51
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
52
|
Liu J, Qian B, Zhou L, Shen G, Tan Y, Liu S, Zhao Z, Shi J, Qi W, Zhou T, Yang X, Gao G, Yang Z. IL25 Enhanced Colitis-Associated Tumorigenesis in Mice by Upregulating Transcription Factor GLI1. Front Immunol 2022; 13:837262. [PMID: 35359953 PMCID: PMC8963976 DOI: 10.3389/fimmu.2022.837262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Interleukin-25 (IL17E/IL25) plays a critical role in colitis and intestinal homeostasis. However, the expression and biological role of IL25 in colorectal cancer is not properly understood. In this study, we show that IL25 is mainly expressed by cancer stem cells in the colorectal cancer microenvironment. Genetic deletion of IL25 inhibited tumor formation and growth and prolonged survival in AOM/DSS-treated mice. IL25 stimulated cancer organoid and cancer cells sphere formation and prevented the tumor from chemotherapy-induced apoptosis. Mechanistically, IL25 upregulated stem cell genes LGR5, CD133, and ABC transporters via activating the Hedgehog signaling pathway. IL25 inhibited phosphorylation of AMPK and promoted GLI1 accumulation to maintain cancer stem cells. Moreover, IL25 expression was associated with poor survival in patients with metastatic colorectal cancer. Taken together, our work reveals an immune-associated mechanism that intrinsically confers cancer cell stemness properties. Our results first demonstrated that IL25, as a new potent endogenous Hedgehog pathway agonist, could be an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Junxi Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bingxiu Qian
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lin Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Gang Shen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Siqi Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zewei Zhao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jianglin Shi
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
53
|
Zeng S, Tan L, Sun Q, Chen L, Zhao H, Liu M, Yang H, Ren S, Ming T, Tang S, Tao Q, Meng X, Xu H. Suppression of colitis-associated colorectal cancer by scutellarin through inhibiting Hedgehog signaling pathway activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153972. [PMID: 35151214 DOI: 10.1016/j.phymed.2022.153972] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) and mainly develops from long-term intestinal inflammation. Mounting evidence reveals that activated Hedgehog signaling pathway plays a vital role in the pathogenesis of CRC. Scutellarin is a type of phytochemical flavonoid with a powerful efficacy on various malignancies, including CRC. AIM Here, we studied the therapeutic effect of scutellarin on CRC and its direct regulating targets. METHODS The CAC model in mice was established by azomethane oxide (AOM) and sodium dextran sulfate (DSS), followed by detection of the efficacies of scutellarin on the carcinogenesis, apoptosis, inflammation, Hedgehog signaling cascade and complicated inflammatory networks in CAC tissues of mice. In CRC SW480 cells, the effects of scutellarin on malignant phenotype, apoptosis and Hedgehog signaling were examined. In TNF-α-stimulated IEC-6 intestinal epithelial cells, the actions of scutellarin on inflammatory response and Hedgehog signals were assessed as well. RESULTS Scutellarin significantly ameliorated AOM/DSS-caused CAC in mice and induced apoptosis in CAC tissues of mice, by inhibiting NF-κB (nuclear factor kappa B) -mediated inflammation and Hedgehog signaling axis. RNA-seq and transcriptome analysis indicated that scutellarin regulated complicated inflammatory networks in mouse CAC. Also, scutellarin suppressed the proliferation, migration, colony formation, and induced apoptosis of SW480 cells by down-regulation of Hedgehog signaling pathway activity. Additionally, scutellarin lessened NF-κB-mediated inflammatory response in TNF-α-stimulated IEC-6 cells, by attenuating Hedgehog signaling cascade. CONCLUSION Scutellarin potently ameliorates CAC by suppressing Hedgehog signaling pathway activity, underpinning the promising application of scutellarin to CRC in clinical settings.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chongqing Medical and Health School, Chongqing 408000, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
54
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
55
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
56
|
Huang P, Wierbowski BM, Lian T, Chan C, García-Linares S, Jiang J, Salic A. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex. Dev Cell 2022; 57:670-685.e8. [PMID: 35231446 PMCID: PMC8932645 DOI: 10.1016/j.devcel.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlene Chan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Hassan Nazmy M, Ahmed Mekheimer R, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Usef Sadek K. Controlled microwave-assisted reactions: A facile synthesis of polyfunctionally substituted phthalazines as dual EGFR and PI3K inhibitors in CNS SNB-75 cell line. Bioorg Chem 2022; 122:105740. [PMID: 35298961 DOI: 10.1016/j.bioorg.2022.105740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Brain tumors are stubborn cancers with poor prognosis and disappointing survival rates. Targeted cancer therapeutics with higher efficacy and lower resistance are highly demanded. An efficient one-pot synthesis of polyfunctionalized phthalazines derivatives was developed by reacting ethyl 1-aryl-5-cyano-1,6-dihydro-4-methyl-6-oxo-3-pyridazine-carboxylates with cinnamonitrile derivatives and the cycloaddition reaction of thieno[3,4-d]pyridazines with activated double or triple bond systems under controlled microwave heating with high yields. The resultant synthesized phthalazines (5a-e, 9 and 13) were tested for their in vitro anti-cancer activities by using in vitro one dose assay at National Cancer institute, USA. Only phthalazine (5b) showed broad spectrum anti-tumor activity against most tested cancer cell lines from all subpanels with mean % GI = 22.61. Interestingly, all tested compounds showed varying growth inhibitory activity against a particular cell line, CNS SNB-75 cell line, but (5b) exhibited the highest growth inhibitory activity against CNS-SNB-75 cell line with (GI% = 108.81) and (IC50 = 3.703 ± 0.2) compared to erlotinib; (IC50 = 12.5 ± 0.68). It caused Pre-G1 apoptosis and growth arrest at S phase. It also increased percentage of the total apoptotic cells in CNS-SNB-75 cell line (39.26%) compared to control cells (2.17%) in the annexin V-FITC experiment. It revealed pronounced EGFR inhibitory activity (IC50 = 47.27 ± 2.41 ng/mL) compared to erlotinib (IC50 = 30.7 ± 1.56 ng/mL). It also inhibited the different PI3K isoforms α, β, γ and δ (with IC50 of 4.39, 13.6, 12.5 and 3.11 μg/mL, respectively compared to LY294002 (with IC50 of 12.7, 8.57, 6.89 and 5.7 μg/mL, respectively). It also caused significant lower protein expression levels of pPI3K, AKT, pAKT and Bcl2 and higher protein expression levels of BAX, Casp3 and Casp9 when compared to untreated cells. Conclusion: Phthalazine (5b) may be an effective, convenient and safe anti-cancer agent acting via proapoptotic and dual EGFR and PI3K kinase inhibitory actions in CNS SNB-75 cell line.
Collapse
Affiliation(s)
- Maiiada Hassan Nazmy
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Mai E Shoman
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Abo-Elsebaa
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed Abd-Elmonem
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Kamal Usef Sadek
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
58
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
59
|
Rock A, Ali S, Chow WA. Systemic Therapy for Chondrosarcoma. Curr Treat Options Oncol 2022; 23:199-209. [PMID: 35190971 DOI: 10.1007/s11864-022-00951-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Clinical trial enrollment should be actively encouraged in all patients diagnosed with advanced, surgically unresectable chondrosarcoma (CS) due to the lack of consensus treatment recommendations. In the absence of an appropriate clinical trial, treatments are determined based on histologic subtype of CS with consideration given to targetable mutations (i.e., IDH1). Conventional CS is inherently resistant to cytotoxic chemotherapy and patients may benefit from antiangiogenic therapy including off-label use of pazopanib. Individuals harboring an IDH1 mutation may derive clinical benefit from ivosidenib, an IDH1 inhibitor. Upon progression and with functional status permitting, alternative options include mTOR inhibitors (sirolimus, temsirolimus) or other tyrosine kinase inhibitors (dasatinib), though no clear sequencing data exists. For dedifferentiated CS, conventional chemotherapies with osteosarcoma-like regimens are upfront options although prospective data is limited with minimal overall benefit. Alternative treatment options include immunotherapy with pembrolizumab or ivosidenib in IDH1-mutant, dedifferentiated CS, but questionable efficacy was observed in small sample sizes with either approach. In mesenchymal CS, treatment with Ewing sarcoma-like chemotherapy regimens may be considered, although data supporting its use is even more limited given its rarity.
Collapse
Affiliation(s)
- Adam Rock
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Sana Ali
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Warren A Chow
- University of California Irvine, 101 The City Drive South, Orange, CA, 92868, USA. .,UCI Health, 101 The City Drive South, Building 63, Room 412, ZOT 4061, Orange, CA, 92868, USA.
| |
Collapse
|
60
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
61
|
GLI-1 polymorphisms of Hedgehog pathway as novel risk and prognostic biomarkers in melanoma patients. Melanoma Res 2022; 32:11-17. [PMID: 34939981 DOI: 10.1097/cmr.0000000000000789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In adult organisms, deregulation of the sonic hedgehog (SHH) signaling pathway is significantly correlated with different malignancies. Currently, data associating genetic polymorphisms in the SHH pathway with melanoma are scarce and largely unknown. The objective of our study was to elucidate an association between gene polymorphisms in the SHH pathway and prognosis of melanoma skin cancer patients. The current study investigated the association of PTCH1 (rs357564), SMO (rs2228617) and GLI1 (rs2228224, rs2228226), polymorphisms with melanoma predisposition and prognosis. Single-nucleotide polymorphisms were assessed by TaqMan SNP Genotyping Assays. The study involved 93 melanoma patients and 97 individuals in the control group. Melanoma patients with the variant mutant genotype GG of GLI1 rs2228226 polymorphism had poorer overall survival and recurrence-free survival (P = 0.0001 and P = 0.037, respectively). The multivariate analysis revealed that disease progression [hazard ratio (HR) = 14.434, P = 0.0001] and the GLI1 rs2228226 polymorphism (HR = 4.161, P = 0.006) persisted as independent prognostic factors. Mutated allele carriers (combined heterozygous and mutated genotypes) for GLI1 rs2228224 G and GLI1 rs2228226 G allele significantly increased melanoma risk [odds ratio (OR) = 2.261, P = 0.007; OR = 2.176, P = 0.010]. Our study demonstrated that genetic variants in GLI1, downstream member of the HH signaling pathway, are the risk factors for melanoma susceptibility and it can be a novel marker for melanoma prognosis. As a crucial SHH signaling member, GLI1 can also be regarded as a novel drug target for anti-cancer treatment in melanoma.
Collapse
|
62
|
Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines. Life Sci 2022; 288:120170. [PMID: 34826438 DOI: 10.1016/j.lfs.2021.120170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.
Collapse
|
63
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
64
|
Zeng S, Zhou F, Wang Y, Zhai Z, Xu L, Wang H, Chen X, Luo S, Cheng M. Aberrant expression of the extracellular matrix component Biglycan regulated by Hedgehog signalling promotes colorectal cancer cell proliferation. Acta Biochim Biophys Sin (Shanghai) 2021; 54:243-251. [PMID: 35130618 PMCID: PMC9909327 DOI: 10.3724/abbs.2021018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hedgehog (Hh) signalling plays essential roles in regulating embryonic development and contributes to tumour initiation, growth and progression in multiple cancers. The detailed mechanism by which Hh signalling participates in tumour growth warrants thorough study, although several downstream target genes have been identified. Herein, a set of novel targets of Hh signalling was identified in multiple types of tumour cells via RNA-Seq analysis. Among these targets, the expression regulation and oncogenic function of the extracellular matrix component biglycan (BGN) were investigated. Further investigation verified that Hh signalling activates the expression of BGN via the transcription factor Gli2, which directly binds to the promoter region of BGN. Functional assays revealed that BGN facilitates tumour cell growth and proliferation in colorectal cancer (CRC) cells, and xenograft assays confirmed that BGN also promotes tumour growth . Moreover, analysis of clinical CRC samples showed that both the protein and mRNA levels of BGN are increased in CRC tissues compared to those in adjacent tissues, and higher expression of BGN is correlated with poorer prognosis of CRC patients, further confirming the function of BGN in CRC. Taken together, aberrantly activated Hh signalling increases the expression of BGN, possibly regulates the extracellular matrix, and thereby promotes tumour growth in CRC.
Collapse
Affiliation(s)
- Shaopeng Zeng
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Feifei Zhou
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China,School of Basic Medical SciencesNanchang UniversityNanchang330006China
| | - Yiqing Wang
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Zhenyu Zhai
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Linlin Xu
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Hailong Wang
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Xinping Chen
- Department of Obstetrics & Gynecologythe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Shiwen Luo
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China
| | - Minzhang Cheng
- Center for Experimental Medicinethe First Affiliated Hospital of Nanchang UniversityNanchang330006China,Jiangxi Key Laboratory of Molecular Diagnostics and Precision MedicineNanchang330006China,Correspondence address. Tel: +86-791-88692139; E-mail:
| |
Collapse
|
65
|
Griffiths SC, Schwab RA, El Omari K, Bishop B, Iverson EJ, Malinauskas T, Dubey R, Qian M, Covey DF, Gilbert RJC, Rohatgi R, Siebold C. Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling. Nat Commun 2021; 12:7171. [PMID: 34887403 PMCID: PMC8660895 DOI: 10.1038/s41467-021-27475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.
Collapse
Affiliation(s)
- Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Evotec (UK) Ltd., Milton Park, Abingdon, UK
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kamel El Omari
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellen J Iverson
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MI, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MI, USA
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
66
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
67
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
68
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
69
|
Jiang Y, Peng J, Song J, He J, Jiang M, Wang J, Ma L, Wang Y, Lin M, Wu H, Zhang Z, Gao D, Zhao Y. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat Metab 2021; 3:1569-1584. [PMID: 34750570 PMCID: PMC9235319 DOI: 10.1038/s42255-021-00488-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
The Hedgehog (Hh) signalling pathway plays a critical role in regulating liver lipid metabolism and related diseases. However, the underlying mechanisms are poorly understood. Here, we show that the Hh signalling pathway induces a previously undefined long non-coding RNA (Hilnc, Hedgehog signalling-induced long non-coding RNA), which controls hepatic lipid metabolism. Mutation of the Gli-binding sites in the Hilnc promoter region (HilncBM/BM) decreases the expression of Hilnc in vitro and in vivo. HilncBM/BM and Hilnc-knockout mice are resistant to diet-induced obesity and hepatic steatosis through attenuation of the peroxisome proliferator-activated receptor signalling pathway, as Hilnc directly interacts with IGF2BP2 to enhance Pparγ mRNA stability. Furthermore, we identify a potential functional human homologue of Hilnc, h-Hilnc, which has a similar function in regulating cellular lipid metabolism. These findings uncover a critical role of the Hh-Hilnc-IGF2BP2 signalling axis in lipid metabolism and suggest a potential therapeutic target for the treatment of diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yiao Jiang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Peng
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiawen Song
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia Wang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liya Ma
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuang Wang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Science, Shanghai, P. R. China
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dong Gao
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shangha, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
70
|
Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L, Rieger K, Aasi S, Oro AE. c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep 2021; 37:109774. [PMID: 34610301 PMCID: PMC8515919 DOI: 10.1016/j.celrep.2021.109774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/veterinary
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/veterinary
- Cell Transdifferentiation/drug effects
- Chromatin Assembly and Disassembly
- Drug Resistance, Neoplasm/genetics
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mucin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-fos/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland.
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Yerly
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland
| | - Kerri Rieger
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
71
|
Liu Y, Zhou F, Ding K, Xue D, Zhu Z, Li C, Li F, Xu Y, Xu F, Le Z, Zhao S, Tao H. Structure-Activity Relationship Studies of Hydantoin-Cored Ligands for Smoothened Receptor. ChemistryOpen 2021; 10:1028-1032. [PMID: 34648230 PMCID: PMC8515922 DOI: 10.1002/open.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
An underside binding site was recently identified in the transmembrane domain of smoothened receptor (SMO). Herein, we report efforts in the exploration of new insights into the interactions between the ligand and SMO. The hydantoin core in the middle of the parent compound was found to be highly conservative in chirality, ring size, and substituents. On each benzene at two ends, a plethora of variations, particularly halogen substitutions, were introduced and investigated. Analysis of the structure-activity relationship revealed miscellaneous halogen effects. The ligands with double halogen substituents exhibit remarkably enhanced potency, providing promising candidates that potentially overcome the common drug resistance and useful heavy-atom labeled chemical tools for co-crystallization studies of SMO.
Collapse
Affiliation(s)
- Yang Liu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fang Zhou
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Kang Ding
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Dongxiang Xue
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhihao Zhu
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Cuixia Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Yueming Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhiping Le
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Suwen Zhao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Houchao Tao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| |
Collapse
|
72
|
Saraç M, Canpolat Ş, Önalan Etem E, Tektemur A, Tartar T, Bakal U, Kazez A. The role of sonic hedgehog homologue signal pathway in hypospadias aetiology. J Pediatr Urol 2021; 17:630.e1-630.e7. [PMID: 34275739 DOI: 10.1016/j.jpurol.2021.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hypospadias is one of the most common congenital anomalies of the male genitalia. Sonic hedgehog homologue (SHH) signalling pathway is believed to be involved in the development of the male genital system. OBJECTIVE In this clinical prospective study, the role of the SHH pathway in hypospadias aetiology was investigated. STUDY DESIGN In this study, 200 healthy children (boys without hypospadias, control group), 118 patients (boys with distal hypospadias) and 82 patients (boys with proximal hypospadias) of age 0-16 years were included. The expression of the genes suppressor of fused protein (SUFU), SHH, protein patched homologue (PTCH; PTCH1 and PTCH2), glioma-associated oncogene homologue (GLI; GLI1, GLI2, GLI3 and GLI4), smoothened, frizzled-class receptor (SMO) and serine/threonine-protein kinase 36 (STK36) that are involved in SHH pathway were investigated. Furthermore, polymorphism analyses of GLI2, SHH and PTCH1 genes were performed. The history of hypospadias in the first and second-degree relatives of the patients in boys with distal hypospadias and boys with proximal hypospadias was inquired. RESULTS Ten patients in the boys with distal hypospadias and twenty patients in the boys with proximal hypospadias had a history of hypospadias in first or second-degree relatives (p < 0.05). There was a significant decrease in mRNA expressions of SHH and PTCH1 genes in boys with proximal hypospadias compared to boys without hypospadias (p < 0.05). Besides, a significant decrease in mRNA fold-change of GLI2 gene was detected in boys with both distal hypospadias and proximal hypospadias compared to boys without hypospadias (p < 0.05). In contrast, there was no significant difference in the mRNA fold-changes of PTCH2, SUFU, GLI1, GLI3, GLI4, SMO and STK36 genes among the groups. Moreover, there were no significant differences in the frequencies of variant genotypes and alleles rs735557, rs12711538 and rs4848632 (GLI2 gene), rs104894049 (SHH gene) and rs41313327 (PTCH1 gene) (p > 0.05). DISCUSSION SHH expression is required for the growth and differentiation of the genital bulge. Developmental defects in the external genital organs were demonstrated in mice with SHH deletion. It has been demonstrated that SHH mainly plays a role in the formation of sinusoid morphology of the penis. In the present study, although SHH and PTCH gene expressions were found to be decreased only in the penile tissues of proximal hypospadias, GLI2 gene expression was decreased in penile tissues of boys with both distal hypospadias and boys with proximal hypospadias. CONCLUSION Genes involved in the SHH pathway might play a role in the aetiology of hypospadias. Furthermore, there is a correlation between molecular defects in this pathway and severity of hypospadias.
Collapse
Affiliation(s)
- Mehmet Saraç
- Department of Pediatric Surgery, Firat University School of Medicine, Elazig, 23119, Turkey.
| | - Şenay Canpolat
- Ministry of Health University, Ankara Dr. Sami Ulus Obstetrics, Child Health and Diseases Training and Research Hospital, Elazig, 23119, Turkey.
| | - Ebru Önalan Etem
- Department of Medical Biology, Firat University School of Medicine, 23119, Elazig, Turkey.
| | - Ahmet Tektemur
- Department of Medical Biology, Firat University School of Medicine, 23119, Elazig, Turkey.
| | - Tugay Tartar
- Department of Pediatric Surgery, Firat University School of Medicine, Elazig, 23119, Turkey.
| | - Unal Bakal
- Department of Pediatric Surgery, Firat University School of Medicine, Elazig, 23119, Turkey.
| | - Ahmet Kazez
- Department of Pediatric Surgery, Firat University School of Medicine, Elazig, 23119, Turkey.
| |
Collapse
|
73
|
Katsumata R, Manabe N, Fujita M, Ayaki M, Sunago A, Kamada T, Monobe Y, Kawamoto H, Haruma K. Colorectal neoplasms in melanosis coli: a survey in Japan and a worldwide meta-analysis. Int J Colorectal Dis 2021; 36:2177-2188. [PMID: 34156546 DOI: 10.1007/s00384-021-03970-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE The association between melanosis coli (MC) and colorectal neoplasms remains unclear. Thus, we primarily aimed to clarify the epidemiology of MC in the Japanese population, identify the relationship between the use of anthranoids and MC, and determine the prevalence of detected intestinal lesions in patients with MC. We subsequently conducted a meta-analysis of published data, including our results, to summarize the influence of MC on the prevalence of colonic neoplasms. METHODS We conducted a retrospective survey in Japan to investigate the effects of MC on intestinal disorders. The prevalence of colorectal neoplasms and ileal ulcers was evaluated by colonoscopy, and the clinical characteristics of the participants were investigated using an electronic database. Odds ratios for colorectal neoplasms were calculated. We also performed a meta-analysis using Review Manager to reveal the comprehensive relationship between MC and colorectal neoplasms. RESULTS We enrolled 690 Japanese participants in the primary study. The prevalence of regular anthranoid use was significantly higher in the MC group than in the control group (50.9% vs. 6.5%, p < 0.01). Hyperplastic/inflammatory polyps and adenomas were more frequently detected in the MC group than in the control group. In a meta-analysis of five studies, a significantly higher prevalence of hyperplastic/inflammatory polyps and adenomas was reported in the MC group than in the control group, while the incidence of adenocarcinoma was not significantly different between the two groups. CONCLUSION Although hyperplastic polyps and adenomas were more frequently detected in MC patients, MC was not associated with an elevated risk of colorectal cancer.
Collapse
Affiliation(s)
- Ryo Katsumata
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, 7008505, Japan
| | - Noriaki Manabe
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, 7008505, Japan.
| | - Minoru Fujita
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, 7008505, Japan
| | - Maki Ayaki
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, 7008505, Japan
| | - Aya Sunago
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Yasumasa Monobe
- Department of Pathology, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| |
Collapse
|
74
|
Pakvasa M, Tucker AB, Shen T, He TC, Reid RR. The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofacial Patterning to Carcinogenesis. FACE (THOUSAND OAKS, CALIF.) 2021; 2:260-274. [PMID: 35812774 PMCID: PMC9268505 DOI: 10.1177/27325016211024326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Andrew B. Tucker
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Timothy Shen
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| | - Tong-Chuan He
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Russell R. Reid
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
- Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
75
|
Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. Stress-activated kinases as therapeutic targets in pancreatic cancer. World J Gastroenterol 2021; 27:4963-4984. [PMID: 34497429 PMCID: PMC8384741 DOI: 10.3748/wjg.v27.i30.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a dismal disease with high incidence and poor survival rates. With the aim to improve overall survival of pancreatic cancer patients, new therapeutic approaches are urgently needed. Protein kinases are key regulatory players in basically all stages of development, maintaining physiologic functions but also being involved in pathogenic processes. c-Jun N-terminal kinases (JNK) and p38 kinases, representatives of the mitogen-activated protein kinases, as well as the casein kinase 1 (CK1) family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors, DNA damage, and others. In their physiologic roles, they are responsible for the regulation of cell cycle progression, cell proliferation and differentiation, and apoptosis. Dysregulation of the underlying pathways consequently has been identified in various cancer types, including pancreatic cancer. Pharmacological targeting of those pathways has been the field of interest for several years. While success in earlier studies was limited due to lacking specificity and off-target effects, more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results. Consequently, targeting of JNK, p38, and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases. However, further studies are warranted, especially involving in vivo investigation and clinical trials, in order to advance inhibition of stress-activated kinases to the field of translational medicine.
Collapse
Affiliation(s)
- Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| |
Collapse
|
76
|
Adolphe C, Millar A, Kojic M, Barkauskas DS, Sundström A, Swartling FJ, Hediyeh-Zadeh S, Tan CW, Davis MJ, Genovesi LA, Wainwright BJ. SOX9 Defines Distinct Populations of Cells in SHH Medulloblastoma but Is Not Required for Math1-Driven Tumor Formation. Mol Cancer Res 2021; 19:1831-1839. [PMID: 34330843 DOI: 10.1158/1541-7786.mcr-21-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined. Here we report a previously undocumented level of SOX9 expression exclusively in proliferating granule cell precursors (GCP) of the postnatal mouse cerebellum, which function as the medulloblastoma-initiating cells of SHH-MBs. Wild-type GCPs express comparatively lower levels of SOX9 than neural stem cells and mature astroglia and SOX9low GCP-like tumor cells constitute the bulk of both infant (Math1Cre:Ptch1lox/lox ) and adult (Ptch1LacZ/+ ) SHH-MB mouse models. Human medulloblastoma single-cell RNA data analyses reveal three distinct SOX9 populations present in SHH-MB and noticeably absent in other medulloblastoma subgroups: SOX9 + MATH1 + (GCP), SOX9 + GFAP + (astrocytes) and SOX9 + MATH1 + GFAP + (potential tumor-derived astrocytes). To functionally address whether SOX9 is required as a downstream effector of Hedgehog signaling in medulloblastoma tumor cells, we ablated Sox9 using a Math1Cre model system. Surprisingly, targeted ablation of Sox9 in GCPs (Math1Cre:Sox9lox/lox ) revealed no overt phenotype and loss of Sox9 in SHH-MB (Math1Cre:Ptch1lox/lox;Sox9lox/lox ) does not affect tumor formation. IMPLICATIONS: Despite preclinical data indicating SOX9 plays a key role in SHH-MB biology, our data argue against SOX9 as a viable therapeutic target.
Collapse
Affiliation(s)
- Christelle Adolphe
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Amanda Millar
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Marija Kojic
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Deborah S Barkauskas
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anders Sundström
- Department of Immunology, Genetics, and Pathology, Science For Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics, and Pathology, Science For Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Chin Wee Tan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Laura A Genovesi
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Brandon J Wainwright
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
77
|
Patmanathan SN, Tong BT, Jackie Teo JH, Jonathan Ting YZ, Tan NS, Kenice Sim SH, Ta YC, Woo WM. A PDZ Protein GIPC3 Positively Modulates Hedgehog Signaling and Melanoma Growth. J Invest Dermatol 2021; 142:179-188.e4. [PMID: 34224745 DOI: 10.1016/j.jid.2021.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The Hedgehog (Hh) pathway is essential for animal development but aberrant activation promotes cancer growth. Here we show that GIPC3, a PDZ domain-containing protein with putative adaptor protein function, positively modulates Hh target gene expression in normal fibroblasts and melanoma cells and supports melanoma tumor growth. Using overexpression and epistasis studies, we show that Gipc3 potentiates Hh transcriptional output and it modulates GLI-dependent transcription independently of Sufu. While we find GIPC3 protein does not interact with Hh pathway components, Ingenuity Pathway Analyses of GIPC3-interacting proteins identified by co-immunoprecipitation and mass spectrometry show an association with cancer pathogenesis. Subsequent interrogation of TCGA and The Human Protein Atlas databases reveals GIPC3 upregulation in many cancers. Using expression screens in selected groups of GIPC3-upregulated cancers with reported Hh pathway activation, we find a significant positive correlation of GIPC3 expression with Hh pathway components GLI1, GLI2, and GPR161, in melanoma lines. Consistently, GIPC3 knockdown in melanoma lines significantly reduces GLI1 and GLI2 expression, cell viability, colony formation, and allograft tumor growth. Our findings highlight previously unidentified roles of Gipc3 in potentiating Hh response and melanoma tumorigenesis, and suggest that GIPC3 modulation on Hh signaling may be targeted to reduce melanoma growth.
Collapse
Affiliation(s)
| | - Bing Teck Tong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Jia Hao Jackie Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Yng-Cun Ta
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Wei-Meng Woo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
78
|
Shen ZQ, Wang J, Tan WF, Huang TM. Berberine inhibits colorectal tumor growth by suppressing SHH secretion. Acta Pharmacol Sin 2021; 42:1190-1194. [PMID: 32958873 PMCID: PMC8209003 DOI: 10.1038/s41401-020-00514-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Hedgehog plays an important role in a wide range of physiological and pathological conditions. Paracrine activation of Hedgehog pathway in stromal cells increases the expression of VEGF, which promotes neovascularization in colorectal cancer and ultimately the growth of colorectal cancer. Berberine (BBR) has anticancer activity. In this study we investigated whether BBR inhibited the growth of colon cancer through suppressing the paracrine sonic hedgehog (SHH) signaling in vitro and in vivo. We showed that BBR (1-10 μM) dose-dependently inhibited the secretion and expression of SHH protein in HT-29 and SW480 cells. BBR did not influence the transcription of SHH, but promoted the degradation of SHH mRNA, thus decreased the SHH mRNA expression in the colorectal cancer cells. In nude mice bearing HT-29 xenograft, oral administration of BBR (100 mg · kg-1 · d-1) or a positive control drug GDC-0449 (100 mg · kg-1 · d-1) for 4 weeks markedly suppressed the growth of HT-29 tumor with BBR exhibiting a better antitumor efficacy. The tumor growth inhibition caused by BBR or GDC-0449 was comparable to their respective inhibitory effect on the mouse-specific Gli mRNA expression in the tumor. However, BBR (20 μM) did not affect the expression of human transcription factor Gli1 mRNA in HT-29 and SW480 cells. In conclusion, BBR promotes the degradation of SHH mRNA in colorectal cancer cells, interrupting the paracrine Hedgehog signaling pathway activity thus suppresses the colorectal cancer growth. This study reveals a novel molecular mechanism underlying the anticancer action of BBR.
Collapse
Affiliation(s)
- Zhu-Qing Shen
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Tao-Min Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
79
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
80
|
Mechanism and ultrasensitivity in Hedgehog signaling revealed by Patched1 disease mutations. Proc Natl Acad Sci U S A 2021; 118:2006800118. [PMID: 33526656 DOI: 10.1073/pnas.2006800118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.
Collapse
|
81
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
82
|
Helal MG, Abd Elhameed AG. Graviola mitigates acetic acid-induced ulcerative colitis in rats: insight on apoptosis and Wnt/Hh signaling crosstalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29615-29628. [PMID: 33559079 DOI: 10.1007/s11356-021-12716-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, we elucidated the potential protective effects of graviola leaves, compared with sulfasalazine, against acetic acid (AA)-induced ulcerative colitis (UC) in rats. Twenty-eight mature male rats were divided into four groups, Sham, Colitis, Colitis/Sulfa, and Colitis/Graviola, and were treated orally with either saline, saline, sulfasalazine (100 mg/kg/day), or graviola (100 mg/kg/day), respectively, for 7 days. On the 4th day, UC was induced by transrectal administration of 4% AA. Colon tissues were excised for macroscopic and histopathological evaluation and immunohistochemical analysis of caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax). Also, levels of oxidative mediators, Wnt family member1 (Wnt1), smoothened (Smo), and glioblastoma-1 (Gli1) were evaluated. Macroscopic and histopathological examination revealed that both graviola and sulfasalazine significantly mitigated colonic damage. Besides, both treatments significantly alleviated AA-induced oxidative stress, as evidenced by reduced nitric oxide (No) and malondialdehyde (MDA) levels and myeloperoxidase (MPO) activity and raised reduced glutathione (GSH) content. Both treatments significantly attenuated AA-induced apoptosis via downregulating the expression of Bax and caspase-3 and upregulating the expression of the anti-apoptotic protein, Bcl-2. Furthermore, downregulation of mRNA expression of Wnt1 with concomitant upregulation of Smo and Gli1 was observed in rats treated with either sulfasalazine or graviola. Based on these observations, graviola may attenuate AA-induced UC, at least partially, by modulating apoptosis and Wingless/Int1 (Wnt) and hedgehog (Hh) signaling crosstalk.
Collapse
Affiliation(s)
- Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed G Abd Elhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
83
|
Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem 2021; 28:1585-1604. [PMID: 32660395 DOI: 10.2174/0929867327666200713185413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
84
|
Angrisani A, Di Fiore A, Di Trani CA, Fonte S, Petroni M, Lospinoso Severini L, Bordin F, Belloni L, Ferretti E, Canettieri G, Moretti M, De Smaele E. Specific Protein 1 and p53 Interplay Modulates the Expression of the KCTD-Containing Cullin3 Adaptor Suppressor of Hedgehog 2. Front Cell Dev Biol 2021; 9:638508. [PMID: 33898425 PMCID: PMC8060498 DOI: 10.3389/fcell.2021.638508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in normal embryonic development and adult tissue homeostasis. On the other end, dysregulated Hh signaling triggers a prolonged mitogenic response that may prompt abnormal cell proliferation, favoring tumorigenesis. Indeed, about 30% of medulloblastomas (MBs), the most common malignant childhood cerebellar tumors, exhibit improper activation of the Hh signaling. The oncosuppressor KCASH2 has been described as a suppressor of the Hh signaling pathway, and low KCASH2 expression was observed in Hh-dependent MB tumor. Therefore, the study of the modulation of KCASH2 expression may provide fundamental information for the development of new therapeutic approaches, aimed to restore physiological KCASH2 levels and Hh inhibition. To this end, we have analyzed the TATA-less KCASH2 proximal promoter and identified key transcriptional regulators of this gene: Sp1, a TF frequently overexpressed in tumors, and the tumor suppressor p53. Here, we show that in WT cells, Sp1 binds KCASH2 promoter on several putative binding sites, leading to increase in KCASH2 expression. On the other hand, p53 is involved in negative regulation of KCASH2. In this context, the balance between p53 and Sp1 expression, and the interplay between these two proteins determine whether Sp1 acts as an activator or a repressor of KCASH2 transcription. Indeed, in p53–/– MEF and p53 mutated tumor cells, we hypothesize that Sp1 drives promoter methylation through increased expression of the DNA methyltransferase 1 (DNMT1) and reduces KCASH2 transcription, which can be reversed by Sp1 inhibition or use of demethylating agents. We suggest therefore that downregulation of KCASH2 expression in tumors could be mediated by gain of Sp1 activity and epigenetic silencing events in cells where p53 functionality is lost. This work may open new venues for novel therapeutic multidrug approaches in the treatment of Hh-dependent tumors carrying p53 deficiency.
Collapse
Affiliation(s)
| | | | | | - Simone Fonte
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | - Fabio Bordin
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Laura Belloni
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
85
|
Song JH, Tieu AH, Cheng Y, Ma K, Akshintala VS, Simsek C, Prasath V, Shin EJ, Ngamruengphong S, Khashab MA, Abraham JM, Meltzer SJ. Novel Long Noncoding RNA miR205HG Functions as an Esophageal Tumor-Suppressive Hedgehog Inhibitor. Cancers (Basel) 2021; 13:cancers13071707. [PMID: 33916875 PMCID: PMC8038513 DOI: 10.3390/cancers13071707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Barrett’s esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Long noncoding RNAs (lncRNAs) have been identified as key regulators of biological pathways and we identified lncRNA, miR205HG, as a tumor suppressor in the development of Barrett’s esophagus and esophageal adenocarcinoma, in part through its effect on the Hedgehog signaling pathway. The aims of the current study were: (1) to study involvement of miR205HG in the development of BE and EAC (2) to clarify the role of miR205HG in in vitro and in vivo experiments; and (3) to investigate the mechanism of miR205HG involving the Hedgehog (Hh) signaling pathway Abstract Barrett’s esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators of biological pathways. However, involvement of lncRNAs in the development of BE and EAC has not been well-studied. The aims of the current study were: (1) to study involvement of the lncRNA, miR205HG, in the development of BE and EAC; (2) to clarify the role of miR205HG in in vitro and in vivo experiments; and (3) to investigate the mechanism of miR205HG involving the Hedgehog (Hh) signaling pathway. These experiments revealed that miR205HG was downregulated in EAC vs. normal esophageal epithelia (NE) as well as in EAC cell lines, and its forced overexpression inhibited EAC cell proliferation and cell cycle progression in vitro. Similarly, overexpression of miR205HG inhibited xenograft tumor growth in mice In vivo. Finally, we show that one mechanism of action of miR205HG involves the Hh signaling pathway: miR205HG and Hh expression levels were inversely correlated in both EAC (r = −0.73) and BE (r = −0.83) tissues, and in vitro studies revealed details of Hh signaling inhibition induced by miR205HG. In conclusion, these findings establish that lncRNA miR205HG functions as a tumor suppressor in the development of BE and EAC, at least in part through its effect on the Hh signaling pathway.
Collapse
Affiliation(s)
- Jee Hoon Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Alan H. Tieu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Eastern Virginia Medical School, Norfolk, VA 23456, USA
| | - Yulan Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Ke Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Venkata S. Akshintala
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Cem Simsek
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Vishnu Prasath
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Saowanee Ngamruengphong
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Mouen A. Khashab
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - John M. Abraham
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (J.H.S.); (A.H.T.); (Y.C.); (K.M.); (V.S.A.); (C.S.); (V.P.); (E.J.S.); (S.N.); (M.A.K.); (J.M.A.)
- Correspondence: ; Tel.: +410-502-6071
| |
Collapse
|
86
|
Misawa R, Minami T, Okamoto A, Ikeuchi Y. Light-inducible control of cellular proliferation and differentiation by a Hedgehog signaling inhibitor. Bioorg Med Chem 2021; 38:116144. [PMID: 33845416 DOI: 10.1016/j.bmc.2021.116144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) signaling pathway is a major regulator of cell differentiation and proliferation. Aberrant activation of the Hh pathway has been implicated in several types of cancer. To understand the Hedgehog pathway and fight against related diseases, it is important to inhibit Hedgehog signaling in a targeted manner. However, no tools are available for the precise inhibition of Hh signaling in a spatiotemporal manner. In this study, we synthesized and evaluated the bioactivity of a light-inducible Hh pathway inhibitor (NVOC-SANT-75). NVOC-SANT-75 inhibits transcription factor Gli1 in NIH3T3 cells and controls proliferation and differentiation of primary cultured mouse cerebellar neurons in a light-irradiation-dependent manner. The light-inducible Hedgehog signaling inhibitors may be a new candidate for light-mediated cancer treatment.
Collapse
Affiliation(s)
- Ryuji Misawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 153-8505, Japan
| | - Akimitsu Okamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8505, Japan; Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 153-8505, Japan.
| |
Collapse
|
87
|
Sabu DM, Kroes J, Gilham C, Fleming A, Kelleher FC. Neo-adjuvant Vismodegib followed by radiation in locally advanced basal cell carcinoma. Curr Probl Cancer 2021; 45:100736. [PMID: 33894989 DOI: 10.1016/j.currproblcancer.2021.100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Basal cell carcinomas occur in up to 39% of Caucasian men and 28% of women. Rarely it can present a management dilemma in patients with neglected locally advanced disease of large dimension or involvement of critical structures. The Hedgehog pathway is constitutively active in almost all basal cell carcinomas and patients with Naevoid Basal Cell Carcinoma Syndrome have germline mutations in the Patched tumor suppressor gene, a Hedgehog pathway component, on chromosome 9q. This case describes an elderly patient with an untreated sporadic Basal cell carcinoma whose dimensions precluded local management approaches. The Hedgehog pathway inhibitor Vismodegib had a dramatic response allowing definitive treatment to be pursued.
Collapse
Affiliation(s)
- Diya M Sabu
- Department of Medical Oncology, St James Hospital, Dublin 8, Ireland.
| | - Jeska Kroes
- Department of Medical Oncology, St James Hospital, Dublin 8, Ireland
| | - Charles Gilham
- Department of Radiation Oncology, St James Hospital, Dublin 8, Ireland
| | - Ann Fleming
- Department of Radiography and Diagnostic Imaging, University College Dublin, Ireland
| | - Fergal C Kelleher
- Department of Medical Oncology, St James Hospital, Dublin 8, Ireland; Trinity College Dublin, Ireland
| |
Collapse
|
88
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
89
|
Lainez-González D, Serrano-López J, Alonso-Domínguez JM. Understanding the Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step toward a Cure. BIOLOGY 2021; 10:biology10040255. [PMID: 33804919 PMCID: PMC8063837 DOI: 10.3390/biology10040255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The Hedgehog signaling pathway is related to the cell cycle. In particular, it is considered to play a fundamental role in the quiescence of leukemic stem cell (i.e., a temporary resting state without cell replication). Leukemic stem cells are the cells supposed to give rise to the relapses of the leukemia. Therefore, the Hedgehog pathway must be understood to improve the current treatments against acute myeloid leukemia and avoid the relapse of the disease. In this review, we gather the present knowledge about the physiological Hedgehog pathway function, the aberrant activation of Hedgehog in leukemia, and highlight the lack of evidence regarding some aspects of this important pathway. Finally, we summarize the acute myeloid leukemia treatments targeting this signaling pathway. Abstract A better understanding of how signaling pathways govern cell fate is fundamental to advances in cancer development and treatment. The initialization of different tumors and their maintenance are caused by the deregulation of different signaling pathways and cancer stem cell maintenance. Quiescent stem cells are resistant to conventional chemotherapeutic treatments and, consequently, are responsible for disease relapse. In this review we focus on the conserved Hedgehog (Hh) signaling pathway which is involved in regulating the cell cycle of hematopoietic and leukemic stem cells. Thus, we examine the role of the Hh signaling pathway in normal and leukemic stem cells and dissect its role in acute myeloid leukemia. We explain not only the connection between illness and the signaling pathway but also evaluate innovative therapeutic approaches that could affect the outcome of patients with acute myeloid leukemia. We found that many aspects of the Hedgehog signaling pathway remain unknown. The role of Hh has only been proven in embryo and hematopoietic stem cell development. Further research is needed to elucidate the role of GLI transcription factors for therapeutic targeting. Glasdegib, an SMO inhibitor, has shown clinical activity in acute myeloid leukemia; however, its mechanism of action is not clear.
Collapse
Affiliation(s)
- Daniel Lainez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Domínguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
90
|
Troiani T, Napolitano S, Brancaccio G, Belli V, Nappi A, Miro C, Salvatore D, Dentice M, Caraglia M, Franco R, Giunta EF, De Falco V, Ciardiello D, Ciardiello F, Argenziano G. Treatment of Cutaneous Melanoma Harboring SMO p.Gln216Arg Mutation with Imiquimod: An Old Drug with New Results. J Pers Med 2021; 11:206. [PMID: 33799349 PMCID: PMC8000647 DOI: 10.3390/jpm11030206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer and its incidence is growing worldwide. In the last ten years, the therapeutic scenario of this disease has been revolutionized by the introduction of targeted therapies and immune-checkpoint inhibitors. However, in patients with many lesions and bulky tumors, in which surgery is no longer feasible, there is a need for new treatment options. Here we report, for the first time to our knowledge, a clinical case where a melanoma patient harboring the SMO p.Gln216Arg mutation has been treated with imiquimod, showing a complete and durable response. To better explain this outstanding response to the treatment, we transfected a melanoma cell line (MeWo) with the SMO p.Gln216Arg mutation in order to evaluate its role in response to the imiquimod treatment. Moreover, to better demonstrate that the antitumor activity of imiquimod was due to its role in suppressing the oncogenic SMO signaling pathway, independently of its immune modulating function, an in vivo experiment has been performed. This clinical case opens up a new scenario for the treatment of melanoma patients identifying a new potentially druggable target.
Collapse
Affiliation(s)
- Teresa Troiani
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Gabriella Brancaccio
- Dermatology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.B.); (G.A.)
| | - Valentina Belli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Michele Caraglia
- Biochemistry Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Giuseppe Argenziano
- Dermatology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.B.); (G.A.)
| |
Collapse
|
91
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
92
|
Gaillard D, Barlow LA. A Mechanistic Overview of Taste Bud Maintenance and Impairment in Cancer Therapies. Chem Senses 2021; 46:6161548. [PMID: 33693542 DOI: 10.1093/chemse/bjab011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the early 20th century, progress in cancer therapies has significantly improved disease prognosis. Nonetheless, cancer treatments are often associated with side effects that can negatively affect patient well-being and disrupt the course of treatment. Among the main side effects, taste impairment is associated with depression, malnutrition, and morbid weight loss. Although relatively common, taste disruption associated with cancer therapies remains poorly understood. Here, we review the current knowledge related to the molecular mechanisms underlying taste maintenance and disruption in the context of cancer therapies.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Mail Stop 8108, Aurora, CO 80045, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Mail Stop 8108, Aurora, CO 80045, USA
| |
Collapse
|
93
|
Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, Xu L, Liu Y, Shi C, Deng L, Lu Q, Rao H, Lu H, Chen YG, Luo S. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis 2021; 12:199. [PMID: 33608498 PMCID: PMC7896051 DOI: 10.1038/s41419-021-03487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Hedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling. Here, we unveil SuFu Negating Protein 1 (SNEP1) as a novel Hh target, that enhances the ubiquitination and proteasomal degradation of SuFu and thus promotes Hh signaling. We further show that the E3 ubiquitin ligase LNX1 plays a critical role in the SNEP1-mediated degradation of SuFu. Accordingly, SNEP1 promotes colorectal cancer (CRC) cell proliferation and tumor growth. High levels of SNEP1 are detected in CRC tissues and are well correlated with poor prognosis in CRC patients. Moreover, SNEP1 overexpression reduces sensitivity to anti-Hh inhibitor in CRC cells. Altogether, our findings demonstrate that SNEP1 acts as a novel feedback regulator of Hh signaling by destabilizing SuFu and promoting tumor growth and anti-Hh resistance.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yao Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Libin Deng
- Basic Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hai Rao
- Department of Molecular Medicine, The University of Texas Health, San Antonio, TX, 78229, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
94
|
Kuehn J, Espinoza-Sanchez NA, Teixeira FCOB, Pavão MSG, Kiesel L, Győrffy B, Greve B, Götte M. Prognostic significance of hedgehog signaling network-related gene expression in breast cancer patients. J Cell Biochem 2021; 122:577-597. [PMID: 33417295 DOI: 10.1002/jcb.29886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.
Collapse
Affiliation(s)
- Julia Kuehn
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Felipe C O B Teixeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro S G Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, and Semmelweis University 2nd Department of Pediatrics, TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
95
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
96
|
Gambichler T, Dreißigacker M, Kasakovski D, Skrygan M, Wieland U, Silling S, Gravemeyer J, Melior A, Cherouny A, Stücker M, Stockfleth E, Sand M, Becker JC. Patched 1 expression in Merkel cell carcinoma. J Dermatol 2020; 48:64-74. [PMID: 33180347 DOI: 10.1111/1346-8138.15611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
The relevance of Hedgehog signaling in Merkel cell carcinoma has only been addressed by a few studies with conflicting results. Thus, we aimed to establish the expression of Hedgehog signaling molecules in Merkel cell carcinoma to characterize causes of aberrant expression and to correlate these findings with the clinical course of the patients. Immunohistochemistry was performed for Sonic, Indian, Patched 1 (PTCH1) and Smoothened on patients' tumor tissue. Respective mRNA expression was analyzed in 10 Merkel cell carcinoma cell lines using quantitative real-time polymerase chain reaction. PTCH1 sequencing and DNA methylation microarray analyses were carried out on tumor tissues as well as cell lines. PTCH1 immunoreactivity in Merkel cell carcinoma was similar to that of basal cell carcinomas, which both significantly differed from PTCH1 immunoreactivity in healthy skin. Most PTCH1 mutations found were synonymous or without known functional impact. However, on average, the promoter regions of both PTCH1 were hypomethylated independently from PTCH1 gene expression or Merkel cell polyomavirus status. PTCH1 and GLI1/2/3 genes were differently expressed in different cell lines; notably, there was a significant correlation between GLI2 and PTCH1 mRNA expression. Similar to PTCH1 protein expression in patient tissues, PTCH1 gene expression in Merkel cell carcinoma cell lines is highly variable, but due to the similar methylation pattern across Merkel cell carcinoma cell lines, effects other than methylation seem to be the reason for the differential expression and PTCH1 appears to be upregulated by GLI as a classical Hedgehog target gene.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Max Dreißigacker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Dimitri Kasakovski
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Marina Skrygan
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Ulrike Wieland
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Steffi Silling
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Jan Gravemeyer
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Anita Melior
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Angela Cherouny
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Markus Stücker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Michael Sand
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C Becker
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
97
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
98
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
99
|
Giuntini G, Monaci S, Cau Y, Mori M, Naldini A, Carraro F. Inhibition of Melanoma Cell Migration and Invasion Targeting the Hypoxic Tumor Associated CAXII. Cancers (Basel) 2020; 12:E3018. [PMID: 33080820 PMCID: PMC7602957 DOI: 10.3390/cancers12103018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Intratumoral hypoxia contributes to cancer progression and poor prognosis. Carbonic anhydrases IX (CAIX) and XII (CAXII) play pivotal roles in tumor cell adaptation and survival, as aberrant Hedgehog (Hh) pathway does. In malignant melanoma both features have been investigated for years, but they have not been correlated before and/or identified as a potential pharmacological target. Here, for the first time, we demonstrated that malignant melanoma cell motility was impaired by targeting CAXII via either CAs inhibitors or through the inhibition of the Hh pathway. METHODS We tested cell motility in three melanoma cell lines (WM-35, SK-MEL28, and A375), with different invasiveness capabilities. To this end we performed a scratch assay in the presence of the smoothened (SMO) antagonist cyclopamine (cyclo) or CAs inhibitors under normoxia or hypoxia. Then, we analyzed the invasiveness potential in the cell lines which were more affected by cyclo and CAs inhibitors (SK-MEL28 and A375). Western blot was employed to assess the expression of the hypoxia inducible factor 1α, CAXII, and FAK phosphorylation. Immunofluorescence staining was performed to verify the blockade of CAXII expression. RESULTS Hh inhibition reduced melanoma cell migration and CAXII expression under both normoxic and hypoxic conditions. Interestingly, basal CAXII expression was higher in the two more aggressive melanoma cell lines. Finally, a direct CAXII blockade impaired melanoma cell migration and invasion under hypoxia. This was associated with a decrease of FAK phosphorylation and metalloprotease activities. CONCLUSIONS CAXII may be used as a target for melanoma treatment not only through its direct inhibition, but also through Hh blockade.
Collapse
Affiliation(s)
- Gaia Giuntini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Sara Monaci
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (Y.C.); (M.M.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (Y.C.); (M.M.)
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Fabio Carraro
- Department of Medical Biotechnologies, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy
| |
Collapse
|
100
|
Weng Y, Lieberthal TJ, Zhou VX, Lopez-Ichikawa M, Armas-Phan M, Bond TK, Yoshida MC, Choi WT, Chang TT. Liver epithelial focal adhesion kinase modulates fibrogenesis and hedgehog signaling. JCI Insight 2020; 5:141217. [PMID: 32910808 PMCID: PMC7605528 DOI: 10.1172/jci.insight.141217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) is an important mediator of extracellular matrix-integrin mechano-signal transduction that regulates cell motility, survival, and proliferation. As such, FAK is being investigated as a potential therapeutic target for malignant and fibrotic diseases, and numerous clinical trials of FAK inhibitors are underway. The function of FAK in nonmalignant, nonmotile epithelial cells is not well understood. We previously showed that hepatocytes demonstrated activated FAK near stiff collagen tracts in fibrotic livers. In this study, we examined the role of liver epithelial FAK by inducing fibrotic liver disease in mice with liver epithelial FAK deficiency. We found that mice that lacked FAK in liver epithelial cells developed more severe liver injury and worse fibrosis as compared with controls. Increased fibrosis in liver epithelial FAK-deficient mice was linked to the activation of several profibrotic pathways, including the hedgehog/smoothened pathway. FAK-deficient hepatocytes produced increased Indian hedgehog in a manner dependent on matrix stiffness. Furthermore, expression of the hedgehog receptor, smoothened, was increased in macrophages and biliary cells of hepatocyte-specific FAK-deficient fibrotic livers. These results indicate that liver epithelial FAK has important regulatory roles in the response to liver injury and progression of fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tammy T Chang
- Department of Surgery.,Liver Center, University of California, San Francisco, California, USA
| |
Collapse
|