51
|
Poplawsky AJ, Fukuda M, Kang BM, Kim JH, Suh M, Kim SG. Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. Neuroimage 2017; 197:657-667. [PMID: 28822749 DOI: 10.1016/j.neuroimage.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022] Open
Abstract
Contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI response peaks are specific to the layer of evoked synaptic activity (Poplawsky et al., 2015), but the spatial resolution limit of CBVw fMRI is unknown. In this study, we measured the laminar spread of the CBVw fMRI evoked response in the external plexiform layer (EPL, 265 ± 65 μm anatomical thickness, mean ± SD, n = 30 locations from 5 rats) of the rat olfactory bulb during electrical stimulation of the lateral olfactory tract and examined its potential vascular source. First, we obtained the evoked CBVw fMRI responses with a 55 × 55 μm2 in-plane resolution and a 500-μm thickness at 9.4 T, and found that the fMRI signal peaked predominantly in the inner half of EPL (136 ± 54 μm anatomical thickness). The mean full-width at half-maximum of these fMRI peaks was 347 ± 102 μm and the functional spread was approximately 100 or 200 μm when the effects of the laminar thicknesses of EPL or inner EPL were removed, respectively. Second, we visualized the vascular architecture of EPL from a different rat using a Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue hYdrogel (CLARITY)-based tissue preparation method and confocal microscopy. Microvascular segments with an outer diameter of <11 μm accounted for 64.3% of the total vascular volume within EPL and had a mean segment length of 55 ± 40 μm (n = 472). Additionally, vessels that crossed the EPL border had a mean segment length outside of EPL equal to 73 ± 61 μm (n = 28), which is comparable to half of the functional spread (50-100 μm). Therefore, we conclude that dilation of these microvessels, including capillaries, likely dominate the CBVw fMRI response and that the biological limit of the fMRI spatial resolution is approximately the average length of 1-2 microvessel segments, which may be sufficient for examining sublaminar circuits.
Collapse
Affiliation(s)
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
52
|
Neuhaus AA, Couch Y, Sutherland BA, Buchan AM. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Cereb Blood Flow Metab 2017; 37:2013-2024. [PMID: 27418036 PMCID: PMC5464697 DOI: 10.1177/0271678x16659495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pericytes are contractile vascular mural cells overlying capillary endothelium, and they have been implicated in a variety of functions including regulation of cerebral blood flow. Recent work has suggested that both in vivo and ex vivo, ischaemia causes pericytes to constrict and die, which has implications for microvascular reperfusion. Assessing pericyte contractility in tissue slices and in vivo is technically challenging, while in vitro techniques remain unreliable. Here, we used isolated cultures of human brain vascular pericytes to examine their contractile potential in vitro using the iCelligence electrical impedance system. Contraction was induced using the vasoactive peptide endothelin-1, and relaxation was demonstrated using adenosine and sodium nitroprusside. Endothelin-1 treatment also resulted in increased proliferation, which we were able to monitor in the same cell population from which we recorded contractile responses. Finally, the observation of pericyte contraction in stroke was reproduced using chemical ischaemia, which caused a profound and irreversible contraction clearly preceding cell death. These data demonstrate that isolated pericytes retain a contractile phenotype in vitro, and that it is possible to quantify this contraction using real-time electrical impedance recordings, providing a significant new platform for assessing the effects of vasoactive and vasculoprotective compounds on pericyte contractility.
Collapse
Affiliation(s)
- Ain A Neuhaus
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,4 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Alastair M Buchan
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,2 Medical Sciences Division, University of Oxford, Oxford, UK.,3 Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
53
|
Hawkins VE, Takakura AC, Trinh A, Malheiros-Lima MR, Cleary CM, Wenker IC, Dubreuil T, Rodriguez EM, Nelson MT, Moreira TS, Mulkey DK. Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe. eLife 2017; 6. [PMID: 28387198 PMCID: PMC5422071 DOI: 10.7554/elife.25232] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe. DOI:http://dx.doi.org/10.7554/eLife.25232.001 We breathe to help us take oxygen into the body and remove carbon dioxide. Our cells use the oxygen to break down food to release energy, and as they do so they produce carbon dioxide as a waste product. Cells release this carbon dioxide back into the bloodstream so that it can be transported to the lungs to be breathed out. Carbon dioxide also makes the blood more acidic; if the blood becomes too acidic, tissues and organs may not work properly. The brain uses roughly 25% of the oxygen consumed by the body and is particularly sensitive to the levels of gases and acidity in the blood. It has been known for more than a century that increased carbon dioxide causes blood vessels in the brain to widen, allowing the excess carbon dioxide to be carried away quickly. More recent work has shown that increased carbon dioxide also activates neurons called respiratory chemoreceptors. These in turn activate the brain centers that drive breathing, causing us to breathe more rapidly to help us remove surplus carbon dioxide. But this scenario contains a paradox. If high levels of carbon dioxide cause widening of the blood vessels in the brain regions that contain respiratory chemoreceptors, this should, in theory, wash out that important stimulus, reducing the drive to breathe. So how does the brain prevent this unhelpful response? By studying the brains of adult rats, Hawkins et al. show that different rules apply to the brain centers that control breathing compared to other areas of the brain. In one such region, if the blood becomes too acidic, support cells called astrocytes release chemical signals called purines. This counteracts the tendency of high carbon dioxide levels to widen blood vessels in this region, and instead causes these vessels to become narrower. This mechanism ensures that local levels of carbon dioxide in respiratory brain centers remain in tune with the demands of local networks, thereby maintaining the drive to breathe. The next challenges are to identify the molecular mechanisms that control the diameter of blood vessels in brain regions containing respiratory chemoreceptors, and to find out whether drugs that modulate these mechanisms have the potential to treat some respiratory conditions. DOI:http://dx.doi.org/10.7554/eLife.25232.002
Collapse
Affiliation(s)
- Virginia E Hawkins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ashley Trinh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Ian C Wenker
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Todd Dubreuil
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Elliot M Rodriguez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Mark T Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, United States.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| |
Collapse
|
54
|
Abstract
Microfluidics is invaluable for studying microvasculature, development of organ-on-chip models and engineering microtissues. Microfluidic design can cleverly control geometry, biochemical gradients and mechanical stimuli, such as shear and interstitial flow, to more closely mimic in vivo conditions. In vitro vascular networks are generated by two distinct approaches: via endothelial-lined patterned channels, or by self-assembled networks. Each system has its own benefits and is amenable to the study of angiogenesis, vasculogenesis and cancer metastasis. Various techniques are employed in order to generate rapid perfusion of these networks within a variety of tissue and organ-mimicking models, some of which have shown recent success following implantation in vivo. Combined with tuneable hydrogels, microfluidics holds great promise for drug screening as well as in the development of prevascularized tissues for regenerative medicine.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Singapore MIT Alliance for Research & Technology, Singapore, Singapore
| |
Collapse
|
55
|
Liu R, Spicer G, Chen S, Zhang HF, Yi J, Backman V. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:25002. [PMID: 28157244 PMCID: PMC5290596 DOI: 10.1117/1.jbo.22.2.025002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Oxygen saturation ( sO 2 ) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO 2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO 2 ) is feasible from dispersed RBCs at the single capillary level. The sO 2 -dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO 2 -dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.
Collapse
Affiliation(s)
- Rongrong Liu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Graham Spicer
- Northwestern University, Department of Chemical and Biological Engineering, Evanston, Illinois, United States
| | - Siyu Chen
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Northwestern University, Department of Ophthalmology, Chicago, Illinois, United States
| | - Ji Yi
- Boston University, Department of Medicine, Boston, Massachusetts, United States
- Address all correspondence to: Vadim Backman, E-mail: ; Ji Yi, E-mail:
| | - Vadim Backman
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Address all correspondence to: Vadim Backman, E-mail: ; Ji Yi, E-mail:
| |
Collapse
|
56
|
Eglinger J, Karsjens H, Lammert E. Quantitative assessment of angiogenesis and pericyte coverage in human cell-derived vascular sprouts. Inflamm Regen 2017; 37:2. [PMID: 29259701 PMCID: PMC5725907 DOI: 10.1186/s41232-016-0033-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Pericytes, surrounding the endothelium, fulfill diverse functions that are crucial for vascular homeostasis. The loss of pericytes is associated with pathologies, such as diabetic retinopathy and Alzheimer's disease. Thus, there exists a need for an experimental system that combines pharmacologic manipulation and quantification of pericyte coverage during sprouting angiogenesis. Here, we describe an in vitro angiogenesis assay that develops lumenized vascular sprouts composed of endothelial cells enveloped by pericytes, with the additional ability to comparatively screen the effect of multiple small molecules simultaneously. For automated analysis, we also present an ImageJ plugin tool we developed to quantify sprout morphology and pericyte coverage. Methods Human umbilical vein endothelial cells and human brain vascular pericytes were coated on microcarrier beads and embedded in fibrin gels in a 96-well plate to form lumenized vascular sprouts. After treatment with pharmacologic compounds, sprouts were fixed, stained, and imaged via optical z-sections over the area of each well. The maximum intensity projections of these images were stitched together to form montages of the wells, and those montages were processed and analyzed. Results Vascular sprouts formed within 4-12 days and contained a patent lumen surrounded by a layer of human endothelial cells and pericytes. Using our workflow and image analysis, pericyte coverage after treatment with various compounds was successfully quantified. Conclusions Here we present a robust in vitro assay using primary human vascular cells that allows researchers to analyze the effects of multiple compounds on sprouting angiogenesis and pericyte coverage. Our ImageJ plugin offers automated evaluation across multiple different vascular parameters, such as sprout length, cell density, branch points, and pericyte coverage.
Collapse
Affiliation(s)
- Jan Eglinger
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany.,Current address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany
| |
Collapse
|
57
|
Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. J Neurosci 2016; 37:1340-1351. [PMID: 28039371 DOI: 10.1523/jneurosci.2025-16.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/14/2023] Open
Abstract
Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is therefore much more suitable for effective NVC. Here, we show, in the granular layer of acute rat cerebellar slices, that capillary diameter changes rapidly after mossy fiber stimulation. Vasodilation required neuronal NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pericytes. Vasoconstriction required metabotropic glutamate receptors and CYP ω-hydroxylase, the enzyme regulating 20-hydroxyeicosatetraenoic acid production. Therefore, granular layer capillaries are controlled by the balance between vasodilating and vasoconstricting systems that could finely tune local blood flow depending on neuronal activity changes at the cerebellar input stage. SIGNIFICANCE STATEMENT The neuronal circuitry and the biochemical pathways that control local blood flow supply in the cerebellum are unclear. This is surprising given the emerging role played by this brain structure, not only in motor behavior, but also in cognitive functions. Although previous studies focused on the molecular layer, here, we shift attention onto the mossy fiber granule cell (GrC) relay. We demonstrate that GrC activity causes a robust vasodilation in nearby capillaries via the NMDA receptors-neuronal nitric oxide synthase signaling pathway. At the same time, metabotropic glutamate receptors mediate 20-hydroxyeicosatetraenoic acid-dependent vasoconstriction. These results reveal a complex signaling network that hints for the first time at the granular layer as a major determinant of cerebellar blood-oxygen-level-dependent signals.
Collapse
|
58
|
Choi WJ, Li Y, Qin W, Wang RK. Cerebral capillary velocimetry based on temporal OCT speckle contrast. BIOMEDICAL OPTICS EXPRESS 2016; 7:4859-4873. [PMID: 28018711 PMCID: PMC5175537 DOI: 10.1364/boe.7.004859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 05/15/2023]
Abstract
We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.
Collapse
|
59
|
Gutiérrez-Jiménez E, Cai C, Mikkelsen IK, Rasmussen PM, Angleys H, Merrild M, Mouridsen K, Jespersen SN, Lee J, Iversen NK, Sakadzic S, Østergaard L. Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH). J Cereb Blood Flow Metab 2016; 36:2072-2086. [PMID: 26858243 PMCID: PMC5363666 DOI: 10.1177/0271678x16631560] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
Abstract
Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks. Electrical forepaw stimulation reduced, both mean transit time (11.3% ± 1.3%) and capillary transit-time heterogeneity (24.1% ± 3.3%), consistent with earlier literature and model predictions. We observed a coefficient of variance reduction (14.3% ± 3.5%) during functional activation, especially for the arteriolar-to-venular passage. Such coefficient of variance reduction during functional activation suggests homogenization of capillary flows beyond that expected as a passive response to increased blood flow by other stimuli. This finding is consistent with an active neurocapillary coupling mechanism, for example via pericyte dilation. Mean transit time and capillary transit-time heterogeneity reductions were consistent with the relative change inferred from capillary hemodynamics (cell velocity and flux). Our findings support the important role of capillary transit-time heterogeneity in flow-metabolism coupling during functional activation.
Collapse
Affiliation(s)
| | - Changsi Cai
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Hugo Angleys
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Merrild
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim Mouridsen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jonghwan Lee
- Department of Radiology, Harvard Medical School, Boston, USA
| | | | - Sava Sakadzic
- Department of Radiology, Harvard Medical School, Boston, USA
| | - Leif Østergaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
60
|
Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 2016; 19:1619-1627. [PMID: 27775719 PMCID: PMC5131849 DOI: 10.1038/nn.4428] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
Active neurons increase their energy supply by dilating nearby arterioles and capillaries. This neurovascular coupling underlies blood oxygen level-dependent functional imaging signals, but its mechanism is controversial. Canonically, neurons release glutamate to activate metabotropic glutamate receptor 5 (mGluR5) on astrocytes, evoking Ca2+ release from internal stores, activating phospholipase A2 and generating vasodilatory arachidonic acid derivatives. However, adult astrocytes lack mGluR5, and knockout of the inositol 1,4,5-trisphosphate receptors that release Ca2+ from stores does not affect neurovascular coupling. We now show that buffering astrocyte Ca2+ inhibits neuronally evoked capillary dilation, that astrocyte [Ca2+]i is raised not by release from stores but by entry through ATP-gated channels, and that Ca2+ generates arachidonic acid via phospholipase D2 and diacylglycerol lipase rather than phospholipase A2. In contrast, dilation of arterioles depends on NMDA receptor activation and Ca2+-dependent NO generation by interneurons. These results reveal that different signaling cascades regulate cerebral blood flow at the capillary and arteriole levels.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | | | - Yang Chen
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - Alexander V Gourine
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | | | - David Attwell
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| |
Collapse
|
61
|
Stribos EG, Hillebrands JL, Olinga P, Mutsaers HA. Renal fibrosis in precision-cut kidney slices. Eur J Pharmacol 2016; 790:57-61. [DOI: 10.1016/j.ejphar.2016.06.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
|
62
|
Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply. PLoS One 2016; 11:e0162621. [PMID: 27617960 PMCID: PMC5019460 DOI: 10.1371/journal.pone.0162621] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 12/02/2022] Open
Abstract
Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a comparable contribution, and b) the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells. To assess these hypotheses in human neural tissue in vivo, we imaged the retinal microvasculature (diameters 3–28 μm) non-invasively, using adaptive optics, before and after delivery of focal (360 μm) patches of flickering visible light. Our results demonstrated a definite average response in 35% of all vessel segments analysed. In these responding vessels, the magnitude of proportional dilation (mean ± SEM for pre-capillary arterioles 13 ± 5%, capillaries 31 ± 8%, and post-capillary venules 10 ± 3%) is generally far greater than the magnitudes we and others have measured in the larger retinal vessels, supporting proposition a) above. The dilations observed in venules were unexpected based on previous animal work, and may be attributed either to differences in stimulus or species. Response heterogeneity across the network was high; responses were also heterogeneous along individual vessels (45% of vessel segments showed demonstrable locality in their response). These observations support proposition b) above. We also observed a definite average constriction across 7% of vessel segments (mean ± SEM constriction for capillaries -16 ± 3.2%, and post-capillary venules -18 ± 12%), which paints a picture of dynamic redistribution of flow throughout the smallest vessel networks in the retina in response to local, stimulus-driven metabolic demand.
Collapse
|
63
|
Abstract
Pathological angiogenesis, as seen in many inflammatory, immune, malignant, and ischemic disorders, remains an immense health burden despite new molecular therapies. It is likely that further therapeutic progress requires a better understanding of neovascular pathophysiology. Surprisingly, even though transmembrane voltage is well known to regulate vascular function, no previous bioelectric analysis of pathological angiogenesis has been reported. Using the perforated-patch technique to measure vascular voltages in human retinal neovascular specimens and rodent models of retinal neovascularization, we discovered that pathological neovessels generate extraordinarily high voltage. Electrophysiological experiments demonstrated that voltage from aberrantly located preretinal neovascular complexes is transmitted into the intraretinal vascular network. With extensive neovascularization, this voltage input is substantial and boosts the membrane potential of intraretinal blood vessels to a suprahyperpolarized level. Coincident with this suprahyperpolarization, the vasomotor response to hypoxia is fundamentally altered. Instead of the compensatory dilation observed in the normal retina, arterioles constrict in response to an oxygen deficiency. This anomalous vasoconstriction, which would potentiate hypoxia, raises the possibility that the bioelectric impact of neovascularization on vascular function is a previously unappreciated pathophysiological mechanism to sustain hypoxia-driven angiogenesis.
Collapse
|
64
|
Maysinger D, Zhang I. Nutritional and Nanotechnological Modulators of Microglia. Front Immunol 2016; 7:270. [PMID: 27471505 PMCID: PMC4945637 DOI: 10.3389/fimmu.2016.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Microglia are the essential responders to alimentary, pharmacological, and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota, and nanotechnological products have been investigated in microglia at the single-cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| |
Collapse
|
65
|
Shuvaev AN, Salmin VV, Kuvacheva NV, Pozhilenkova EA, Morgun AV, Lopatina OL, Salmina AB, Illarioshkin SN. Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit. Rev Neurosci 2016; 27:365-76. [PMID: 26641963 DOI: 10.1515/revneuro-2015-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023]
Abstract
Patch clamp is a golden standard for studying (patho)physiological processes affecting membranes of excitable cells. This method is rather labor-intensive and requires well-trained professionals and long-lasting experimental procedures; therefore, accurate designing of the experiments with patch clamp methodology as well as collecting and analyzing the data obtained are essential for the widely spread implementation of this method into the routine research practice. Recently, the method became very prospective not only for the characterization of single excitable cells but also for the detailed assessment of intercellular communication, i.e. within the neurovascular unit. Here, we analyze the main advantages and disadvantages of patch clamp method, with special focus on the tendencies in clamping technique improvement with the help of patch electrodes for the assessment of intercellular communication in the brain.
Collapse
|
66
|
Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 2015; 527:499-502. [DOI: 10.1038/nature16066] [Citation(s) in RCA: 617] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022]
|
67
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015; 35:11791-810. [PMID: 26311764 DOI: 10.1523/jneurosci.0651-15.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
68
|
Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. NEUROPHOTONICS 2015; 2:041402. [PMID: 26158016 PMCID: PMC4478963 DOI: 10.1117/1.nph.2.4.041402] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/27/2015] [Indexed: 05/05/2023]
Abstract
Pericytes are essential for normal brain function, but many aspects of their physiology remain enigmatic due to a lack of tools to genetically target this cell population. Here, we characterize brain pericytes using two existing Cre-recombinase driver mouse lines that can serve distinct purposes in cerebrovascular research. One line expresses an inducible version of Cre under the NG2 proteoglycan promoter, which provides the sparse labeling necessary to define the morphology of single cells. These mice reveal structural differences between pericytes adjacent to arterioles versus those broadly distributed in the capillary bed that may underlie differential roles in control of vessel caliber. A second line expresses Cre constitutively under the platelet-derived growth factor receptor β promoter and provides continuous, highly specific and near-complete labeling of pericytes and myocytes along the entire cerebrovasculature. This line provides a three-dimensional view of pericyte distribution along the cortical angioarchitecture following optical clearing of brain tissue. In combination with recent reporter lines for expression of optogenetic actuators and activity-sensitive probes, these mice may be key tools for studying pericyte biology in the intact brain.
Collapse
Affiliation(s)
- David A. Hartmann
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Robert G. Underly
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Roger I. Grant
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Ashley N. Watson
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Volkhard Lindner
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough, Maine 04074, United States
| | - Andy Y. Shih
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
- Medical University of South Carolina, Center for Biomedical Imaging, 68 President Street, Charleston, South Carolina 29425, United States
- Address all correspondence to: Andy Y. Shih, E-mail:
| |
Collapse
|
69
|
Shokry IM, Callanan JJ, Sousa J, Tao R. Rapid In Situ Hybridization using Oligonucleotide Probes on Paraformaldehyde-prefixed Brain of Rats with Serotonin Syndrome. J Vis Exp 2015. [PMID: 26437182 DOI: 10.3791/53165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) toxicity may cause region-specific changes in serotonergic mRNA expression due to acute serotonin (5-hydroxytryptamine; 5-HT) syndrome. This hypothesis can be tested using in situ hybridization to detect the serotonin 5-HT2A receptor gene htr2a. In the past, such procedures, utilizing radioactive riboprobe, were difficult because of the complicated workflow that needs several days to perform and the added difficulty that the technique required the use of fresh frozen tissues maintained in an RNase-free environment. Recently, the development of short oligonucleotide probes has simplified in situ hybridization procedures and allowed the use of paraformaldehyde-prefixed brain sections, which are more widely available in laboratories. Here, we describe a detailed protocol using non-radioactive oligonucleotide probes on the prefixed brain tissues. Hybridization probes used for this study include dapB (a bacterial gene coding for dihydrodipicolinate reductase), ppiB (a housekeeping gene coding for peptidylprolyl isomerase B), and htr2a (a serotonin gene coding for 5-HT2A receptors). This method is relatively simply, cheap, reproducible and requires less than two days to complete.
Collapse
Affiliation(s)
| | | | - John Sousa
- Charles E. Schmidt College of Medicine, Florida Atlantic University
| | - Rui Tao
- Charles E. Schmidt College of Medicine, Florida Atlantic University;
| |
Collapse
|
70
|
Hutter-Schmid B, Kniewallner KM, Humpel C. Organotypic brain slice cultures as a model to study angiogenesis of brain vessels. Front Cell Dev Biol 2015; 3:52. [PMID: 26389117 PMCID: PMC4557061 DOI: 10.3389/fcell.2015.00052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022] Open
Abstract
Brain vessels are the most important structures in the brain to deliver energy and substrates to neurons. Brain vessels are composed of a complex interaction between endothelial cells, pericytes, and astrocytes, controlling the entry of substrates into the brain. Damage of brain vessels and vascular impairment are general pathologies observed in different neurodegenerative disorders including e.g., Alzheimer's disease. In order to study remodeling of brain vessels, simple 3-dimensional in vitro systems need to be developed. Organotypic brain slices of mice provide a potent tool to explore angiogenic effects of brain vessels in a complex 3-dimensional structure. Here we show that organotypic brain slices can be cultured from 110 μm thick sections of postnatal and adult mice brains. The vessels are immunohistochemically stained for laminin and collagen IV. Co-stainings are an appropriate method to visualize interaction of brain endothelial cells with pericytes and astrocytes in these vessels. Different exogenous stimuli such as fibroblast growth factor-2 or vascular endothelial growth factor induce angiogenesis or re-growth, respectively. Hyperthermia or acidosis reduces the vessel density in organotypic slices. In conclusion, organotypic brain slices exhibit a strong vascular network which can be used to study remodeling and angiogenesis of brain vessels in a 3-dimensional in vitro system.
Collapse
Affiliation(s)
- Bianca Hutter-Schmid
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| | - Kathrin M Kniewallner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
71
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015. [PMID: 26311764 DOI: 10.1523/jneurosci.0651‐15.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
72
|
Nikolajsen GN, Kotynski KA, Jensen MS, West MJ. Quantitative analysis of the capillary network of aged APPswe/PS1dE9 transgenic mice. Neurobiol Aging 2015; 36:2954-2962. [PMID: 26364735 DOI: 10.1016/j.neurobiolaging.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
Abstract
A combination of immunohistochemical and stereological techniques were used to investigate the capillary network in the cerebral cortex of 18-month-old APPswe/PS1dE9 transgenic (Tg) mice and control littermates. Data regarding total capillary length, segment number, diffusion radius, and pericyte number are presented. The total length was 60 meters and there was a one-to-one relationship between the number of capillary segments and pericytes in both groups. Significant differences were not observed in the Tg and wild-type controls indicating that the Alzheimer's-like amyloidosis produced in this Tg mouse has a minimal affect on the structural integrity of the cerebral capillary network.
Collapse
Affiliation(s)
| | | | | | - Mark J West
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
73
|
Humpel C. Organotypic brain slice cultures: A review. Neuroscience 2015; 305:86-98. [PMID: 26254240 PMCID: PMC4699268 DOI: 10.1016/j.neuroscience.2015.07.086] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures are an important tool for obtaining insights into cellular processes in an isolated system and a supplement to in vivo animal experiments. While primary dissociated cultures permit a single homogeneous cell population to be studied, there is a clear need to explore the function of brain cells in a three-dimensional system where the main architecture of the cells is preserved. Thus, organotypic brain slice cultures have proven to be very useful in investigating cellular and molecular processes of the brain in vitro. This review summarizes (1) the historical development of organotypic brain slices focusing on the membrane technology, (2) methodological aspects regarding culturing procedures, age of donors or media, (3) whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease, (4) or the nigrostriatal dopaminergic neurons as a model of Parkinson’s disease and (5) how the vascular network can be studied, especially with regard to a synthetic blood–brain barrier. This review will also highlight some limits of the model and give an outlook on future applications.
Collapse
Affiliation(s)
- C Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
74
|
Zawadzki RJ, Zhang P, Zam A, Miller EB, Goswami M, Wang X, Jonnal RS, Lee SH, Kim DY, Flannery JG, Werner JS, Burns ME, Pugh EN. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. BIOMEDICAL OPTICS EXPRESS 2015; 6:2191-210. [PMID: 26114038 PMCID: PMC4473753 DOI: 10.1364/boe.6.002191] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.
Collapse
Affiliation(s)
- Robert J Zawadzki
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA ;
| | - Pengfei Zhang
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Azhar Zam
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA
| | - Mayank Goswami
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Xinlei Wang
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Ravi S Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Sang-Hyuck Lee
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Dae Yu Kim
- Beckman Laser Institute Korea & Biomed. Engineering, Dankook University, Cheonan, Chungnam 330-715, South Korea
| | - John G Flannery
- Dept. of Molecular and Cellular Biology, University of California, Berkeley 94720, USA
| | - John S Werner
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology & Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis Sacramento, CA 95817, USA ; Depts. of Ophthalmology & Vision Science and of Cell Biology & Human Anatomy 4303 Tupper Hall, Davis California 95616, USA
| | - Edward N Pugh
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, California 95616, USA ; Depts. of Cell Biology & Human Anatomy, and of Physiology & Membrane Biology 4303 Tupper Hall, Davis California 95616, USA ;
| |
Collapse
|
75
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 2014; 307:C25-38. [PMID: 24788248 DOI: 10.1152/ajpcell.00084.2014] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue growth and function depend on vascularization, and vascular insufficiency or excess exacerbates many human diseases. Identification of the biological processes involved in angiogenesis will dictate strategies to modulate reduced or excessive vessel formation. We examine the essential role of pericytes. Their heterogeneous morphology, distribution, origins, and physiology have been described. Using double-transgenic Nestin-GFP/NG2-DsRed mice, we identified two pericyte subsets. We found that Nestin-GFP(-)/NG2-DsRed(+) (type-1) and Nestin-GFP(+)/NG2-DsRed(+) (type-2) pericytes attach to the walls of small and large blood vessels in vivo; in vitro, type-2, but not type-1, pericytes spark endothelial cells to form new vessels. Matrigel assay showed that only type-2 pericytes participate in normal angiogenesis. Moreover, when cancer cells were transplanted into Nestin-GFP/NG2-DsRed mice, type-1 pericytes did not penetrate the tumor, while type-2 pericytes were recruited during its angiogenesis. As inhibition of angiogenesis is a promising strategy in cancer therapy, type-2 pericytes may provide a cellular target susceptible to signaling and pharmacological manipulation in treating malignancy. This work also reports the potential of type-2 pericytes to improve blood perfusion in ischemic hindlimbs, indicating their potential for treating ischemic illnesses.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|