51
|
Divisato G, Chiariello AM, Esposito A, Zoppoli P, Zambelli F, Elia MA, Pesole G, Incarnato D, Passaro F, Piscitelli S, Oliviero S, Nicodemi M, Parisi S, Russo T. Hmga2 protein loss alters nuclear envelope and 3D chromatin structure. BMC Biol 2022; 20:171. [PMID: 35918713 PMCID: PMC9344646 DOI: 10.1186/s12915-022-01375-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function. RESULTS We demonstrated that Hmga2 KO pluripotent stem cells fail to develop into EpiLCs. By using this experimental system, we studied the chromatin changes that take place upon the induction of EpiLCs and we observed that the loss of Hmga2 affects the histone mark H3K27me3, whose levels are higher in Hmga2 KO cells. Accordingly, a sustained expression of polycomb repressive complex 2 (PRC2), responsible for H3K27me3 deposition, was observed in KO cells. However, gene expression differences between differentiating wt vs Hmga2 KO cells did not show any significant enrichments of PRC2 targets. Similarly, endogenous Hmga2 association to chromatin in epiblast stem cells did not show any clear relationships with gene expression modification observed in Hmga2 KO. Hmga2 ChIP-seq confirmed that this protein preferentially binds to the chromatin regions associated with nuclear lamina. Starting from this observation, we demonstrated that nuclear lamina underwent severe alterations when Hmga2 KO or KD cells were induced to exit from the naïve state and this phenomenon is accompanied by a mislocalization of the heterochromatin mark H3K9me3 within the nucleus. As nuclear lamina (NL) is involved in the organization of 3D chromatin structure, we explored the possible effects of Hmga2 loss on this phenomenon. The analysis of Hi-C data in wt and Hmga2 KO cells allowed us to observe that inter-TAD (topologically associated domains) interactions in Hmga2 KO cells are different from those observed in wt cells. These differences clearly show a peculiar compartmentalization of inter-TAD interactions in chromatin regions associated or not to nuclear lamina. CONCLUSIONS Overall, our results indicate that Hmga2 interacts with heterochromatic lamin-associated domains, and highlight a role for Hmga2 in the crosstalk between chromatin and nuclear lamina, affecting the establishment of inter-TAD interactions.
Collapse
Affiliation(s)
- Giuseppina Divisato
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy
| | - Pietro Zoppoli
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università di Milano Statale, Milan, Italy
| | - Maria Antonietta Elia
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Graziano Pesole
- Dipartimento Di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari A. Moro and IBIOM CNR, Bari, Italy
| | - Danny Incarnato
- University of Groningen, GBB Institute, Groningen, The Netherlands
| | - Fabiana Passaro
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Silvia Piscitelli
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino and IIGM Candiolo, Turin, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy.,Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,CNR-SPIN, Naples, Italy
| | - Silvia Parisi
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy.
| | - Tommaso Russo
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
52
|
Jeanne Dit Fouque K, Sipe SN, Garabedian A, Mejia G, Su L, Hossen ML, Chapagain PP, Leng F, Brodbelt JS, Fernandez-Lima F. Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1103-1112. [PMID: 35687119 PMCID: PMC9280850 DOI: 10.1021/jasms.2c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is an intrinsically disordered DNA-binding protein expressed during embryogenesis. In the present work, the conformational and binding dynamics of HMGA2 and HMGA2 in complex with a 22-nt (DNA22) and a 50-nt (DNA50) AT-rich DNA hairpin were investigated using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) under native starting solvent conditions (e.g., 100 mM aqueous NH4Ac) and collision-induced unfolding/dissociation (CIU/CID) as well as solution fluorescence anisotropy to assess the role of the DNA ligand when binding to the HMGA2 protein. CIU-TIMS-CID-MS/MS experiments showed a significant reduction of the conformational space and charge-state distribution accompanied by an energy stability increase of the native HMGA2 upon DNA binding. Fluorescence anisotropy experiments and CIU-TIMS-CID-MS/MS demonstrated for the first time that HMGA2 binds with high affinity to the minor groove of AT-rich DNA oligomers and with lower affinity to the major groove of AT-rich DNA oligomers (minor groove occupied by a minor groove binder Hoechst 33258). The HMGA2·DNA22 complex (18.2 kDa) 1:1 and 1:2 stoichiometry suggests that two of the AT-hook sites are accessible for DNA binding, while the other AT-hook site is probably coordinated by the C-terminal motif peptide (CTMP). The HMGA2 transition from disordered to ordered upon DNA binding is driven by the interaction of the three basic AT-hook residues with the minor and/or major grooves of AT-rich DNA oligomers.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - German Mejia
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Md Lokman Hossen
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
53
|
De Ravin SS, Liu S, Sweeney CL, Brault J, Whiting-Theobald N, Ma M, Liu T, Choi U, Lee J, O'Brien SA, Quackenbush P, Estwick T, Karra A, Docking E, Kwatemaa N, Guo S, Su L, Sun Z, Zhou S, Puck J, Cowan MJ, Notarangelo LD, Kang E, Malech HL, Wu X. Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency. Nat Commun 2022; 13:3710. [PMID: 35764638 PMCID: PMC9240040 DOI: 10.1038/s41467-022-31344-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
X-linked Severe Combined Immunodeficiency (SCID-X1) due to IL2RG mutations is potentially fatal in infancy where 'emergency' life-saving stem cell transplant may only achieve incomplete immune reconstitution following transplant. Salvage therapy SCID-X1 patients over 2 years old (NCT01306019) is a non-randomized, open-label, phase I/II clinical trial for administration of lentiviral-transduced autologous hematopoietic stem cells following busulfan (6 mg/kg total) conditioning. The primary and secondary objectives assess efficacy in restoring immunity and safety by vector insertion site analysis (VISA). In this ongoing study (19 patients treated), we report VISA in blood lineages from first eight treated patients with longer follow up found a > 60-fold increase in frequency of forward-orientated VIS within intron 3 of the High Mobility Group AT-hook 2 gene. All eight patients demonstrated emergence of dominant HMGA2 VIS clones in progenitor and myeloid lineages, but without disturbance of hematopoiesis. Our molecular analysis demonstrated a cryptic splice site within the chicken β-globin hypersensitivity 4 insulator element in the vector generating truncated mRNA transcripts from many transcriptionally active gene containing forward-oriented intronic vector insert. A two base-pair change at the splice site within the lentiviral vector eliminated splicing activity while retaining vector functional capability. This highlights the importance of functional analysis of lentivectors for cryptic splicing for preclinical safety assessment and a redesign of clinical vectors to improve safety.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Julie Brault
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Narda Whiting-Theobald
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Michelle Ma
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Janet Lee
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Sandra Anaya O'Brien
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Priscilla Quackenbush
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Tyra Estwick
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Anita Karra
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ethan Docking
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Nana Kwatemaa
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer Puck
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Morton J Cowan
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Kang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Xiaolin Wu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
54
|
Li Z, Wu X, Li J, Yu S, Ke X, Yan T, Zhu Y, Cheng J, Yang J. HMGA2-Snai2 axis regulates tumorigenicity and stemness of head and neck squamous cell carcinoma. Exp Cell Res 2022; 418:113271. [PMID: 35764101 DOI: 10.1016/j.yexcr.2022.113271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Cancer stem cells (CSCs) are a tumorigenic cell subpopulation, which contributes to treatment resistance, tumor recurrence, and metastasis. This study aimed to investigate the role and underlying molecular targets of high mobility group AT-hook 2 (HMGA2) in the progression and CSCs regulation of head and neck squamous cell carcinoma (HNSCC). HMGA2 mRNA and protein expression levels were examined in HNSCC specimens and cells by qRT-PCR, Western blot, and immunohistochemistry. The roles of HMGA2 were validated via loss-of-function and exogenous overexpression experiments in vitro and in vivo, and CSCs properties were assessed by tumorsphere formation assay. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays provided further insight into the molecular mechanisms by which HMGA2 regulates stemness. HMGA2 was abnormally overexpressed in HNSCC, and it promoted the expression of the CSCs markers including SOX2, CD133, CD44, ALDH1A1, and Bmi1. HMGA2 was correlated with stemness, malignant progression, and reduced survival in HNSCC. Luciferase reporter assay indicated that Snai2 was a direct downstream target gene of HMGA2. Mechanistically, ChIP-qPCR assay showed that HMGA2 was recruited to three binding sites on the Snai2 promoter, directly facilitating the transcription of Snai2 in HNSCC. Snai2 overexpression reversed the inhibitory effect of HMGA2 interference on the proliferation, invasion, and metastasis of HNSCC and CSC marker expression in vitro and in vivo. HMGA2 promoted the malignant progression of HNSCC and acquired CSCs properties through direct regulation of Snai2, thereby suggesting that targeting the HMGA2-Snai2 axis might be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Zhongwu Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Shijin Yu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xueping Ke
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Tingyuan Yan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yumin Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
55
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
56
|
Portovedo S, Neto LV, Soares P, Carvalho DPD, Takiya CM, Miranda-Alves L. Aggressive nonfunctioning pituitary neuroendocrine tumors. Brain Tumor Pathol 2022; 39:183-199. [PMID: 35725837 DOI: 10.1007/s10014-022-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil.,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Vieira Neto
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil. .,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
57
|
De Martino M, Pellecchia S, Esposito F, Tosti N, Quintavalle C, Eppenberger-Castori S, Carafa V, Righi A, Chieffi P, Fusco A, Terracciano LM, Pallante P. The role of HMGA1 protein in gastroenteropancreatic neuroendocrine tumors. Cell Cycle 2022; 21:1335-1346. [PMID: 35282770 PMCID: PMC9132388 DOI: 10.1080/15384101.2022.2050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neuroendocrine tumors (NETs) are neoplasms derived from neuroendocrine cells. One of their main features is to often remain asymptomatic and clinically undetectable. High Mobility Group A (HMGA) proteins belong to a family of non-histone chromatinic proteins able to modulate gene expression through the interaction with DNA and transcription factors. They are overexpressed in most of the human malignancies, playing a critical role in carcinogenesis. However, their expression levels and their role in neuroendocrine carcinogenesis has not been exhaustively evaluated until now. Therefore, in this study, we have addressed the validity of using the expression of HMGA1 as a diagnostic marker and have investigated its role in NET carcinogenesis. The expression of HMGA1 has been evaluated by qRT-PCR and immunohistochemistry, using NET tissue microarrays, in a cohort of gastroenteropancreatic (GEP)-NET samples. The expression levels of HMGA1 have been then correlated with the main clinical features of NET samples. Finally, the contribution of HMGA1 overexpression to NET development has been addressed as far as the modulation of proliferation and migration abilities of NET cells is concerned. Here, we report that HMGA1 is overexpressed in GEP-NET samples, at both mRNA and protein levels, and that the silencing of HMGA1 protein expression interferes with the ability of NET cells to proliferate and migrate through the downregulation of Cyclin E, Cyclin B1 and EZH2. These results propose the HMGA proteins as new diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Simona Pellecchia
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Nadia Tosti
- Institute of Pathology, Molecular Pathology Division, University of Basel, Basel, Switzerland
| | - Cristina Quintavalle
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Institute of Pathology, Molecular Pathology Division, University of Basel, Basel, Switzerland
| | | | - Vincenza Carafa
- Institute of Pathology, Molecular Pathology Division, University of Basel, Basel, Switzerland
| | - Alberto Righi
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Alfredo Fusco
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
58
|
Sgubin M, Pegoraro S, Pellarin I, Ros G, Sgarra R, Piazza S, Baldassarre G, Belletti B, Manfioletti G. HMGA1 positively regulates the microtubule-destabilizing protein stathmin promoting motility in TNBC cells and decreasing tumour sensitivity to paclitaxel. Cell Death Dis 2022; 13:429. [PMID: 35504904 PMCID: PMC9065117 DOI: 10.1038/s41419-022-04843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients. We demonstrate that HMGA1 depletion leads to a downregulation of stathmin expression and activity on microtubules resulting in decreased TNBC cell motility. We show that this pathway is mediated by the cyclin-dependent kinase inhibitor p27kip1 (p27). Indeed, the silencing of HMGA1 expression in TNBC cells results both in an increased p27 protein stability and p27-stathmin binding. When the expression of both HMGA1 and p27 is silenced, we observe a significant rescue in cell motility. These data, obtained in cellular models, were validated in BC patients. In fact, we find that patients with high levels of both HMGA1 and stathmin and low levels of p27 have a statistically significant lower survival probability in terms of relapse-free survival (RFS) and distant metastasis-free survival (DMFS) with respect to the patient group with low HMGA1, low stathmin, and high p27 expression levels. Finally, we show in an in vivo xenograft model that depletion of HMGA1 chemo-sensitizes tumour cells to paclitaxel, a drug that is commonly used in TNBC treatments. This study unveils a new interaction among HMGA1, p27, and stathmin that is critical in BC cell migration. Moreover, our data suggest that taxol-based treatments may be more effective in reducing the tumour burden when tumour cells express low levels of HMGA1.
Collapse
Affiliation(s)
- Michela Sgubin
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Pegoraro
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Pellarin
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gloria Ros
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: International School for Advanced Studies (SISSA), Area of Neuroscience Trieste, Trieste, Italy
| | - Riccardo Sgarra
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Guidalberto Manfioletti
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
59
|
Furuke H, Konishi H, Arita T, Kataoka S, Shibamoto J, Takabatake K, Takaki W, Shimizu H, Yamamoto Y, Morimura R, Komatsu S, Shiozaki A, Ikoma H, Otsuji E. miR‑4730 suppresses the progression of liver cancer by targeting the high mobility group A1 pathway. Int J Mol Med 2022; 49:83. [PMID: 35485281 PMCID: PMC9106373 DOI: 10.3892/ijmm.2022.5139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
As liver cancer (LC) is the sixth most commonly diagnosed malignancy, it is necessary to elucidate the molecular mechanisms responsible for LC progression. MicroRNAs (miRNAs/miRs) play crucial roles in tumor progression by regulating target gene expression. The present study assessed miRNA-4730 expression and function in LC. The effects of miR-4730 overexpression were examined in LC cell lines, and the target genes of miR-4730 were evaluated using microarray analysis and TargetScan data. In addition, the association between miR-4730 expression in tissue samples and the prognosis of 70 patients with LC was evaluated. miR-4730 expression was suppressed in LC tissues and cell lines. miR-4730 overexpression suppressed cell proliferation and cell cycle progression and promoted apoptosis. High mobility group A1 (HMGA1) was revealed as the direct target of miR-4730 using luciferase reporter assay, and the inhibition of downstream integrin-linked kinase (ILK) expression and Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation was confirmed. The lower expression of miR-4730 in tissue samples was significantly associated with a worse recurrence-free survival of patients with LC. On the whole, miR-4730 suppressed tumor progression by directly targeting HMGA1 and inhibiting the ILK/Akt/GSK3β pathway. miR-4730 thus has potential for use as a prognostic marker and may prove to be a therapeutic target for miRNA-based therapies.
Collapse
Affiliation(s)
- Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
60
|
Cui J, Dean D, Hornicek FJ, Yi G, Duan Z. Expression and Clinical Significance of High-Mobility Group AT-hook 2 (HMGA2) in Osteosarcoma. Orthop Surg 2022; 14:955-966. [PMID: 35388973 PMCID: PMC9087380 DOI: 10.1111/os.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Although high‐mobility group AT‐hook 2 (HMGA2) has been shown to have crucial roles in the pathogenesis and metastasis of various malignancies, its expression and significance in osteosarcoma remain unknown. Here we evaluate the expression, clinical prognostic value, and overall function of HMGA2 in osteosarcoma. Methods Sixty‐nine osteosarcoma patient specimens within a tissue microarray (TMA) were analyzed by immunohistochemistry for HMGA2 expression. Demographics and clinicopathological information including age, gender, tumor location, metastasis, recurrence, chemotherapy response, follow‐up time, and disease status were also collected. After validation of expression, we determined whether there was a correlation between HMGA2 expression and patient clinicopathology. HMGA2 expression was also evaluated in osteosarcoma cell lines and patient tissues by Western blot, we analyzed the expression of HMGA2 in the human osteosarcoma cell lines MG63, 143B, U2OS, Saos‐2, MNNG/HOS, and KHOS. HMGA2‐specific siRNA and clonogenic assays were then used to determine the effect of HMGA2 inhibition on osteosarcoma cell proliferation, growth, and chemosensitivity. Results HMGA2 expression was elevated in the osteosarcoma patient specimens and human osteosarcoma cell lines. HMGA2 was differentially expressed in human osteosarcoma cell lines. Specifically, a relatively high expression of HMGA2 was present in KHOS, MNNG/HOS, 143B and a relatively low expression was in MG63, U2OS as well as Saos‐2. HMGA2 expression is correlated with metastasis and shorter overall survival. High HMGA2 expression is an independent predictor of poor osteosarcoma prognosis. There was no significant correlation between HMGA2 expression and the age, gender, or tumor site of the patient. HMGA2 expression is predominantly within the nucleus. The expression of HMGA2 also directly correlated to neoadjuvant chemoresistance. There was a significant reduction of HMGA2 expression in the siRNA transfection group. After the use of siRNA, the proliferation of osteosarcoma cells is decreased and the chemosensitivity of osteosarcoma cells is significantly increased. Conclusion Our study supports HMGA2 as a potential prognostic biomarker and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
61
|
De Feo A, Pazzaglia L, Ciuffarin L, Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C, Bianchi G, Spazzoli B, Scotlandi K. miR-214-3p Is Commonly Downregulated by EWS-FLI1 and by CD99 and Its Restoration Limits Ewing Sarcoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14071762. [PMID: 35406534 PMCID: PMC8997046 DOI: 10.3390/cancers14071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Ewing’s sarcoma (EWS), the second most frequent primary tumor of bone in the pediatric population, is a very aggressive, undifferentiated mesenchymal malignancy with a high tendency to develop lung and/or bone metastasis. The prognosis of patients with metastasis remains dismal, and new strategies are needed to control the dissemination of EWS cells. EWS is driven by alterations induced by the EWS-FLI1 chimera which acts as an aberrant transcriptional factor that induces the complete reprograming of the gene expression. EWS cells are also characterized by high expression of CD99, a cell surface molecule that interacts with EWS-FLI1 to sustain EWS malignancy. This study shows that miR-214-3p is a common mediator of EWS-FLI1 and CD99, and we report that miR-214-3p acts as on oncosuppressor in EWS. MiR-214-3p is constitutively repressed in cell lines and clinical samples but is re-expressed after the silencing of EWS-FLI1 and/or CD99. The restoration of miR-214-3p limits EWS cell growth and migration and represses the expression of its target HMGA1, supporting the potential role of this miRNA as a marker of tumor aggressiveness. Abstract Ewing’s sarcoma (EWS), an aggressive pediatric bone and soft-tissue sarcoma, has a very stable genome with very few genetic alterations. Unlike in most cancers, the progression of EWS appears to depend on epigenetic alterations. EWS–FLI1 and CD99, the two hallmarks of EWS, are reported to severely impact the malignancy of EWS cells, at least partly by regulating the expression of several types of non-coding RNAs. Here, we identify miR-214-3p as a common mediator of either EWS-FLI1 or CD99 by in silico analysis. MiR-214-3p expression was lower in EWS cells and in clinical samples than in bone marrow mesenchymal stem cells, and this miRNA was barely expressed in metastatic lesions. Silencing of EWS-FLI1 or CD99 restored the expression of miR-214-3p, leading to a reduced cell growth and migration. Mechanistically, miR-214-3p restoration inhibits the expression of the high-mobility group AT-hook 1 (HMGA1) protein, a validated target of miR-214-3p and a major regulator of the transcriptional machinery. The decrease in HMGA1 expression reduced the growth and the migration of EWS cells. Taken together, our results support that the miR-214-3p is constitutively repressed by both EWS-FLI1 and CD99 because it acts as an oncosuppressor limiting the dissemination of EWS cells.
Collapse
Affiliation(s)
- Alessandra De Feo
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| | - Laura Pazzaglia
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Lisa Ciuffarin
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Fabio Mangiagli
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Michela Pasello
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Elisa Simonetti
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Evelin Pellegrini
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Cristina Ferrari
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Giuseppe Bianchi
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Benedetta Spazzoli
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Katia Scotlandi
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| |
Collapse
|
62
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
63
|
Romanova N, Schelletter L, Hoffrogge R, Noll T. Hyperosmolality in CHO cell culture: effects on the proteome. Appl Microbiol Biotechnol 2022; 106:2569-2586. [PMID: 35312825 PMCID: PMC8990941 DOI: 10.1007/s00253-022-11861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used host cell lines for therapeutic protein production. Exposure of these cells to highly concentrated feed solution during fed-batch cultivation can lead to a non-physiological increase in osmolality (> 300 mOsm/kg) that affects cell physiology, morphology, and proteome. As addressed in previous studies (and indeed, as recently addressed in our research), hyperosmolalities of up to 545 mOsm/kg force cells to abort proliferation and gradually increase their volume—almost tripling it. At the same time, CHO cells also show a significant hyperosmolality-dependent increase in mitochondrial activity. To gain deeper insight into the molecular mechanisms that are involved in these processes, as detailed in this paper, we performed a comparative quantitative label-free proteome study of hyperosmolality-exposed CHO cells compared with control cells. Our analysis revealed differentially expressed key proteins that mediate mitochondrial activation, oxidative stress amelioration, and cell cycle progression. Our studies also demonstrate a previously unknown effect: the strong regulation of proteins can alter both cell membrane stiffness and permeability. For example, we observed that three types of septins (filamentous proteins that form diffusion barriers in the cell) became strongly up-regulated in response to hyperosmolality in the experimental setup. Overall, these new observations correlate well with recent CHO-based fluxome and transcriptome studies, and reveal additional unknown proteins involved in the response to hyperosmotic pressure by over-concentrated feed in mammalian cells. Key points • First-time comparative proteome analysis of CHO cells exposed to over-concentrated feed. • Discovery of membrane barrier-forming proteins up-regulation under hyperosmolality. • Description of mitochondrial and protein chaperones activation in treated cells.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Louise Schelletter
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Noll
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
64
|
Ohmori K, Kamei A, Watanabe Y, Abe K. Gene Expression over Time during Cell Transformation Due to Non-Genotoxic Carcinogen Treatment of Bhas 42 Cells. Int J Mol Sci 2022; 23:ijms23063216. [PMID: 35328637 PMCID: PMC8954493 DOI: 10.3390/ijms23063216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
The Bhas 42 cell transformation assay (Bhas 42 CTA) is the first Organization for Economic Cooperation and Development (OECD)-certificated method used as a specific tool for the detection of the cell-transformation potential of tumor-promoting compounds, including non-genotoxic carcinogens (NGTxCs), as separate from genotoxic carcinogens. This assay offers the great advantage of enabling the phenotypic detection of oncotransformation. A key benefit of using the Bhas 42 CTA in the study of the cell-transformation mechanisms of tumor-promoting compounds, including non-genotoxic carcinogens, is that the cell-transformation potential of the chemical can be detected directly without treatment with a tumor-initiating compound since Bhas 42 cell line was established by transfecting the v-Ha-ras gene into a mouse fibroblast cloned cell line. Here, we analyzed the gene expression over time, using DNA microarrays, in Bhas 42 cells treated with the tumor-promoting compound 12-O-tetradecanoylphorbol-13-acetate (TPA), and NGTxC, with a total of three repeat experiments. This is the first paper to report on gene expression over time during the process of cell transformation with only a tumor-promoting compound. Pathways that were activated or inactivated during the process of cell transformation in the Bhas 42 cells treated with TPA were related not only directly to RAS but also to various pathways in the hallmarks of cancer.
Collapse
Affiliation(s)
- Kiyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 2530087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 2408501, Japan
- Correspondence: or ; Tel./Fax: +81-046-783-4400 or +81-045-339-4448
| | - Asuka Kamei
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki 2100821, Japan; (A.K.); (K.A.)
| | - Yuki Watanabe
- Health and Anti-Aging Project, Kanagawa Academy of Science and Technology, Kawasaki 2130012, Japan;
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki 2100821, Japan; (A.K.); (K.A.)
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
| |
Collapse
|
65
|
Mlodawska OW, Saini P, Parker JB, Wei JJ, Bulun SE, Simon MA, Chakravarti D. Epigenomic and enhancer dysregulation in uterine leiomyomas. Hum Reprod Update 2022; 28:518-547. [PMID: 35199155 PMCID: PMC9247409 DOI: 10.1093/humupd/dmac008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Uterine leiomyomas, also known as uterine fibroids or myomas, are the most common benign gynecological tumors and are found in women of reproductive and postmenopausal age. There is an exceptionally high prevalence of this tumor in women by the age of 50 years. Black women are particularly affected, with an increased incidence, earlier age of onset, larger and faster growing fibroids and greater severity of symptoms as compared to White women. Although advances in identifying genetic and environmental factors to delineate these fibroids have already been made, only recently has the role of epigenomics in the pathogenesis of this disease been considered. OBJECTIVE AND RATIONALE Over recent years, studies have identified multiple epigenomic aberrations that may contribute to leiomyoma development and growth. This review will focus on the most recent discoveries in three categories of epigenomic changes found in uterine fibroids, namely aberrant DNA methylation, histone tail modifications and histone variant exchange, and their translation into altered target gene architecture and transcriptional outcome. The findings demonstrating how the altered 3D shape of the enhancer can regulate gene expression from millions of base pairs away will be discussed. Additionally, translational implications of these discoveries and potential roadblocks in leiomyoma treatment will be addressed. SEARCH METHODS A comprehensive PubMed search was performed to identify published articles containing keywords relevant to the focus of the review, such as: uterine leiomyoma, uterine fibroids, epigenetic alterations, epigenomics, stem cells, chromatin modifications, extracellular matrix [ECM] organization, DNA methylation, enhancer, histone post-translational modifications and dysregulated gene expression. Articles until September 2021 were explored and evaluated to identify relevant updates in the field. Most of the articles focused on in the discussion were published between 2015 and 2021, although some key discoveries made before 2015 were included for background information and foundational purposes. We apologize to the authors whose work was not included because of space restrictions or inadvertent omission. OUTCOMES Chemical alterations to the DNA structure and of nucleosomal histones, without changing the underlying DNA sequence, have now been implicated in the phenotypic manifestation of uterine leiomyomas. Genome-wide DNA methylation analysis has revealed subsets of either suppressed or overexpressed genes accompanied by aberrant promoter methylation. Furthermore, differential promoter access resulting from altered 3D chromatin structure and histone modifications plays a role in regulating transcription of key genes thought to be involved in leiomyoma etiology. The dysregulated genes function in tumor suppression, apoptosis, angiogenesis, ECM formation, a variety of cancer-related signaling pathways and stem cell differentiation. Aberrant DNA methylation or histone modification is also observed in altering enhancer architecture, which leads to changes in enhancer-promoter contact strength, producing novel explanations for the overexpression of high mobility group AT-hook 2 and gene dysregulation found in mediator complex subunit 12 mutant fibroids. While many molecular mechanisms and epigenomic features have been investigated, the basis for the racial disparity observed among those in the Black population remains unclear. WIDER IMPLICATIONS A comprehensive understanding of the exact pathogenesis of uterine leiomyoma is lacking and requires attention as it can provide clues for prevention and viable non-surgical treatment. These findings will widen our knowledge of the role epigenomics plays in the mechanisms related to uterine leiomyoma development and highlight novel approaches for the prevention and identification of epigenome targets for long-term non-invasive treatment options of this significantly common disease.
Collapse
Affiliation(s)
| | | | - J Brandon Parker
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Melissa A Simon
- Department of Obstetrics and Gynecology, Center for Health Equity Transformation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Correspondence address. Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 E Superior Street, Lurie 4-119, Chicago, IL 60611, USA. E-mail:
| |
Collapse
|
66
|
Li C, Wang G, Ma X, Tao T, Li Q, Yang Y, Sang H, Wang Z. Upregulation of exosomal circPLK1 promotes the development of non-small cell lung cancer through the miR-1294/ high mobility group protein A1 axis. Bioengineered 2022; 13:4185-4200. [PMID: 35114891 PMCID: PMC8973815 DOI: 10.1080/21655979.2022.2026727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CircRNAs (circular RNAs) have been implicated in the development and progression of a variety of cancers. The molecular pathways underlying the progression of NSCLC (Non-Small Cell Lung Cancer) and the associated regulation of circRNAs in NSCLC remain to be fully elucidated. In this study, we found that circPLK1 expression was upregulated in serum exosomes and tissues from NSCLC patients. The Kaplan–Meier survival analysis revealed that a high expression level of circPLK1 was associated with a poorer prognosis in NSCLC patients. Exosomes extracted from NSCLC serum could promote the replication, migration, and invasion of NSCLC cells and suppress apoptotic cell death. The overexpression of circPLK1 also promotes the malignant phenotype of NSCLC cells. Molecular analyses demonstrated that circPLK1 directly targets miR-1294 and negatively regulates its activity. And circPLK1 overexpression facilitates the progression of NSCLC by negatively regulating miR-1294 level and maintaining a high-level expression of HMGA1 (High Mobility Group Protein A1). Our study suggests that circPLK1 upregulation plays an important role in NSCLC progression by targeting miR-1294/HMGA1 axis. These data provide a theoretical basis for the development of therapeutic strategy targeting exosomal circPLK1 in NSCLC treatment.
Collapse
Affiliation(s)
- Chuankui Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guowen Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Tao
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qicai Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yifan Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Haiwei Sang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zuyi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
67
|
The acidic domain of Hmga2 and the domain’s linker region are critical for driving self-renewal of hematopoietic stem cell. Int J Hematol 2022; 115:553-562. [DOI: 10.1007/s12185-021-03274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
|
68
|
Clugston A, Bodnar A, Cerqueira DM, Phua YL, Lawler A, Boggs K, Pfenning A, Ho J, Kostka D. Chromatin accessibility and microRNA expression in nephron progenitor cells during kidney development. Genomics 2022; 114:278-291. [PMID: 34942352 PMCID: PMC8792369 DOI: 10.1016/j.ygeno.2021.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/03/2023]
Abstract
Mammalian nephrons originate from a population of nephron progenitor cells, and changes in these cells' transcriptomes contribute to the cessation of nephrogenesis, an important determinant of nephron number. To characterize microRNA (miRNA) expression and identify putative cis-regulatory regions, we collected nephron progenitor cells from mouse kidneys at embryonic day 14.5 and postnatal day zero and assayed small RNA expression and transposase-accessible chromatin. We detect expression of 1104 miRNA (114 with expression changes), and 46,374 chromatin accessible regions (2103 with changes in accessibility). Genome-wide, our data highlight processes like cellular differentiation, cell migration, extracellular matrix interactions, and developmental signaling pathways. Furthermore, they identify new candidate cis-regulatory elements for Eya1 and Pax8, both genes with a role in nephron progenitor cell differentiation. Finally, we associate expression-changing miRNAs, including let-7-5p, miR-125b-5p, miR-181a-2-3p, and miR-9-3p, with candidate cis-regulatory elements and target genes. These analyses highlight new putative cis-regulatory loci for miRNA in nephron progenitors.
Collapse
Affiliation(s)
- Andrew Clugston
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Andrew Bodnar
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Débora Malta Cerqueira
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Yu Leng Phua
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Lawler
- Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA,Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kristy Boggs
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andreas Pfenning
- Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA,Co-Corresponding authors:Dr. Dennis Kostka, Rangos Research Center 8117, Department of Developmental Biology, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-9905, ; Dr. Jacqueline Ho, Rangos Research Center 5127, Department of Pediatrics, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-5303,
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Computational & Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Co-Corresponding authors:Dr. Dennis Kostka, Rangos Research Center 8117, Department of Developmental Biology, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-9905, ; Dr. Jacqueline Ho, Rangos Research Center 5127, Department of Pediatrics, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-5303,
| |
Collapse
|
69
|
Garabedian A, Jeanne Dit Fouque K, Chapagain PP, Leng F, Fernandez-Lima F. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2431-2439. [PMID: 35212375 PMCID: PMC8934665 DOI: 10.1093/nar/gkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/30/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as ‘AT-hooks’, are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three ‘AT-hook’ peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, ‘key-locked’ conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | | |
Collapse
|
70
|
OUP accepted manuscript. Carcinogenesis 2022; 43:671-681. [DOI: 10.1093/carcin/bgac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
|
71
|
Wei JJ. HMGA2: A Biomarker in Gynecologic Neoplasia. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2022; 2:3-7. [PMID: 35340777 PMCID: PMC8950094 DOI: 10.14218/jctp.2021.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High Mobility Group A2 gene (HMGA2), an oncofetal protein, is normally expressed in fetal development and completely shuts down in almost all organs and tissue types during adulthood. It is upregulated or overexpressed again in certain mesenchymal neoplasms due to chromosomal translocations and in malignant epithelial tumors through transcription regulation. HMGA2 overexpression can either drive tumor development or promote the aggressiveness of tumor growth. Many gynecologic neoplasms, including uterine smooth muscle tumors and ovarian cancer, are associated with HMGA2 overexpression. In this article, we review recent developments in the study of HMGA2 and its expression as a potential biomarker for gynecologic neoplasms and clinic application.
Collapse
Affiliation(s)
- Jian-Jun Wei
- Correspondence to: Jian-Jun Wei, Department of Pathology, Northwestern University, School of Medicine, Feinberg 7-334, 251 East Huron Street, Chicago, IL 60611, USA. Tel: +1-312-926-1815, Fax: +1-312-926-3127,
| |
Collapse
|
72
|
Shi M, Lv X, Zhu M, Dong Y, Hu L, Qian Y, Fan C, Tian N. HMGA1 promotes hepatocellular carcinoma proliferation, migration, and regulates cell cycle via miR-195-5p. Anticancer Drugs 2022; 33:e273-e285. [PMID: 34407055 DOI: 10.1097/cad.0000000000001201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
HMGA1 has been reported to be aberrantly expressed and correlate with the poor prognosis of many carcinomas. This study aimed to investigate the clinical significance and molecular mechanism of HMGA1 as a tumor-suppressing gene in hepatocellular carcinoma (HCC). Analysis of TCGA dataset by TANRIC website and R2 platform, we found that HMGA1 expression was significantly higher in HCC tissues compared to that in normal liver tissues and was associated with Edmondson grade. Patients with highly expressed HMGA1 had worse overall survival. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis showed the potential relationships between HMGA1 and other genes in HCC. We also demonstrated that the downregulation of HMGA1 dramatically suppressed the proliferation and migration of HCC cells. Furthermore, ectopic expression of HMGA1 blocked G0/G1 to S transition. Subsequent investigation characterized HMGA1 as a direct target of miR-195-5p, and miR-195-5p downregulation abrogated the effect of HMGA1 on HCC proliferation, migration, and cell cycle arrest. In addition, we also demonstrated that miR-195-5p downregulation abrogated the effect of HMGA1 on HCC growth in vivo. Taken together, our data provide strong evidence that HMGA1 promotes HCC and is negatively regulated by the tumor-suppressor, miR-195-5p.
Collapse
Affiliation(s)
- Minyang Shi
- Department of Cell Biology, Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
HMGA1 Has Predictive Value in Response to Chemotherapy in Gastric Cancer. Curr Oncol 2021; 29:56-67. [PMID: 35049679 PMCID: PMC8774981 DOI: 10.3390/curroncol29010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is a serious health problem worldwide. Although its incidence is decreasing, the five-year survival rate remains low. Thus, it is essential to identify new biomarkers that could promote better diagnosis and treatment of patients with gastric cancer. High-mobility group AT-hook 1 (HMGA1) is a non-histone, chromatin-binding protein that has been found overexpressed in several tumor types. It has been correlated with invasion, metastasis, and drug resistance, leading to worse patient survival. The aim of this work was to evaluate the clinical value of HMGA1 in gastric cancer. HMGA1 expression was analyzed by immunohistochemistry in a single hospital series (n = 323) of gastric adenocarcinoma cases (stages I to IV) with clinicopathological and treatment data. In this series, HMGA1 expression showed no significant relevance as a prognostic biomarker. Nevertheless, a significantly better overall survival was observed in cases with high levels of HMGA1 when they were treated with chemotherapy, compared to the nontreated ones, implying that they can benefit more from treatment than patients with low expression of HMGA1. We thereby show for the first time that HMGA1 expression has a substantial value as a biomarker of response to chemotherapy in gastric cancer.
Collapse
|
74
|
Taniguchi S, Tanaka Y, Elhance A, Oshimori N. A mechanistic basis for the malignant progression of salivary gland tumors. iScience 2021; 24:103508. [PMID: 34934927 PMCID: PMC8661530 DOI: 10.1016/j.isci.2021.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salivary gland tumors are diverse neoplasms, likely reflecting differences in the tissue- and cell-of-origin. 80%-90% of tumors arising in the sublingual gland (SLG) are malignant, whereas the other major glands often form benign tumors. Owing to the lack of experimental models to explore the etiology of salivary gland tumors, the cellular and molecular bases of malignancy remain unknown. Here, we generated a murine model of HRASG12V-driven salivary gland tumors amenable to examine tumor onset and malignant progression. We found that HMGA2 marks the tumor onset, and transformed-SOX2+ stem/progenitor cells expand exclusively in SLG tumors. Lineage tracing experiments showed that SLG tumor cells undergo an extensive epithelial-mesenchymal transition (EMT) and TGF-β-responding tumor cells are a source of mesenchymal tumor cells invading the surrounding stroma. This study advances our understanding of the mechanistic basis of salivary gland malignancy and may help combat this highly heterogeneous cancer.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuya Tanaka
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ajit Elhance
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
75
|
Chung YH, Qian Q, Huang HY, Chiu WT, Yang CS, Tzeng SF. The Nuclear Function of IL-33 in Desensitization to DNA Damaging Agent and Change of Glioma Nuclear Structure. Front Cell Neurosci 2021; 15:713336. [PMID: 34744630 PMCID: PMC8565524 DOI: 10.3389/fncel.2021.713336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Qiu Qian
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Ying Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
76
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
77
|
Wang Y, Zheng X, Cheng R, Han J, Ma X, Xu W, Gao L, Lei A, Liu J, Quan F, Zhang Y, Liu X. Asymmetric expression of maternal mRNA governs first cell-fate decision. FASEB J 2021; 35:e22006. [PMID: 34694646 DOI: 10.1096/fj.202101196r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
The goal of preimplantation development is to establish the fates of the embryonic and extra-embryonic cells. However, when and how cell fates are determined during early mammalian embryonic development remains unclear. We report that the high mobility group (HMG) protein family member HMGA1 was distributed differentially in mouse two-cell blastomeres. Knockdown of Hmga1 expression in one of the two cells reduced the number of cells contributing to the inner cell mass (ICM), suggesting that differential distribution of HMGA1 in the blastomeres in two-cell mouse embryos affected the selection of embryonic cell lineages. Mechanistically, HMGA1 promotes the expression of the ICM-specific gene Sox2. The results of this study show that mouse embryos demonstrate heterogeneity as early as the two-cell stage, and that these differences are related to cell-fate differentiation in early mouse embryos.
Collapse
Affiliation(s)
- Yingmei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xiaoman Zheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Rui Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Jing Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xing Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Wenjun Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Lu Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Center, Northwest A&F University, Yangling, PR China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xu Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| |
Collapse
|
78
|
Li J, Ouyang T, Li M, Hong T, Alriashy M, Meng W, Zhang N. CBX7 is Dualistic in Cancer Progression Based on its Function and Molecular Interactions. Front Genet 2021; 12:740794. [PMID: 34659360 PMCID: PMC8517511 DOI: 10.3389/fgene.2021.740794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromobox protein homolog 7 (CBX7) is a member of the Chromobox protein family and participates in the formation of the polycomb repressive complex 1(PRC1). In cells, CBX7 often acts as an epigenetic regulator to regulate gene expression. However, pathologically, abnormal expression of CBX7 can lead to an imbalance of gene expression, which is closely related to the occurrence and progression of cancers. In cancers, CBX7 plays a dual role; On the one hand, it contributes to cancer progression in some cancers by inhibiting oncosuppressor genes. On the other hand, it suppresses cancer progression by interacting with different molecules to regulate the synthesis of cell cycle-related proteins. In addition, CBX7 protein may interact with different RNAs (microRNAs, long noncoding RNAs, circular RNAs) in different cancer environments to participate in a variety of pathways, affecting the development of cancers. Furthermore, CBX7 is involved in cancer-related immune response and DNA repair. In conclusion, CBX7 expression is a key factor in the occurrence and progression of cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of the Second Clinical Medical College of Nanchang University, Jiangxi Province, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Mhs Alriashy
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
79
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
80
|
De Martino M, Esposito F, Fusco A. Critical role of the high mobility group A proteins in hematological malignancies. Hematol Oncol 2021; 40:2-10. [PMID: 34637548 PMCID: PMC9293314 DOI: 10.1002/hon.2934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
The high mobility group A (HMGA) protein family is composed of three non‐histone chromatin remodeling proteins that act as architectural transcriptional factors. Indeed, although HMGA proteins lack transcriptional activity per se, they bind the minor groove of DNA at AT‐rich sequences, and, interacting with the transcription machinery, are able to modify chromatin modeling, thus regulating the expression of several genes. HMGA proteins have been deeply involved in embryogenesis process, and a large volume of studies has pointed out their key role in human cancer. Here, we review the studies on the role of the HMGA proteins in human hematological malignancies: they are overexpressed in most of the cases and their expression correlates with a reduced survival. In some cases, such as in acute lymphoblastic leukemia and acute myelogenous leukemia, HMGA2 gene rearrangements have been also described. Finally, recent studies evidence a synergism between HMGA and EZH2 in diffuse B‐cell lymphomas, suggesting an innovative therapy for this disease based on the inhibition of the function of both these proteins.
Collapse
Affiliation(s)
- Marco De Martino
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Esposito
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
81
|
Shtykalova SV, Egorova AA, Maretina MA, Freund SA, Baranov VS, Kiselev AV. Molecular Genetic Basis and Prospects of Gene Therapy of Uterine Leiomyoma. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
83
|
Sui C, Qu W, Lian Y, Feng C, Zhan Y. Hsa_circ_0069094 knockdown inhibits cell proliferation, migration, invasion and glycolysis, while induces cell apoptosis by miR-661/HMGA1 axis in breast cancer. Anticancer Drugs 2021; 32:829-841. [PMID: 33929992 DOI: 10.1097/cad.0000000000001076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) are revealed to regulate breast cancer progression. This study aimed to investigate hsa_circ_0069094-mediated effects on breast cancer cell malignancy. Quantitative real time PCR was employed to evaluate the expressions of hsa_circ_0069094, miR-661 and high mobility group A1 (HMGA1). Western blot was performed to determine the protein expression of HMGA1 and proliferating cell nuclear antigen. Breast cancer malignant progressions were explained by cell counting kit-8 proliferation, cell colony formation, flow cytometry analysis, wound-healing and transwell assays. Cell glycolysis was assessed by detecting glucose take, lactate production and hexokinase 2 (HK2) protein level. The target relationship between miR-661 and hsa_circ_0069094 or HMGA1 was predicted by circular RNA interactome and targetscan online databases, and identified by dual-luciferase reporter and RNA immunoprecipitation assay. The effects of hsa_circ_0069094 knockdown on breast cancer growth in vivo were elucidated by in vivo tumor formation assay. Hsa_circ_0069094 and HMGA1 expression were significantly upregulated, while miR-661 expression level was downregulated in breast cancer tissues and cells relative to adjacent normal breast tissues or MCF-10A cells. Functionally, hsa_circ_0069094 knockdown inhibited cell glycolysis, proliferation, migration and invasion, whereas induced cell apoptosis in breast cancer, which was decreased by miR-661 inhibitor. Mechanistically, hsa_circ_0069094 regulated HMGA1 by sponging miR-661. Furthermore, hsa_circ_0069094 knockdown repressed tumor formation in vivo. Collectively, hsa_circ_0069094 knockdown repressed breast cancer cell carcinogenesis and cell glycolysis by regulating HMGA1 through sponging miR-661, which provided a new insight for studying the mechanism of hsa_circ_0069094 in modulating breast cancer development.
Collapse
Affiliation(s)
- Chao Sui
- Department of Oncology, Weihai Central Hospital
| | - Wei Qu
- Department of Oncology, Shidao People's Hospital Of Rongcheng, Weihai, Shandong
| | - Yanfen Lian
- Department of Oncology, Weihai Central Hospital
| | - Chuanbo Feng
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Lianyungang
| | - Yi Zhan
- Department of Thoracic Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
84
|
Discovering the Protective Effects of Resveratrol on Aflatoxin B1-Induced Toxicity: A Whole Transcriptomic Study in a Bovine Hepatocyte Cell Line. Antioxidants (Basel) 2021; 10:antiox10081225. [PMID: 34439473 PMCID: PMC8388899 DOI: 10.3390/antiox10081225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.
Collapse
|
85
|
Yoo Y, Park SY, Jo EB, Choi M, Lee KW, Hong D, Lee S, Lee CR, Lee Y, Um JY, Park JB, Seo SW, Choi YL, Kim S, Lee SG, Choi M. Overexpression of Replication-Dependent Histone Signifies a Subset of Dedifferentiated Liposarcoma with Increased Aggressiveness. Cancers (Basel) 2021; 13:cancers13133122. [PMID: 34206586 PMCID: PMC8269115 DOI: 10.3390/cancers13133122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Liposarcoma (LPS) is an adult soft tissue malignancy that arises from fat tissue, where well-differentiated (WD) and dedifferentiated (DD) forms are the most common. DDLPS represents the progression of WDLPS into a more aggressive high-grade and metastatic form. Although a few DNA copy-number amplifications are known to be specifically found in WD- or DDLPS, systematic genetic differences that signify subtype determination between WDLPS and DDLPS remain unclear. Here, we profiled the genome and transcriptome of 38 LPS tumors to uncover the genetic signatures of subtype differences. Replication-dependent histone (RD-HIST) mRNAs were highly elevated and their regulation was disrupted in a subset of DDLPS, increasing cellular histone molecule levels, as measured using RNA-seq (the averaged fold change of 53 RD-HIST genes between the DD and WD samples was 10.9) and immunohistochemistry. The change was not observed in normal tissues. Integrated whole-exome sequencing, RNA-seq, and methylation analyses revealed that the overexpressed HMGA2 (the fold change between DD and WD samples was 7.3) was responsible for the increased RD-HIST level, leading to aberrant cell proliferation. Therefore, HMGA2-mediated elevation of RD-HISTs were crucial events in determining the aggressiveness of DDLPS, which may serve as a biomarker for prognosis prediction for liposarcoma patients.
Collapse
Affiliation(s)
- Yongjin Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.); (S.L.); (C.-R.L.); (Y.L.)
| | - Sang-Yoon Park
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-Y.P.); (M.C.); (J.-Y.U.)
| | - Eun Byeol Jo
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-Y.P.); (M.C.); (J.-Y.U.)
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (K.W.L.); (J.B.P.)
| | - Doopyo Hong
- Sarcoma Research Center, Samsung Biomedical Research Institute, Seoul 06351, Korea;
| | - Sangmoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.); (S.L.); (C.-R.L.); (Y.L.)
| | - Cho-Rong Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.); (S.L.); (C.-R.L.); (Y.L.)
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.); (S.L.); (C.-R.L.); (Y.L.)
| | - Jae-Young Um
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-Y.P.); (M.C.); (J.-Y.U.)
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (K.W.L.); (J.B.P.)
| | - Sung Wook Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sungjoo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (K.W.L.); (J.B.P.)
- GenNbio, Seoul 08340, Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-Y.P.); (M.C.); (J.-Y.U.)
- Correspondence: (S.-G.L.); (M.C.); Tel.: +82-2-961-2355 (S.-G.L.); +82-2-740-8912 (M.C.)
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.Y.); (S.L.); (C.-R.L.); (Y.L.)
- Correspondence: (S.-G.L.); (M.C.); Tel.: +82-2-961-2355 (S.-G.L.); +82-2-740-8912 (M.C.)
| |
Collapse
|
86
|
Matsubara K, Matsubara Y, Uchikura Y, Takagi K, Yano A, Sugiyama T. HMGA1 Is a Potential Driver of Preeclampsia Pathogenesis by Interference with Extravillous Trophoblasts Invasion. Biomolecules 2021; 11:biom11060822. [PMID: 34072941 PMCID: PMC8227282 DOI: 10.3390/biom11060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia (PE) is a serious disease that can be fatal for the mother and fetus. The two-stage theory has been proposed as its cause, with the first stage comprising poor placentation associated with the failure of fertilized egg implantation. Successful implantation and placentation require maternal immunotolerance of the fertilized egg as a semi-allograft and appropriate extravillous trophoblast (EVT) invasion of the decidua and myometrium. The disturbance of EVT invasion during implantation in PE results in impaired spiral artery remodeling. PE is thought to be caused by hypoxia during remodeling failure-derived poor placentation, which results in chronic inflammation. High-mobility group protein A (HMGA) is involved in the growth and invasion of cancer cells and likely in the growth and invasion of trophoblasts. Its mechanism of action is associated with immunotolerance. Thus, HMGA is thought to play a pivotal role in successful pregnancy, and its dysfunction may be related to the pathogenesis of PE. The evaluation of HMGA function and its changes in PE might confirm that it is a reliable biomarker of PE and provide prospects for PE treatment through the induction of EVT proliferation and invasion during the implantation.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Graduate School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan
- Correspondence:
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Katsuko Takagi
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Akiko Yano
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| |
Collapse
|
87
|
Shirai K, Nagae G, Seki M, Kudo Y, Kamio A, Hayashi A, Okabe A, Ota S, Tsutsumi S, Fujita T, Yamamoto S, Nakaki R, Kanki Y, Osawa T, Midorikawa Y, Tateishi K, Ichinose M, Aburatani H. TET1 upregulation drives cancer cell growth through aberrant enhancer hydroxymethylation of HMGA2 in hepatocellular carcinoma. Cancer Sci 2021; 112:2855-2869. [PMID: 33970549 PMCID: PMC8253281 DOI: 10.1111/cas.14897] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ten‐eleven translocation 1 (TET1) is an essential methylcytosine dioxygenase of the DNA demethylation pathway. Despite its dysregulation being known to occur in human cancer, the role of TET1 remains poorly understood. In this study, we report that TET1 promotes cell growth in human liver cancer. The transcriptome analysis of 68 clinical liver samples revealed a subgroup of TET1‐upregulated hepatocellular carcinoma (HCC), demonstrating hepatoblast‐like gene expression signatures. We performed comprehensive cytosine methylation and hydroxymethylation (5‐hmC) profiling and found that 5‐hmC was aberrantly deposited preferentially in active enhancers. TET1 knockdown in hepatoma cell lines decreased hmC deposition with cell growth suppression. HMGA2 was highly expressed in a TET1high subgroup of HCC, associated with the hyperhydroxymethylation of its intronic region, marked as histone H3K4–monomethylated, where the H3K27‐acetylated active enhancer chromatin state induced interactions with its promoter. Collectively, our findings point to a novel type of epigenetic dysregulation, methylcytosine dioxygenase TET1, which promotes cell proliferation via the ectopic enhancer of its oncogenic targets, HMGA2, in hepatoblast‐like HCC.
Collapse
Affiliation(s)
- Kiyokazu Shirai
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Wakayama Medical University, Wakayama, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asuka Kamio
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Akimasa Hayashi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takanori Fujita
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Ichinose
- Department of Gastroenterology, Wakayama Medical University, Wakayama, Japan.,Faculty of Medicine, Teikyo University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
88
|
Essential Role of the 14q32 Encoded miRNAs in Endocrine Tumors. Genes (Basel) 2021; 12:genes12050698. [PMID: 34066712 PMCID: PMC8151414 DOI: 10.3390/genes12050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The 14q32 cluster is among the largest polycistronic miRNA clusters. miRNAs encoded here have been implicated in tumorigenesis of multiple organs including endocrine glands. METHODS Critical review of miRNA studies performed in endocrine tumors have been performed. The potential relevance of 14q32 miRNAs through investigating their targets, and integrating the knowledge provided by literature data and bioinformatics predictions have been indicated. RESULTS Pituitary adenoma, papillary thyroid cancer and a particular subset of pheochromocytoma and adrenocortical cancer are characterized by the downregulation of miRNAs encoded by the 14q32 cluster. Pancreas neuroendocrine tumors, most of the adrenocortical cancer and medullary thyroid cancer are particularly distinct, as 14q32 miRNAs were overexpressed. In pheochromocytoma and growth-hormone producing pituitary adenoma, however, both increased and decreased expression of 14q32 miRNAs cluster members were observed. In the background of this phenomenon methodological, technical and biological factors are hypothesized and discussed. The functions of 14q32 miRNAs were also revealed by bioinformatics and literature data mining. CONCLUSIONS 14q32 miRNAs have a significant role in the tumorigenesis of endocrine organs. Regarding their stable expression in the circulation of healthy individuals, further investigation of 14q32 miRNAs could provide a potential for use as biomarkers (diagnostic or prognostic) in endocrine neoplasms.
Collapse
|
89
|
An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nat Commun 2021; 12:2508. [PMID: 33947865 PMCID: PMC8096963 DOI: 10.1038/s41467-021-22815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.
Collapse
|
90
|
Mollaei M, Hassan ZM, Khorshidi F, Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl Oncol 2021; 14:101056. [PMID: 33684837 PMCID: PMC7938256 DOI: 10.1016/j.tranon.2021.101056] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutic drugs kill cancer cells or control their progression all over the patient's body, while radiation- and surgery-based treatments perform in a particular site. Based on their mechanisms of action, they are classified into different groups, including alkylating substrates, antimetabolite agents, anti-tumor antibiotics, inhibitors of topoisomerase I and II, mitotic inhibitors, and finally, corticosteroids. Although chemotherapeutic drugs have brought about more life expectancy, two major and severe complications during chemotherapy are chemoresistance and tumor relapse. Therefore, we aimed to review the underlying intracellular signaling pathways involved in cell death and resistance in different chemotherapeutic drug families to clarify the shortcomings in the conventional single chemotherapy applications. Moreover, we have summarized the current combination chemotherapy applications, including numerous combined-, and encapsulated-combined-chemotherapeutic drugs. We further discussed the possibilities and applications of precision medicine, machine learning, next-generation sequencing (NGS), and whole-exome sequencing (WES) in promoting cancer immunotherapies. Finally, some of the recent clinical trials concerning the application of immunotherapies and combination chemotherapies were included as well, in order to provide a practical perspective toward the future of therapies in cancer cases.
Collapse
Affiliation(s)
- Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran.
| | | | - Fatemeh Khorshidi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Langroudi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
91
|
Barca I, Mignogna C, Donato G, Cristofaro MG. Expression of PLAG1, HMGA1 and HMGA2 in minor salivary glands tumours. Gland Surg 2021; 10:1609-1617. [PMID: 34164305 DOI: 10.21037/gs-20-667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Diagnosis of minor salivary gland (MSG) tumours is often difficult, due to the scarce tissue obtained from bioptic excision and complex histopathological differential diagnosis. In our study we performed an immunohistochemical analysis of PLAG1, HMGA1 and HMGA2 on a series of MSG tumours, in order to develop a new helpful diagnostic panel. Methods A retrospective series of 17 surgical specimens of MSG tumours were analysed for the expression of PLAG1, HMGA1 and HMGA2. Three control cases were enrolled and analysed. An intensity and percentage-based approach was performed, creating a combined score panel. Results PLAG1 facilitate the diagnosis of benign tumours, discriminating it from malignant histotypes, with a defined cut-off value. Similarly, HMGA1 is significantly higher in benign histotypes than in malignant ones. HMGA2 in our series, did not reveal any association in identifying benign from malignant histotypes. Conclusions In this study we assessed the diagnostic role of PLAG1, HMGA1 and HMGA2 immunohistochemical analysis. The score panel facilitate histopathological diagnosis of these rare tumours, helping to distinguish benign tumours from malignant ones and ameliorating the differential diagnosis of specific histotypes.
Collapse
Affiliation(s)
- Ida Barca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | | |
Collapse
|
92
|
Tang C, Lei X, Xiong L, Hu Z, Tang B. HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis 2021; 12:422. [PMID: 33927188 PMCID: PMC8084942 DOI: 10.1038/s41419-021-03703-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) in the tumor microenvironment contribute to poor prognosis in gastric cancer (GC). However, the underlying mechanism by which TAMs promote GC progression and metastasis remains elusive. Expression of POU1F1 was detected in 60 matched GC-normal tissue pairs using qRT-PCR and immunohistochemistry (IHC) analysis. The correlation between POU1F1 and the clinical-pathological factors of GC patients were further assessed. Cell proliferation was monitored by CCK-8, colony formation, and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assays. Cell migration and invasion were assessed by transwell assays. The impact on angiogenesis was evaluated by tube formation assay. Xenograft model was generated to investigate the role of POU1F1 on tumor growth and lung metastasis in vivo. GST pull-down and Co-immunoprecipitation (Co-IP) were used to study the interaction between HMGA1B/2 and POU1F1. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were performed to investigate the transcriptional regulation of POU1F1. Flow cytometry was performed to detect the surface expression of macrophage markers. Upregulated POU1F1 observed both in GC tissues and cell lines was positively correlated with poor prognosis. Knockdown of POU1F1 inhibited cell proliferation, migration, invasion, and angiogenesis in vitro, and suppressed tumor growth in vivo. HMGA1B/2 transcriptionally activated-POU1F1. POU1F1 promoted GC progression via regulating macrophage proliferation, migration, polarization, and angiogenesis in a CXCL12/CXCR4-dependent manner. POU1F1 also promoted GC metastasis in lung by modulating macrophage polarization through CXCL12/CXCR4 axis in vivo. HMGA1B/2-upregulated POU1F1 promoted GC metastasis via regulating macrophage polarization in a CXCL12/CXCR4-dependent manner.
Collapse
Affiliation(s)
- Cheng Tang
- General surgery department, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi Province, P.R. China.
| | - Xiong Lei
- General surgery department, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Lingqiang Xiong
- General surgery department, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Zhigao Hu
- General surgery department, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Bo Tang
- General surgery department, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
93
|
Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48:3637-3647. [PMID: 33893924 DOI: 10.1007/s11033-021-06362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.
Collapse
Affiliation(s)
- Jun Lu
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia. .,Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| | - David Wood
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6009, Australia
| | - Daniel Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
94
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
95
|
Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv Anat Pathol 2021; 28:81-93. [PMID: 33405400 DOI: 10.1097/pap.0000000000000291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Salivary gland neoplasms are an uncommon and widely heterogeneous group of tumors. In recent years, there has been considerable progress in efforts to reveal the molecular landscape of these tumors, although it is still limited and appears to be only the tip of the iceberg. Genomic aberrations, especially specific chromosomal rearrangements including CRTC1-MAML2 and CRTC3-MAML2 in mucoepidermoid carcinoma, MYB-NFIB and MYBL1-NFIB fusions in adenoid cystic carcinoma, PLAG1 and HMGA2 alterations in pleomorphic adenoma and carcinoma ex pleomorphic adenoma, ETV6-NTRK3 and ETV6-RET in secretory carcinoma, EWSR1-ATF1 and EWSR1-CREM in clear cell carcinoma, provide new insights into the molecular pathogenesis of various salivary gland neoplasms and help to better classify them. These genetic aberrations primarily serve as diagnostic tools in salivary gland tumor diagnosis; however, some also have promise as prognostic or predictive biomarkers. This review summarizes the latest developments in molecular pathology of salivary gland tumors with a focus on distinctive molecular characteristics.
Collapse
|
96
|
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:86. [PMID: 33648560 PMCID: PMC7923631 DOI: 10.1186/s13046-021-01890-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma is a highly malignant cancer with very dismal prognosis. Perihilar cholangiocarcinoma(pCCA) accounts for more than 50% of all cholangiocarcinoma and is well-characterized for its low rate of radical resection. Effects of radiotherapy and chemotherapy of pCCA are very limited. Methods Here we screened potential biomarkers of pCCA with transcriptome sequencing and evaluated the prognostic significance of HMGA1 in a large cohort pCCA consisting of 106 patients. With bioinformatics and in vitro/vivo experiments, we showed that HMGA1 induced tumor cell stemness and epithelial-mesenchymal-transition (EMT), and thus facilitated proliferation, migration and invasion by promoting TRIP13 transcription. Moreover, TRIP13 was also an unfavorable prognostic biomarker of pCCA, and double high expression of HMGA1/TRIP13 could predict prognosis more sensitively. TRIP13 promoted pCCA progression by suppressing FBXW7 transcription and stabilizing c-Myc. c-Myc in turn induced the transcription and expression of both HMGA1 and TRIP13, indicating that HMGA-TRIP13 axis facilitated pCCA stemness and EMT in a positive feedback pathway. Conclusions HMGA1 and TRIP13 were unfavorable prognostic biomarkers of pCCA. HMGA1 enhanced pCCA proliferation, migration, invasion, stemness and EMT, by inducing TRIP13 expression, suppressing FBXW7 expression and stabilizing c-Myc. Moreover, c-Myc can induce the transcription of HMGA1 and TRIP13, suggesting that HMGA-TRIP13 axis promoted EMT and stemness in a positive feedback pathway dependent on c-Myc. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01890-1.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
97
|
Song M, Cao C, Zhou Z, Yao S, Jiang P, Wang H, Zhao G, Hu Y. HMGA2-induced epithelial-mesenchymal transition is reversed by let-7d in intrauterine adhesions. Mol Hum Reprod 2021; 27:gaaa074. [PMID: 33237328 PMCID: PMC7864003 DOI: 10.1093/molehr/gaaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesions (IUAs), the leading cause of uterine infertility, are characterized by endometrial fibrosis. The management of IUA is challenging because the pathogenesis of the disease largely unknown. In this study, we demonstrate that the mRNA and protein levels of high mobility group AT-hook 2 (HMGA2) were increased by nearly 3-fold (P < 0.0001) and 5-fold (P = 0.0095) in the endometrial epithelial cells (EECs) of IUA patients (n = 18) compared to controls. In vivo and in vitro models of endometrial fibrosis also confirmed the overexpression of HMGA2 in EECs. In vitro cell experiments indicated that overexpression of HMGA2 promoted the epithelial-mesenchymal transition (EMT) while knockdown of HMGA2 reversed transforming growth factor-β-induced EMT. A dual luciferase assay confirmed let-7d microRNA downregulated HMGA2 and repressed the pro-EMT effect of HMGA2 in vitro and in vivo. Therefore, our data reveal that HMGA2 promotes IUA formation and suggest that let-7d can depress HMGA2 and may be a clinical targeting strategy in IUA.
Collapse
Affiliation(s)
- Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
98
|
Wei T, Liu H, Chu B, Blasco P, Liu Z, Tian R, Li DX, Li X. Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chem Biol 2021; 28:722-732.e8. [PMID: 33545070 DOI: 10.1016/j.chembiol.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - David Xiang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
99
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
100
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|