder (PTSD), current depression. We found that the rs6295G allele is associated with increased risk for substance abuse, psychiatric hospitalization and suicide attempts. Overall, exposure to either childhood or non-childhood trauma resulted in increased risk for all psychiatric outcomes, but we did not observe a significant interaction between rs6295 and trauma in modulating psychiatric outcomes. In conjunction, we also investigated the potential impact of rs6295 on HTR1A expression in postmortem human brain tissue using relative allelic expression assays. We found more mRNA produced from the C versus the G-allele of rs6295 in the prefrontal cortex (PFC), but not in the midbrain of nonpsychiatric control subjects. Further, in the fetal cortex, rs6295C allele exhibited increased relative expression as early as gestational week 18 in humans. Finally, we found that the C:G allelic expression ratio was significantly neutralized in the PFC of subjects with major depressive disorder (MDD) who committed suicide as compared with controls, indicating that normal patterns of transcription may be disrupted in MDD/suicide. These data provide a putative biological mechanism underlying the association between rs6295, trauma and mental illness. Moreover, our results suggest that rs6295 may affect transcription during both gestational development and adulthood in a region-specific manner, acting as a risk factor for psychiatric illness. These findings provide a critical framework for conceptualizing the effects of a common functional genetic variant, trauma exposure and their impact on mental health.
Collapse
Affiliation(s)
- Z R Donaldson
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - B le Francois
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T L Santos
- New York State Psychiatric Institute, New York, NY, USA
| | - L M Almli
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - M Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - F A Champagne
- Department of Psychology, Columbia University, New York, NY, USA
| | - V Arango
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J J Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - C A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - H Galfalvy
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - P R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - K J Ressler
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - R Hen
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
54
|
Teissier A, Chemiakine A, Inbar B, Bagchi S, Ray RS, Palmiter RD, Dymecki SM, Moore H, Ansorge MS. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors. Cell Rep 2015; 13:1965-76. [PMID: 26655908 DOI: 10.1016/j.celrep.2015.10.061] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/08/2015] [Accepted: 10/19/2015] [Indexed: 01/19/2023] Open
Abstract
Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.
Collapse
Affiliation(s)
- Anne Teissier
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Benjamin Inbar
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Sneha Bagchi
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Russell S Ray
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
55
|
Morton RA, Yanagawa Y, Fernando Valenzuela C. Electrophysiological Assessment of Serotonin and GABA Neuron Function in the Dorsal Raphe during the Third Trimester Equivalent Developmental Period in Mice. eNeuro 2015; 2:ENEURO.0079-15.2015. [PMID: 26730407 PMCID: PMC4698541 DOI: 10.1523/eneuro.0079-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5-P7] and late (P15-P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5-P7 relative to P15-P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development.
Collapse
Affiliation(s)
- Russell A. Morton
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
56
|
Selvaraj S, Mouchlianitis E, Faulkner P, Turkheimer F, Cowen PJ, Roiser JP, Howes O. Presynaptic Serotoninergic Regulation of Emotional Processing: A Multimodal Brain Imaging Study. Biol Psychiatry 2015; 78:563-571. [PMID: 24882568 PMCID: PMC5322825 DOI: 10.1016/j.biopsych.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The amygdala is a central node in the brain network that processes aversive emotions and is extensively innervated by dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) neurons. Alterations in DRN 5-HT1A receptor availability cause phenotypes characterized by fearful behavior in preclinical models. However, it is unknown whether 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in humans or whether it modulates connectivity in brain networks involved in emotion processing. To answer this question, we investigated the relationship between DRN 5-HT1A receptor availability and amygdala reactivity to aversive emotion and functional connectivity within the amygdala-cortical network. METHODS We studied 15 healthy human participants who underwent positron emission tomography scanning with [(11)C]CUMI-101, a 5-HT1A partial agonist radioligand, and functional magnetic resonance imaging of brain responses during an incidental emotion processing task including happy, fearful, and neutral faces. Regional estimates of 5-HT1A receptor binding potential (nondisplaceable) were obtained by calculating total volumes of distribution for presynaptic DRN and amygdala. Connectivity between the amygdala and corticolimbic areas was assessed using psychophysiologic interaction analysis with the amygdala as the seed region. RESULTS Analysis of the fear versus neutral contrast revealed a significant negative correlation between amygdala response and DRN binding potential (nondisplaceable) (r = -.87, p < .001). Availability of DRN 5-HT1A receptors positively correlated with amygdala connectivity with middle frontal gyrus, anterior cingulate cortex, bilateral precuneus, and left supramarginal gyrus for fearful (relative to neutral) faces. CONCLUSIONS Our data show that DRN 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in the amygdala and the modulation of amygdala-cortical connectivity.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK
| | - Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | | | | | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | - Oliver Howes
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Institute of Psychiatry, King’s College London, SE5 8AF, UK
| |
Collapse
|
57
|
Chilmonczyk Z, Bojarski AJ, Pilc A, Sylte I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int J Mol Sci 2015; 16:18474-506. [PMID: 26262615 PMCID: PMC4581256 DOI: 10.3390/ijms160818474] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.
Collapse
Affiliation(s)
- Zdzisław Chilmonczyk
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institute of Nursing and Health Sciences, University of Rzeszów, W. Kopisto 2A, 35-310 Rzeszów, Poland.
| | - Andrzej Jacek Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Ingebrigt Sylte
- Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, No-9037 Tromsø, Norway.
| |
Collapse
|
58
|
Disruption of 5-HT1A function in adolescence but not early adulthood leads to sustained increases of anxiety. Neuroscience 2015; 321:210-221. [PMID: 26049143 DOI: 10.1016/j.neuroscience.2015.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/11/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022]
Abstract
Current evidence suggests that anxiety disorders have developmental origins. Early insults to the circuits that sub-serve emotional regulation are thought to cause disease later in life. Evidence from studies in mice demonstrate that the serotonergic system in general, and serotonin 1A (5-HT1A) receptors in particular, are critical during the early postnatal period for the normal development of circuits that subserve anxious behavior. However, little is known about the role of serotonin signaling through 5-HT1A receptors between the emergence of normal anxiety behavior after weaning, and the mature adult phenotype. Here, we use both transgenic and pharmacological approaches in male mice, to identify a sensitive period for 5-HT1A function in the stabilization of circuits mediating anxious behavior during adolescence. Using a transgenic approach we show that suppression of 5-HT1A receptor expression beginning in early adolescence results in an anxiety-like phenotype in the open field test. We further demonstrate that treatment with the 5-HT1A antagonist WAY 100,635 between postnatal day (P)35 and P50, but not at later timepoints, results in altered anxiety in ethologically based conflict tests like the open field test and elevated plus maze. This change in anxiety behavior occurs without impacting behavior in the more depression-related sucrose preference test or forced swim test. The treatment with WAY 100,635 does not affect adult 5-HT1A expression levels, but leads to increased expression of the serotonin transporter in the raphe, along with enhanced serotonin levels in both the prefrontal cortex and raphe that correlate with the behavioral changes observed in adult mice. This work demonstrates that signaling through 5-HT1A receptors during adolescence (a time when pathological anxiety emerges), but not early adulthood, is critical in regulating anxiety setpoints. These data suggest the possibility that brief interventions in the serotonergic system during adolescence could lead to profound and enduring changes in physiology and behavior.
Collapse
|
59
|
Stevens HE, Vaccarino FM. How animal models inform child and adolescent psychiatry. J Am Acad Child Adolesc Psychiatry 2015; 54:352-9. [PMID: 25901771 PMCID: PMC4407022 DOI: 10.1016/j.jaac.2015.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/29/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. METHOD We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. RESULTS We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. CONCLUSION Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field.
Collapse
Affiliation(s)
- Hanna E. Stevens
- University of Iowa Carver College of Medicine, Iowa City and the Child Study Center, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
60
|
Weber T, Vogt MA, Gartside SE, Berger SM, Lujan R, Lau T, Herrmann E, Sprengel R, Bartsch D, Gass P. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity. Neuropsychopharmacology 2015; 40:1471-84. [PMID: 25547714 PMCID: PMC4397405 DOI: 10.1038/npp.2014.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.
Collapse
Affiliation(s)
- Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,AHG Klinik Wilhelmsheim, 71570 Oppenweiler, Germany. Tel: +49 0 7193 52215, Fax: +49 0 7193 52245, E-mail:
| | - Miriam A Vogt
- Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah E Gartside
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Thorsten Lau
- Biochemical Laboratory, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/HeidelbergUniversity, Mannheim, Germany
| | - Elke Herrmann
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Peter Gass
- Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
61
|
Piszczek L, Piszczek A, Kuczmanska J, Audero E, Gross CT. Modulation of anxiety by cortical serotonin 1A receptors. Front Behav Neurosci 2015; 9:48. [PMID: 25759645 PMCID: PMC4338812 DOI: 10.3389/fnbeh.2015.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/09/2015] [Indexed: 01/29/2023] Open
Abstract
Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Agnieszka Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Joanna Kuczmanska
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Enrica Audero
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| |
Collapse
|
62
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
63
|
Donaldson ZR, Hen R. From psychiatric disorders to animal models: a bidirectional and dimensional approach. Biol Psychiatry 2015; 77:15-21. [PMID: 24650688 PMCID: PMC4135025 DOI: 10.1016/j.biopsych.2014.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/08/2014] [Indexed: 12/31/2022]
Abstract
Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosologic divide of psychiatric illness, although clinically relevant, is not directly translatable in animal models. For instance, mice will never fully recapitulate the broad criteria for many psychiatric disorders; additionally, mice will never have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders to identify neural circuits and mechanisms underlying disease-relevant phenotypes. The genetic investigation of psychiatric illness can yield the greatest insights if efforts continue to identify and use biologically valid phenotypes across species. This review discusses the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species and the importance of refined modeling of human disease-associated genetic variation in mice and other animal models.
Collapse
Affiliation(s)
| | - René Hen
- Departments of Psychiatry and Neuroscience, Columbia University, and Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
64
|
Booij L, Tremblay RE, Szyf M, Benkelfat C. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology. J Psychiatry Neurosci 2015; 40:5-18. [PMID: 25285876 PMCID: PMC4275332 DOI: 10.1503/jpn.140099] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. METHODS Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. RESULTS Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region-specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. LIMITATIONS There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. CONCLUSION A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology.
Collapse
Affiliation(s)
- Linda Booij
- Correspondence to: L. Booij, Departments of Psychology and Psychiatry, Queen’s University, 62 Arch St., Kingston ON K7L 3N6; or
| | | | | | | |
Collapse
|
65
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
66
|
Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8:199. [PMID: 24936175 PMCID: PMC4047678 DOI: 10.3389/fnbeh.2014.00199] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 01/03/2023] Open
Abstract
Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the "gain" of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. interneuronal populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.
Collapse
Affiliation(s)
- Paul R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| | - Christine Luckhart
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| |
Collapse
|
67
|
Rood BD, Calizo LH, Piel D, Spangler ZP, Campbell K, Beck SG. Dorsal raphe serotonin neurons in mice: immature hyperexcitability transitions to adult state during first three postnatal weeks suggesting sensitive period for environmental perturbation. J Neurosci 2014; 34:4809-21. [PMID: 24695701 PMCID: PMC3972713 DOI: 10.1523/jneurosci.1498-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/21/2022] Open
Abstract
Trauma during early life is a major risk factor for the development of anxiety disorders and suggests that the developing brain may be particularly sensitive to perturbation. Increased vulnerability most likely involves altering neural circuits involved in emotional regulation. The role of serotonin in emotional regulation is well established, but little is known about the postnatal development of the raphe where serotonin is made. Using whole-cell patch-clamp recording and immunohistochemistry, we tested whether serotonin circuitry in the dorsal and median raphe was functionally mature during the first 3 postnatal weeks in mice. Serotonin neurons at postnatal day 4 (P4) were hyperexcitable. The increased excitability was due to depolarized resting membrane potential, increased resistance, increased firing rate, lack of 5-HT1A autoreceptor response, and lack of GABA synaptic activity. Over the next 2 weeks, membrane resistance decreased and resting membrane potential hyperpolarized due in part to potassium current activation. The 5-HT1A autoreceptor-mediated inhibition did not develop until P21. The frequency of spontaneous inhibitory and excitatory events increased as neurons extended and refined their dendritic arbor. Serotonin colocalized with vGlut3 at P4 as in adulthood, suggesting enhanced release of glutamate alongside enhanced serotonin release. Because serotonin affects circuit development in other brain regions, altering the developmental trajectory of serotonin neuron excitability and release could have many downstream consequences. We conclude that serotonin neuron structure and function change substantially during the first 3 weeks of life during which external stressors could potentially alter circuit formation.
Collapse
Affiliation(s)
- Benjamin D. Rood
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
- Department of Anesthesiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lyngine H. Calizo
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
| | - David Piel
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
| | - Zachary P. Spangler
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
| | - Kaitlin Campbell
- Department of Anesthesiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sheryl G. Beck
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
- Department of Anesthesiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
68
|
Abstract
INTRODUCTION The success of antidepressant research has long been challenged by a limited mechanistic understanding of depression pathogenesis and antidepressant treatment response. Progress in this field has thereby consistently been hindered by a lack of novel conceptual approaches and sophisticated experimental techniques to dissect the highly intricate neurobiology of depression. Using fresh approaches to investigate the cellular and molecular mechanisms underlying depression will thus be vital for discovery of novel antidepressant targets. AREAS COVERED This article provides an overview of some fundamental problems that depression research is currently facing and critically evaluates how these issues could be addressed by future research. It also discusses novel conceptual and technological advances in the field of neuroscience, particularly in regard to how they may help in providing unprecedented insight into the molecular mechanisms of depression pathogenesis. EXPERT OPINION Although progress in antidepressant drug discovery has been limited over recent years, modern innovations in neuroscience, molecular biology, genetics and bioinformatics are just beginning to revolutionize depression research and to reveal novel and promising treatment targets. Integrating findings from a range of relevant experimental models and using the most advanced technology will be vital for the future success of antidepressant drug discovery.
Collapse
Affiliation(s)
- Christoph Anacker
- McGill University, Douglas Mental Health University Institute , 6875 Boulevard La Salle, Montreal, Quebec, H4H 1R3 , Canada +1 514 761 6131 - 2503 ;
| |
Collapse
|