51
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
52
|
Sun D, Luo Z, Kong Y, Huang R, Li Q. Force-Regulated Calcium Signaling of Lymphoid Cell RPMI 8226 Mediated by Integrin α 4β 7/MAdCAM-1 in Flow. Biomolecules 2023; 13:biom13040587. [PMID: 37189336 DOI: 10.3390/biom13040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
MAdCAM-1 binds to integrin α4β7, which mediates the rolling and arrest of circulating lymphocytes upon the vascular endothelia during lymphocytic homing. The calcium response by adhered lymphocytes is a critical event for lymphocyte activation and subsequent arrest and migration under flow. However, whether the interaction of integrin α4β7 /MAdCAM-1 can effectively trigger the calcium response of lymphocytes remains unclear, as well as whether the fluid force affects the calcium response. In this study, we explore the mechanical regulation of integrin α4β7-induced calcium signaling under flow. Flou-4 AM was used to examine the calcium response under real-time fluorescence microscopy when cells were firmly adhered to a parallel plate flow chamber. The interaction between integrin α4β7 and MAdCAM-1 was found to effectively trigger calcium signaling in firmly adhered RPMI 8226 cells. Meanwhile, increasing fluid shear stress accelerated the cytosolic calcium response and enhanced signaling intensity. Additionally, the calcium signaling of RPMI 8226 activated by integrin α4β7 originated from extracellular calcium influx instead of cytoplasmic calcium release, and the signaling transduction of integrin α4β7 was involved in Kindlin-3. These findings shed new light on the mechano-chemical mechanism of calcium signaling in RPMI 8226 cells induced by integrin α4β7.
Collapse
Affiliation(s)
- Dongshan Sun
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Luo
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Kong
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Ruiting Huang
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
53
|
Eskiocak YC, Ayyildiz ZO, Gunalp S, Korkmaz A, Helvaci DG, Dogan Y, Sag D, Wingender G. The Ca2+ concentration impacts the cytokine production of mouse and human lymphoid cells and the polarization of human macrophages in vitro. PLoS One 2023; 18:e0282037. [PMID: 36827279 PMCID: PMC9956017 DOI: 10.1371/journal.pone.0282037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Various aspects of the in vitro culture conditions can impact the functional response of immune cells. For example, it was shown that a Ca2+ concentration of at least 1.5 mM during in vitro stimulation is needed for optimal cytokine production by conventional αβ T cells. Here we extend these findings by showing that also unconventional T cells (invariant Natural Killer T cells, mucosal-associated invariant T cells, γδ T cells), as well as B cells, show an increased cytokine response following in vitro stimulation in the presence of elevated Ca2+ concentrations. This effect appeared more pronounced with mouse than with human lymphoid cells and did not influence their survival. A similarly increased cytokine response due to elevated Ca2+ levels was observed with primary human monocytes. In contrast, primary human monocyte-derived macrophages, either unpolarized (M0) or polarized into M1 or M2 macrophages, displayed increased cell death in the presence of elevated Ca2+ concentrations. Furthermore, elevated Ca2+ concentrations promoted phenotypic M1 differentiation by increasing M1 markers on M1 and M2 macrophages and decreasing M2 markers on M2 macrophages. However, the cytokine production of macrophages, again in contrast to the lymphoid cells, was unaltered by the Ca2+ concentration. In summary, our data demonstrate that the Ca2+ concentration during in vitro cultures is an important variable to be considered for functional experiments and that elevated Ca2+ levels can boost cytokine production by both mouse and human lymphoid cells.
Collapse
Affiliation(s)
| | - Zeynep Ozge Ayyildiz
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | - Sinem Gunalp
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | - Asli Korkmaz
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | | | - Yavuz Dogan
- Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Balcova/Izmir, Turkey
| | - Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Balcova/Izmir, Turkey
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- * E-mail:
| |
Collapse
|
54
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|
55
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
56
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
57
|
Metabolic hallmarks of natural killer cells in the tumor microenvironment and implications in cancer immunotherapy. Oncogene 2023; 42:1-10. [PMID: 36473909 DOI: 10.1038/s41388-022-02562-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells belong to the early responder group against cancerous cells and viral infection. Emerging evidence reveals that distinct metabolic reprogramming occurs concurrently with activation and memory formation of NK cells. However, metabolism of NK cells is disturbed in the tumor immune microenvironment, which may promote tumor progression while limiting immunotherapy responses. In this review, we highlight how cell metabolism influences NK cell activity, the key molecular regulators of NK cell metabolism, and emerging strategies to alter metabolism to improve cytotoxicity of NK cells to kill tumor cells for cancer patients.
Collapse
|
58
|
Cheng HF, Chiu WT, Lai YS, Truong TT, Lee PY, Huang CC. High-frequency noncontact low-intensity pulsed ultrasound modulates Ca 2+-dependent transcription factors contributing to cell migration. ULTRASONICS 2023; 127:106852. [PMID: 36201953 DOI: 10.1016/j.ultras.2022.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Chronic wounds have negative physical and psychological effects on patients and increase the health care burden. Consequently, chronic wound in the elderly population is an important issue. Ultrasound can be a great modality for treating chronic wounds because of its noninvasive and safety characteristics; it can accelerate in vitro and in vivo wound healing. In this study, we developed a novel noncontact ultrasound for wound treatment. We stimulated human epidermal keratinocyte migration using low-intensity pulsed ultrasound (LIPUS) with a noncontact transducer to avoid direct contact with the wound. We also compared the effects of 15-min contact and noncontact transducer stimulation, where a 1-MHz contact transducer (intensity = 40 or 200 mW/cm2) and a 0.45-MHz noncontact transducer (intensity = 30 mW/cm2) were used. Both contact and noncontact LIPUS considerably increased cell migration and activated the calcium (Ca2+)-dependent transcription factors cAMP-responsive element-binding protein (CREB) and nuclear factor of activated T cells (NFAT). Furthermore, noncontact transducer stimulation did not cause cell death or affect cell proliferation but significantly increased the Ca2+ influx-mediated intracellular Ca2+ levels. Ca2+-free medium and Ca2+ channel blockers effectively inhibited LIPUS-induced Ca2+-dependent transcription factor activation and cell migration.
Collapse
Affiliation(s)
- Hsiao-Fan Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Yang Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
59
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
60
|
Liang F, Yang J, Gan Q, Xia Y, Wang L, Huang Y, Peng C. Transcriptomic insights into the role of the spleen in a mouse model of Wiskott‑Aldrich syndrome. Exp Ther Med 2022; 25:64. [PMID: 36605531 PMCID: PMC9798154 DOI: 10.3892/etm.2022.11763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infection and increased incidence of autoimmune disorders and malignancy. WAS is caused by mutations in the was gene, which is expressed exclusively in hematopoietic cells; the spleen serves an important role in hematopoiesis and red blood cell clearance. However, to the best of our knowledge, detailed comparative analysis of the spleen between WASp-knockout (WAS-KO) and wild-type (WT) mice, particularly at the transcriptomic level, have not been reported. The present study investigated the differences in the transcriptomes of spleen tissue of 10-week-old WAS-KO mice. Comparison of the gene expression profiles of WAS-KO and WT mice revealed 1,964 differentially expressed genes (DEGs). Among these genes, 996 DEGs were upregulated and 968 were downregulated in WAS-KO mice. To determine the functions of DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for significantly upregulated and downregulated DEGs. The results showed that the levels of cell senescence and apoptosis-associated genes were increased, antigen processing and presentation mechanisms involved in the immune response were damaged and signal transduction processes were impaired in the spleen of WAS-KO mice. Thus, was gene deletion may lead to anemia and hemolysis-associated disease, primarily due to increased osmotic fragility of red blood cells, low hemoglobin and increased bilirubin levels and serum ferritin. These results indicated that senescence and apoptosis of blood cells also play an important role in the occurrence of WAS. Therefore, the present findings provide a theoretical basis for further study to improve the treatment of WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Qian Gan
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Yu Xia
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Linlin Wang
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, P.R. China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, P.R. China,Correspondence to: Dr Cheng Peng, Department of Radiology, The Third People's Hospital of Shenzhen, 29 Bulan Road, Shenzhen, Guangdong 518112, P.R. China
| |
Collapse
|
61
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
62
|
Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood 2022; 140:1858-1874. [PMID: 35789258 DOI: 10.1182/blood.2022015674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.
Collapse
|
63
|
Jie X, Wu H, Yang M, He M, Zhao G, Ling S, Huang Y, Yue B, Yang N, Zhang X. Whole genome bisulfite sequencing reveals DNA methylation roles in the adaptive response of wildness training giant pandas to wild environment. Front Genet 2022; 13:995700. [PMID: 36303550 PMCID: PMC9592921 DOI: 10.3389/fgene.2022.995700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation modification can regulate gene expression without changing the genome sequence, which helps organisms to rapidly adapt to new environments. However, few studies have been reported in non-model mammals. Giant panda (Ailuropoda melanoleuca) is a flagship species for global biodiversity conservation. Wildness and reintroduction of giant pandas are the important content of giant pandas’ protection. However, it is unclear how wildness training affects the epigenetics of giant pandas, and we lack the means to assess the adaptive capacity of wildness training giant pandas. We comparatively analyzed genome-level methylation differences in captive giant pandas with and without wildness training to determine whether methylation modification played a role in the adaptive response of wildness training pandas. The whole genome DNA methylation sequencing results showed that genomic cytosine methylation ratio of all samples was 5.35%–5.49%, and the methylation ratio of the CpG site was the highest. Differential methylation analysis identified 544 differentially methylated genes (DMGs). The results of KEGG pathway enrichment of DMGs showed that VAV3, PLCG2, TEC and PTPRC participated in multiple immune-related pathways, and may participate in the immune response of wildness training giant pandas by regulating adaptive immune cells. A large number of DMGs enriched in GO terms may also be related to the regulation of immune activation during wildness training of giant pandas. Promoter differentially methylation analysis identified 1,199 genes with differential methylation at promoter regions. Genes with low methylation level at promoter regions and high expression such as, CCL5, P2Y13, GZMA, ANP32A, VWF, MYOZ1, NME7, MRPS31 and TPM1 were important in environmental adaptation for wildness training giant pandas. The methylation and expression patterns of these genes indicated that wildness training giant pandas have strong immunity, blood coagulation, athletic abilities and disease resistance. The adaptive response of giant pandas undergoing wildness training may be regulated by their negatively related promoter methylation. We are the first to describe the DNA methylation profile of giant panda blood tissue and our results indicated methylation modification is involved in the adaptation of captive giant pandas when undergoing wildness training. Our study also provided potential monitoring indicators for the successful reintroduction of valuable and threatened animals to the wild.
Collapse
Affiliation(s)
- Xiaodie Jie
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Honglin Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Miao Yang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Guangqing Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Shanshan Ling
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| |
Collapse
|
64
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
65
|
|
66
|
Ding C, Hong Y, Che Y, He T, Wang Y, Zhang S, Wu J, Xu W, Hou J, Hao H, Cao L. Bile acid restrained T cell activation explains cholestasis aggravated hepatitis B virus infection. FASEB J 2022; 36:e22468. [PMID: 35913801 DOI: 10.1096/fj.202200332r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Cholestasis is a common complication of hepatitis B virus (HBV) infection, characterized by increased intrahepatic and plasma bile acid levels. Cholestasis was found negatively associated with hepatitis outcome, however, the exact mechanism by which cholestasis impacts anti-viral immunity and impedes HBV clearance remains elusive. Here, we found that cholestatic mice are featured with dysfunctional T cells response, as indicated by decreased sub-population of CD25+ /CD69+ CD4+ and CD8+ cells, while CTLA-4+ CD4+ and CD8+ subsets were increased. Mechanistically, bile acids disrupt intracellular calcium homeostasis via inhibiting mitochondria calcium uptake and elevating cytoplasmic Ca2+ concentration, leading to STIM1 and ORAI1 decoupling and impaired store-operated Ca2+ entry which is essential for NFAT signaling and T cells activation. Moreover, in a transgenic mouse model of HBV infection, we confirmed that cholestasis compromised both CD4+ and CD8+ T cells activation resulting in poor viral clearance. Collectively, our results suggest that bile acids play pivotal roles in anti-HBV infection via controlling T cells activation and metabolism and that targeting the regulation of bile acids may be a therapeutic strategy for host-virus defense.
Collapse
Affiliation(s)
- Chujie Ding
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Yu Hong
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Yuan Che
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Tianyu He
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Yun Wang
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Shule Zhang
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Jiawei Wu
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Wanfeng Xu
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Jingyi Hou
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| | - Lijuan Cao
- State Key Laboratory of Nature Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetic, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
67
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
68
|
Kodakandla G, West SJ, Wang Q, Tewari R, Zhu MX, Akimzhanov AM, Boehning D. Dynamic S-acylation of the ER-resident protein stromal interaction molecule 1 (STIM1) is required for store-operated Ca2+ entry. J Biol Chem 2022; 298:102303. [PMID: 35934052 PMCID: PMC9463532 DOI: 10.1016/j.jbc.2022.102303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release–activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a stimulus-dependent manner and essential for its function as a calcium channel. Here using the acyl resin–assisted capture assay, we show that STIM1 is also rapidly S-acylated at cysteine 437 upon ER calcium store depletion. Using a combination of live cell imaging and electrophysiology approaches with a mutant STIM1 protein, which could not be S-acylated, we determined that the S-acylation of STIM1 is required for the assembly of STIM1 into puncta with Orai1 and full CRAC channel function. Together with the S-acylation of Orai1, our data suggest that stimulus-dependent S-acylation of CRAC channel components Orai1 and STIM1 is a critical mechanism facilitating the CRAC channel assembly and function.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Savannah J West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ritika Tewari
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA.
| |
Collapse
|
69
|
Mehari FT, Miller M, Pick R, Bader A, Pekayvaz K, Napoli M, Uhl B, Reichel CA, Sperandio M, Walzog B, Schulz C, Massberg S, Stark K. Intravital calcium imaging in myeloid leukocytes identifies calcium frequency spectra as indicators of functional states. Sci Signal 2022; 15:eabe6909. [PMID: 35881691 DOI: 10.1126/scisignal.abe6909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The assessment of leukocyte activation in vivo is mainly based on surrogate parameters, such as cell shape changes and migration patterns. Consequently, additional parameters are required to dissect the complex spatiotemporal activation of leukocytes during inflammation. Here, we showed that intravital microscopy of myeloid leukocyte Ca2+ signals with Ca2+ reporter mouse strains combined with bioinformatic signal analysis provided a tool to assess their activation in vivo. We demonstrated by two-photon microscopy that tissue-resident macrophages reacted to sterile inflammation in the cremaster muscle with Ca2+ transients in a distinct spatiotemporal pattern. Moreover, through high-resolution, intravital spinning disk confocal microscopy, we identified the intracellular Ca2+ signaling patterns of neutrophils during the migration cascade in vivo. These patterns were modulated by the Ca2+ channel Orai1 and Gαi-coupled GPCRs, whose effects were evident through analysis of the range of frequencies of the Ca2+ signal (frequency spectra), which provided insights into the complex patterns of leukocyte Ca2+ oscillations. Together, these findings establish Ca2+ frequency spectra as an additional dimension to assess leukocyte activation and migration during inflammation in vivo.
Collapse
Affiliation(s)
- Fitsumbirhan T Mehari
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Meike Miller
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Robert Pick
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre for Experimental Medicine, Biomedical Center (BMC), LMU Munich, 82152 Planegg, Germany
| | - Almke Bader
- Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre for Experimental Medicine, Biomedical Center (BMC), LMU Munich, 82152 Planegg, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Matteo Napoli
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre for Experimental Medicine, Biomedical Center (BMC), LMU Munich, 82152 Planegg, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre for Experimental Medicine, Biomedical Center (BMC), LMU Munich, 82152 Planegg, Germany
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre for Experimental Medicine, Biomedical Center (BMC), LMU Munich, 82152 Planegg, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
70
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|
71
|
Veytia-Bucheli JI, Alvarado-Velázquez DA, Possani LD, González-Amaro R, Rosenstein Y. The Ca 2+ Channel Blocker Verapamil Inhibits the In Vitro Activation and Function of T Lymphocytes: A 2022 Reappraisal. Pharmaceutics 2022; 14:pharmaceutics14071478. [PMID: 35890372 PMCID: PMC9324055 DOI: 10.3390/pharmaceutics14071478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Ca2+ channel blockers (CCBs) are commonly used to treat different cardiovascular conditions. These drugs disrupt the intracellular Ca2+ signaling network, inhibiting numerous cellular functions in different cells, including T lymphocytes. We explored the effect of the CCB verapamil on normal human peripheral blood T cell activation, proliferation, and cytokine production. Cells were activated by ligating CD3 or CD3/CD28 in the presence or absence of verapamil, and the expression of activation-induced cell surface molecules (CD25, CD40L, CD69, PD-1, and OX40), cell proliferation, and cytokine release were assessed by flow cytometry. Verapamil exerted a dose-dependent inhibitory effect on the expression of all the activation-induced cell surface molecules tested. In addition, verapamil diminished T cell proliferation induced in response to CD3/CD28 stimulation. Likewise, the production of Th1/Th17 and Th2 cytokines was also reduced by verapamil. Our data substantiate a potent in vitro suppressive effect of verapamil on T lymphocytes, a fact that might be relevant in patients receiving CCBs.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (J.I.V.-B.); (D.A.A.-V.); (L.D.P.)
- Laboratoire de Chimie Bio-Organique, Département de Chimie, Faculté des Sciences, Université de Namur, Rue de Bruxelles 615, 5000 Namur, Belgium
| | - Den Alejandro Alvarado-Velázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (J.I.V.-B.); (D.A.A.-V.); (L.D.P.)
- Posgrado en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (J.I.V.-B.); (D.A.A.-V.); (L.D.P.)
| | - Roberto González-Amaro
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico;
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (J.I.V.-B.); (D.A.A.-V.); (L.D.P.)
- Correspondence: ; Tel.: +52-(777)-329-1606
| |
Collapse
|
72
|
Differentiation and homeostasis of effector Treg cells are regulated by inositol polyphosphates modulating Ca 2+ influx. Proc Natl Acad Sci U S A 2022; 119:e2121520119. [PMID: 35776543 PMCID: PMC9271192 DOI: 10.1073/pnas.2121520119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activated Foxp3+ regulatory T (Treg) cells differentiate into effector Treg (eTreg) cells to maintain peripheral immune homeostasis and tolerance. T cell receptor (TCR)-mediated induction and regulation of store-operated Ca2+ entry (SOCE) is essential for eTreg cell differentiation and function. However, SOCE regulation in Treg cells remains unclear. Here, we show that inositol polyphosphate multikinase (IPMK), which generates inositol tetrakisphosphate and inositol pentakisphosphate, is a pivotal regulator of Treg cell differentiation downstream of TCR signaling. IPMK is highly expressed in TCR-stimulated Treg cells and promotes a TCR-induced Treg cell program. IPMK-deficient Treg cells display aberrant T cell activation and impaired differentiation into RORγt+ Treg cells and tissue-resident Treg cells. Mechanistically, IPMK controls the generation of higher-order inositol phosphates, thereby promoting Ca2+ mobilization and Treg cell effector functions. Our findings identify IPMK as a critical regulator of TCR-mediated Ca2+ influx and highlight the importance of IPMK in Treg cell-mediated immune homeostasis.
Collapse
|
73
|
Humer C, Berlansky S, Grabmayr H, Sallinger M, Bernhard A, Fahrner M, Frischauf I. Science CommuniCa 2+tion Developing Scientific Literacy on Calcium: The Involvement of CRAC Currents in Human Health and Disease. Cells 2022; 11:1849. [PMID: 35681544 PMCID: PMC9179999 DOI: 10.3390/cells11111849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Frischauf
- Life Science Center, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (S.B.); (H.G.); (M.S.); (A.B.); (M.F.)
| |
Collapse
|
74
|
Kim S, Nam H, Cha B, Park J, Sung HJ, Jeon JS. Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2105809. [PMID: 35686137 PMCID: PMC9165514 DOI: 10.1002/advs.202105809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/06/2022] [Indexed: 06/15/2023]
Abstract
The cytotoxic response of natural killer (NK) cells in a microreactor to surface acoustic waves (SAWs) is investigated, where the SAWs produce an acoustic streaming flow. The Rayleigh-type SAWs form by an interdigital transducer propagated along the surface of a piezoelectric substrate in order to allow the dynamic stimulation of functional immune cells in a noncontact and rotor-free manner. The developed acoustofluidic microreactor enables a dynamic cell culture to be set up in a miniaturized system while maintaining the performance of agitating media. The present SAW system creates acoustic streaming flow in the cylindrical microreactor and applies flow-induced shear stress to the cells. The suspended NK cells are found to not be damaged by the SAW operation of the adjusted experimental setup. Suspended NK cell aggregates subjected to an SAW treatment show increased intracellular Ca2+ concentrations. Simultaneously treating the NK cells with SAWs and protein kinase C activator enhances the lysosomal protein expressions of the cells and the cell-mediated cytotoxicity against target tumor cells. These have important implications by showing that acoustically actuated system allows dynamic cell culture without cell damages and further alters cytotoxicity-related cellular activities.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyeono Nam
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Beomseok Cha
- School of Mechanical EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jinsoo Park
- School of Mechanical EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyung Jin Sung
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Jessie S. Jeon
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
75
|
Li L, Liu R, Peng C, Chen X, Li J. Pharmacogenomics for the efficacy and side effects of antihistamines. Exp Dermatol 2022; 31:993-1004. [PMID: 35538735 DOI: 10.1111/exd.14602] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
Antihistamines, especially H1 antihistamines, are widely used in the treatment of allergic diseases such as urticaria and allergic rhinitis, mainly for reversing elevated histamine and anti-allergic effects. Antihistamines are generally safe, but some patients experience adverse reactions, such as cardiotoxicity, central inhibition, and anticholinergic effects. There are also individual differences in antihistamine efficacy in clinical practice. The concept of individualized medicine has been deeply rooted in people's minds since it was put forward. Pharmacogenomics is the study of the role of inheritance in individual variations in drug response. In recent decades, pharmacogenomics has been developing rapidly, which provides new ideas for individualized medicine. Polymorphisms in the genes encoding metabolic enzymes, transporters, and target receptors have been shown to affect the efficacy of antihistamines. In addition, recent evidence suggests that gene polymorphisms influence urticaria susceptibility and antihistamine therapy. Here, we summarize current reports in this area, aiming to contribute to future research in antihistamines and clinical guidance for antihistamines use in individualized medicine.
Collapse
Affiliation(s)
- Liqiao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
76
|
Phan HTL, Nam YR, Kim HJ, Woo JH, NamKung W, Nam JH, Kim WK. In-vitro and in-vivo anti-allergic effects of magnolol on allergic rhinitis via inhibition of ORAI1 and ANO1 channels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115061. [PMID: 35114342 DOI: 10.1016/j.jep.2022.115061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Magnoliae (the dried flower buds of Magnolia biondii Pamp, FM) is a known herbal traditional medicine used for the symptomatic relief of nasal congestion and rhinorrhea caused by rhinitis and sinusitis. Magnolol, a neolignan from the magnolia family, is a secondary metabolite known to have anti-allergic and anti-inflammatory effects. However, the underlying mechanisms and therapeutic effect of magnolol in the treatment of allergic rhinitis (AR) remain elusive. AIMS OF THE STUDY Anoctamin 1 (ANO1), a calcium-activated anion channel, mediates mucus and electrolyte secretion in nasal airway epithelial cells, whereas calcium release-activated calcium channel protein 1 (ORAI1) participates in the activation of T-lymphocytes and mast cells. The aim of our study is to understand the mechanisms of action of magnolol against AR, i.e., whether it acts through the modulation of ANO1 and ORAI1 channels that are expressed in nasal epithelial cells and T-lymphocytes, respectively. MATERIALS AND METHODS Whole-cell patch clamp was used to record the activity of ORAI1 and ANO1 ion channels in ORAI1 or ANO1 overexpressed HEK293T cells, while the Ussing chamber apparatus was used to measure electrolyte transport via the epithelium, in Calu-3 cells cultured in an air-liquid interface. Additionally, calcium imaging of Jurkat T-lymphocytes was used to assess changes in the intracellular calcium concentration. Magnolol toxicity was assessed using the CCK-8 assay, and its effect on T-lymphocyte proliferation was measured by labeling human primary T-lymphocytes with carboxyfluorescein succinimidyl ester. Finally, OVA-induced Balb/c mice were employed to evaluate the effect of magnolol on nasal symptoms, as well as cytokine and eosinophil infiltration in AR. RESULTS Magnolol inhibits ORAI1 and ANO1 channels in a concentration-dependent manner. Magnolol (30 μM) inhibits anti-CD3 induced cellular proliferation and production of IL-2 via ORAI1 channels in T-lymphocytes. Further, ATP-induced electrolyte transport mediated by ANO1 channels is significantly inhibited by magnolol in IL-4 sensitized Calu-3 cells. Notably, 300 μM magnolol significantly attenuates cytokine and eosinophil infiltration, thus alleviating AR symptoms in mice OVA-induced AR. CONCLUSION Magnolol may be a promising therapeutic agent for the treatment and prevention of AR.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Yu Ran Nam
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun Jong Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Joo Han Woo
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea
| | - Wan NamKung
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea; Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
77
|
Bruen C, Al-Saadi M, Michelson EA, Tanios M, Mendoza-Ayala R, Miller J, Zhang J, Stauderman K, Hebbar S, Hou PC. Auxora vs. placebo for the treatment of patients with severe COVID-19 pneumonia: a randomized-controlled clinical trial. Crit Care 2022; 26:101. [PMID: 35395943 PMCID: PMC8992417 DOI: 10.1186/s13054-022-03964-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Calcium release-activated calcium (CRAC) channel inhibitors block proinflammatory cytokine release, preserve endothelial integrity and may effectively treat patients with severe COVID-19 pneumonia. Methods CARDEA was a phase 2, randomized, double-blind, placebo-controlled trial evaluating the addition of Auxora, a CRAC channel inhibitor, to corticosteroids and standard of care in adults with severe COVID-19 pneumonia. Eligible patients were adults with ≥ 1 symptom consistent with COVID-19 infection, a diagnosis of COVID-19 confirmed by laboratory testing using polymerase chain reaction or other assay, and pneumonia documented by chest imaging. Patients were also required to be receiving oxygen therapy using either a high flow or low flow nasal cannula at the time of enrolment and have at the time of enrollment a baseline imputed PaO2/FiO2 ratio > 75 and ≤ 300. The PaO2/FiO2 was imputed from a SpO2/FiO2 determine by pulse oximetry using a non-linear equation. Patients could not be receiving either non-invasive or invasive mechanical ventilation at the time of enrolment. The primary endpoint was time to recovery through Day 60, with secondary endpoints of all-cause mortality at Day 60 and Day 30. Due to declining rates of COVID-19 hospitalizations and utilization of standard of care medications prohibited by regulatory guidance, the trial was stopped early. Results The pre-specified efficacy set consisted of the 261 patients with a baseline imputed PaO2/FiO2≤ 200 with 130 and 131 in the Auxora and placebo groups, respectively. Time to recovery was 7 vs. 10 days (P = 0.0979) for patients who received Auxora vs. placebo, respectively. The all-cause mortality rate at Day 60 was 13.8% with Auxora vs. 20.6% with placebo (P = 0.1449); Day 30 all-cause mortality was 7.7% and 17.6%, respectively (P = 0.0165). Similar trends were noted in all randomized patients, patients on high flow nasal cannula at baseline or those with a baseline imputed PaO2/FiO2 ≤ 100. Serious adverse events (SAEs) were less frequent in patients treated with Auxora vs. placebo and occurred in 34 patients (24.1%) receiving Auxora and 49 (35.0%) receiving placebo (P = 0.0616). The most common SAEs were respiratory failure, acute respiratory distress syndrome, and pneumonia. Conclusions Auxora was safe and well tolerated with strong signals in both time to recovery and all-cause mortality through Day 60 in patients with severe COVID-19 pneumonia. Further studies of Auxora in patients with severe COVID-19 pneumonia are warranted. Trial registration NCT04345614. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03964-8.
Collapse
Affiliation(s)
- Charles Bruen
- Regions Hospital, Health Partners, St. Paul, MN, USA
| | | | - Edward A Michelson
- Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Maged Tanios
- MemorialCare Long Beach Medical Center, Long Beach, CA, USA
| | | | | | | | - Kenneth Stauderman
- CalciMedica, Inc, 505 Coast Blvd. South Suite 307, La Jolla, CA, 92037, USA
| | - Sudarshan Hebbar
- CalciMedica, Inc, 505 Coast Blvd. South Suite 307, La Jolla, CA, 92037, USA.
| | - Peter C Hou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
78
|
Belkacemi L, Sun Y, Darmani NA. Evidence for Bell-Shaped Dose-Response Emetic Effects of Temsirolimus and Analogs: The Broad-Spectrum Antiemetic Efficacy of a Large Dose of Temsirolimus Against Diverse Emetogens in the Least Shrew ( Cryptotis parva). Front Pharmacol 2022; 13:848673. [PMID: 35444553 PMCID: PMC9014009 DOI: 10.3389/fphar.2022.848673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Temsirolimus is a prodrug form of sirolimus (rapamycin). With its analogs (everolimus, ridaforolimus, and rapamycin), it forms a group of anticancer agents that block the activity of one of the two mammalian targets of rapamycin (mTOR) complexes, mTORC1. We investigated the emetic potential of varying doses (0, 0.5, 1, 2.5, 5, 10, 20, and 40 mg/kg, i.p.) of temsirolimus in the least shrew. Temsirolimus caused a bell-shaped and dose-dependent increase in both the mean vomit frequency and the number of shrews vomiting with maximal efficacy at 10 mg/kg (p < 0.05 and p < 0.02, respectively). Its larger doses (20 or 40 mg/kg) had no significant emetic effect. We also evaluated the emetic potential of its analogs (5, 10, and 20 mg/kg, i.p.), all of which exhibited a similar emetic profile. Our observational studies indicated that temsirolimus can reduce the shrew motor activity at 40 mg/kg, and subsequently, we examined the motor effects of its lower doses. At 10 and 20 mg/kg, it did not affect the spontaneous locomotor activity (distance moved) but attenuated the mean rearing frequency in a U-shaped manner at 10 mg/kg (p < 0.05). We then determined the broad-spectrum antiemetic potential of a 20 mg/kg (i.p.) dose of temsirolimus against diverse emetogens, including selective and nonselective agonists of 1) dopaminergic D2/3 receptors (apomorphine and quinpirole); 2) serotonergic 5-HT3 receptors [5-HT (serotonin) and 2-methyl-5-HT]; 3) cholinergic M1 receptors (pilocarpine and McN-A-343); 4) substance P neurokinin NK1 receptors (GR73632); 5) the L-type calcium (Ca2+) channel (LTCC) (FPL64176); 6) the sarcoplasmic endoplasmic reticulum Ca2+ ATPase inhibitor, thapsigargin; 7) the CB1 receptor inverse agonist/antagonist, SR141716A; and 8) the chemotherapeutic cisplatin. Temsirolimus prevented vomiting evoked by the aforementioned emetogens with varying degrees. The mechanisms underlying the pro- and antiemetic effects of temsirolimus evaluated by immunochemistry for c-fos expression demonstrated a c-fos induction in the AP and NTS, but not DMNX with the 10 mg/kg emetic dose of temsirolimus, whereas its larger antiemetic dose (20 mg/kg) had no significant effect. Our study is the first to provide preclinical evidence demonstrating the promising antiemetic potential of high doses of temsirolimus and possibly its analogs in least shrews.
Collapse
Affiliation(s)
| | | | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
79
|
Zhu H, Zhang R, Li R, Wang Z, Li H, Zhong H, Yin L, Ruan X, Ye C, Yuan H, Cheng Z, Peng H. Identification of diagnosis and prognosis gene markers in B-ALL with ETV6-RUNX1 fusion by integrated bioinformatics analysis. Gene 2022; 815:146132. [PMID: 34999180 DOI: 10.1016/j.gene.2021.146132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
B-acute lymphoblastic leukemia (B-ALL) is characterized by clonal expansion of immature B-lymphocytes in the bone marrow, blood, or other tissues. Chromosomal translocations have often been reported in B-ALL, which are important for its prognosis. B-ALL patients with ETV6-RUNX1 fusion have favorable outcomes, but the mechanisms remain to be clarified. In the present study, we crossed the selected WGCNA module genes and differential expression genes to obtain core genes, and random forest algorithm, a type of supervised learning analysis, was conducted to evaluate the importance of those core genes in distinguishing B-ALL samples with ETV6-RUNX2 fusion with extracting 5 genes as gene markers for ETV6-RUNX2 fusion. Moreover, we calculated the immune infiltration profiles and screened out the ETV6-RUNX2 association immune cells using the CIBERSORT algorithm. In conclusion, combined with various solid informatics methods, we depicted the underlying molecular and immune mechanism of ETV6-RUNX2 fusion and providing potential biological targets for diagnosing and treating B-ALL in the future.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Rong Zhang
- National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Japan
| | - Ruijuan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Zhihua Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Heng Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Haiying Zhong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Le Yin
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Xueqin Ruan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Can Ye
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Huan Yuan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zhao Cheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Institute of Hematology, Central South University, Changsha, Hunan 410011, PR China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, PR China.
| |
Collapse
|
80
|
Shao M, Teng X, Guo X, Zhang H, Huang Y, Cui J, Si X, Ding L, Wang X, Li X, Shi J, Zhang M, Kong D, Gu T, Hu Y, Qian P, Huang H. Inhibition of Calcium Signaling Prevents Exhaustion and Enhances Anti-Leukemia Efficacy of CAR-T Cells via SOCE-Calcineurin-NFAT and Glycolysis Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103508. [PMID: 35032108 PMCID: PMC8948559 DOI: 10.1002/advs.202103508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are potent agents for recognizing and eliminating tumors, and have achieved remarkable success in the treatment of patients with refractory leukemia and lymphoma. However, dysfunction of T cells, including exhaustion, is an inevitable obstacle for persistent curative effects. Here, the authors initially found that calcium signaling is hyperactivated via sustained tonic signaling in CAR-T cells. Next, it is revealed that the store-operated calcium entry (SOCE) inhibitor BTP-2, but not the calcium chelator BAPTA-AM, markedly diminishes CAR-T cell exhaustion and terminal differentiation of CAR-T cells in both tonic signaling and tumor antigen exposure models. Furthermore, BTP-2 pretreated CAR-T cells show improved antitumor potency and prolonged survival in vivo. Mechanistically, transcriptome and metabolite analyses reveal that treatment with BTP-2 significantly downregulate SOCE-calcineurin-nuclear factor of activated T-cells (NFAT) and glycolysis pathways. Together, the results indicate that modulating the SOCE-calcineurin-NFAT pathway in CAR-T cells renders them resistant to exhaustion, thereby yielding CAR products with enhanced antitumor potency.
Collapse
|
81
|
Gao R, Zhang Y, Zeng C, Li Y. The role of NFAT in the pathogenesis and targeted therapy of hematological malignancies. Eur J Pharmacol 2022; 921:174889. [DOI: 10.1016/j.ejphar.2022.174889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
|
82
|
Gil D, Diercks BP, Guse AH, Dupont G. Three-Dimensional Model of Sub-Plasmalemmal Ca2+ Microdomains Evoked by T Cell Receptor/CD3 Complex Stimulation. Front Mol Biosci 2022; 9:811145. [PMID: 35281279 PMCID: PMC8906516 DOI: 10.3389/fmolb.2022.811145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signalling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains of reduced spatial and temporal extents develop in the junctions between the plasma membrane and the endoplasmic reticulum (ER). These microdomains rely on Ca2+ entry from the extracellular medium, via the ORAI1/STIM1/STIM2 system that mediates store operated Ca2+ entry Store operated calcium entry. The mechanism leading to local store depletion and subsequent Ca2+ entry depends on the activation state of the cells. The initial, smaller microdomains are triggered by D-myo-inositol 1,4,5-trisphosphate (IP3) signalling in response to T cell adhesion. T cell receptor (TCR)/CD3 stimulation then initiates nicotinic acid adenine dinucleotide phosphate signalling, which activates ryanodine receptors (RYR). We have recently developed a mathematical model to elucidate the spatiotemporal Ca2+ dynamics of the microdomains triggered by IP3 signalling in response to T cell adhesion (Gil et al., 2021). This reaction-diffusion model describes the evolution of the cytosolic and endoplasmic reticulum Ca2+ concentrations in a three-dimensional ER-PM junction and was solved using COMSOL Multiphysics. Modelling predicted that adhesion-dependent microdomains result from the concerted activity of IP3 receptors and pre-formed ORAI1-STIM2 complexes. In the present study, we extend this model to include the role of RYRs rapidly after TCR/CD3 stimulation. The involvement of STIM1, which has a lower KD for Ca2+ than STIM2, is also considered. Detailed 3D spatio-temporal simulations show that these Ca2+ microdomains rely on the concerted opening of ∼7 RYRs that are simultaneously active in response to the increase in NAADP induced by T cell stimulation. Opening of these RYRs provoke a local depletion of ER Ca2+ that triggers Ca2+ flux through the ORAI1 channels. Simulations predict that RYRs are most probably located around the junction and that the increase in junctional Ca2+ concentration results from the combination between diffusion of Ca2+ released through the RYRs and Ca2+ entry through ORAI1 in the junction. The computational model moreover provides a tool allowing to investigate how Ca2+ microdomains occur, extend and interact in various states of T cell activation.
Collapse
Affiliation(s)
- Diana Gil
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Geneviève Dupont,
| |
Collapse
|
83
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
84
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
85
|
Kolluri G, Marappan G, Yadav AS, Kumar A, Mariappan AK, Tyagi JS, Rokade JJ, Govinthasamy P. Effects of Spirulina (Arthrospira platensis) as a drinking water supplement during cyclical chronic heat stress on broiler chickens: Assessing algal composition, production, stress, health and immune-biochemical indices. J Therm Biol 2022; 103:103100. [PMID: 35027195 DOI: 10.1016/j.jtherbio.2021.103100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Spirulina, the blue green algae is considered to exhibit multifaceted benefits on both human health and animal production. Three hundred sixty day old unsexed broiler chicks of CARIBROVISHAL strain were assigned to five treatment groups each comprising nine replicates of 8 chicks. The experiment was carried out during the hot humid summer season (Mid-April to May) under deep litter rearing system with uniform managemental conditions. Birds were administered orally with Spirulina through drinking water in the morning (06:00-12:00 PM) on daily basis throughout the experimental period at 5, 10, 15 and 20 gL-1 concentration. Spirulina supplementation neither improved nor compromised production performance of broilers reared during hot climatic condition. Results based on one way analysis of variance indicated a significant effect on haemoglobin and total red blood cell count. Serum lipid content and transaminases were reduced, while serum protein concentration was higher (P < 0.01) in the groups administered with 15 and 20 gL-1 of Spirulina. The extent of imparting shank pigmentation was improved in all the supplemented groups. Cell mediated and humoral immunity against Phytoheamagglutunin-P and Newcastle disease vaccination respectively were maximized (P < 0.05) at 20 gL-1. These findings provide direct evidence of dose-related modulation of production, physiological and immunological attributes by Spirulina engendering its further investigation as a potential source of drinking water supplement for stress alleviation in broilers. From the results, it may concluded that Spirulina can be incorporated at 15 or 20 gL-1 for achieving optimal improvement of health and welfare attributes in broilers reared during hot summer without compromising production.
Collapse
Affiliation(s)
- Gautham Kolluri
- Avian Medicine Section, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India; Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India.
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Ajit Singh Yadav
- Avian Medicine Section, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Asok Kumar Mariappan
- Avian Disease Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Jagbir Singh Tyagi
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Jaydip Jaywant Rokade
- Experimental Broiler Farm, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Prabakar Govinthasamy
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| |
Collapse
|
86
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
87
|
Zeng Q, Lu W, Deng Z, Zhang B, Wu J, Chai J, Chen X, Xu X. The toxin mimic FS48 from the salivary gland of Xenopsylla cheopis functions as a Kv1.3 channel-blocking immunomodulator of T cell activation. J Biol Chem 2022; 298:101497. [PMID: 34919963 PMCID: PMC8732088 DOI: 10.1016/j.jbc.2021.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 μM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.
Collapse
Affiliation(s)
- Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
88
|
Zhou J, Wu H, Zhang X, Xia G, Gong X, Yue D, Fan Y, Wang B, Wang G, Li Y, Pan J. Deep learning models for image and data processes of intracellular calcium ions. Cell Signal 2021; 91:110225. [PMID: 34954391 DOI: 10.1016/j.cellsig.2021.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Intracellular calcium ion (Ca2+) in cytoplasm as an intracellular second messenger is involved in almost all important cellular activities of organisms. Generally its concentration ([Ca2+]i) is tested by live imaging followed image and data processes, in which much tedious and subjective manual work is involved. Here we show a computational approach of Deep Calcium following the principles of deep learning to predict the cytoplasmic Ca2+ ranges and calcium peaks in calcium curve of objective cells. To validate Deep Calcium, chondrocytes, bone marrow stromal cells (BMSCs) and osteoblastic like cells (MC3T3-E1) from both the tissue and cell samples as well as from spontaneous and mechanical stimulated calcium response patterns are used. The good performance comparing with other relative machine learning models, as well as consistency biological results with human experts are demonstrated. Deep Calcium provides references for other image and data processes of intracellular range determination and curve peak identification.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xusen Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guoqing Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiaoyuan Gong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Dangyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yijuan Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bin Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yong Li
- College of Economics and Business Administration, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
89
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
90
|
Khedkar NR, Irlapatti NR, Dadke D, Kanoje V, Shaikh Z, Karche V, Shinde V, Deshmukh G, Patil A, Jachak S, Phukan S, Kizhakinagath PA, Gholve M, Bhankhede T, Daler J, Nemade HN, Budhe S, Pareek H, Yeshodharan R, Gupta R, Kalia A, Pandey D, Wagh A, Kumar S, Patil V, Modi D, Sharma N, Ahirrao P, Mehta M, Kumar H, Nigade P, Tamane K, Mallurwar S, Kuldharan S, Pawar S, Vishwase G, Bokan S, Singh M, Naik K, Ingawale S, Shankar R, Kamalakannan P, Venugopal S, George SK, Padiya KJ, Nemmani KVS, Gundu J, Bhonde M, Narasimham L, Sindkhedkar M, Shah C, Sinha N, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of a Novel Potent and Selective Calcium Release-Activated Calcium Channel Inhibitor: 2,6-Difluoro- N-(2'-methyl-3'-(4-methyl-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-[1,1'-biphenyl]-4-yl)benzamide. Structure-Activity Relationship and Preclinical Characterization. J Med Chem 2021; 64:17004-17030. [PMID: 34843241 DOI: 10.1021/acs.jmedchem.1c01403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of calcium release-activated calcium (CRAC) channels is well characterized and is of particular importance in T-cell function. CRAC channels are involved in the pathogenesis of several autoimmune diseases, making it an attractive therapeutic target for treating inflammatory diseases, like rheumatoid arthritis (RA). A systematic structure-activity relationship study with the goal of optimizing lipophilicity successfully yielded two lead compounds, 36 and 37. Both compounds showed decent potency and selectivity and a remarkable pharmacokinetic profile. Further characterization in in vivo RA models and subsequent histopathological evaluation of tissues led to the identification of 36 as a clinical candidate. Compound 36 displayed an excellent safety profile and had a sufficient safety margin to qualify it for use in human testing. Oral administration of 36 in Phase 1 clinical study in healthy volunteers established favorable safety, tolerability, and good target engagement as measured by levels of IL-2 and TNF-α.
Collapse
Affiliation(s)
- Nilesh Raghunath Khedkar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Nageswara Rao Irlapatti
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Disha Dadke
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Kanoje
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Zubair Shaikh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Karche
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vikas Shinde
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gokul Deshmukh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amit Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Santosh Jachak
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Samiron Phukan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Praveenkumar Anidil Kizhakinagath
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Milind Gholve
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Trupti Bhankhede
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jagadeesh Daler
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Harshal Narendra Nemade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Budhe
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Himani Pareek
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Yeshodharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anil Kalia
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dilip Pandey
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Akshaya Wagh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Swaroop Kumar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Nidhi Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prajakta Ahirrao
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Hemant Kumar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant Nigade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kaustubh Tamane
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sadanand Mallurwar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sandip Kuldharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gururaj Vishwase
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sanjay Bokan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar Naik
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin Ingawale
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Shankar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prabakaran Kamalakannan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Spinvin Venugopal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shaji K George
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kamlesh J Padiya
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar V S Nemmani
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jaysagar Gundu
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mandar Bhonde
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Lakshmi Narasimham
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Milind Sindkhedkar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Chirag Shah
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Neelima Sinha
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|
91
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
92
|
Signaling is silver, silence is golden: RHBDL2 intramembrane proteolysis prevents stochastic Ca 2+ signaling in unstimulated cells. Mol Cell 2021; 81:4763-4765. [PMID: 34861185 DOI: 10.1016/j.molcel.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this issue of Molecular Cell, Grieve et al. (2021) reveal Orai1/CRAC channels as atypical substrates of the RHBDL2 rhomboid and unveil the selective processing of stochastically activated CRAC channels by RHBLD2 as the "conformational surveillance" mechanism that prevents unwanted CRAC signaling in unstimulated cells.
Collapse
|
93
|
Conformational surveillance of Orai1 by a rhomboid intramembrane protease prevents inappropriate CRAC channel activation. Mol Cell 2021; 81:4784-4798.e7. [PMID: 34800360 PMCID: PMC8657799 DOI: 10.1016/j.molcel.2021.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Calcium influx through plasma membrane calcium release-activated calcium (CRAC) channels, which are formed of hexamers of Orai1, is a potent trigger for many important biological processes, most notably in T cell-mediated immunity. Through a bioinformatics-led cell biological screen, we have identified Orai1 as a substrate for the rhomboid intramembrane protease RHBDL2. We show that RHBDL2 prevents stochastic calcium signaling in unstimulated cells through conformational surveillance and cleavage of inappropriately activated Orai1. A conserved disease-linked proline residue is responsible for RHBDL2’s recognizing the active conformation of Orai1, which is required to sharpen switch-like signaling triggered by store-operated calcium entry. Loss of RHBDL2 control of CRAC channel activity causes severe dysregulation of downstream CRAC channel effectors, including transcription factor activation, inflammatory cytokine expression, and T cell activation. We propose that this surveillance function may represent an ancient activity of rhomboid proteases in degrading unwanted signaling proteins. A screen for transmembrane substrates of the rhomboid intramembrane protease RHBDL2 RHBDL2 cleaves the CRAC channel protein Orai1 when it is inappropriately activated Conformational change in these calcium channels is recognized by RHBDL2 An Orai1 mutant that cannot be cleaved by RHBDL2 causes a human disease syndrome
Collapse
|
94
|
Li X, Zeng Q, Wang S, Li M, Chen X, Huang Y, Chen B, Zhou M, Lai Y, Guo C, Zhao S, Zhang H, Yang N. CRAC Channel Controls the Differentiation of Pathogenic B Cells in Lupus Nephritis. Front Immunol 2021; 12:779560. [PMID: 34745151 PMCID: PMC8569388 DOI: 10.3389/fimmu.2021.779560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Xue Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengyuan Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xionghui Chen
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Binfeng Chen
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimei Lai
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siyuan Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
95
|
Dai F, Guo J, Wang Y, Jiang T, Chen H, Hu Y, Du J, Xia X, Zhang Q, Shen B. Enhanced Store-Operated Ca 2+ Signal of Small Intestinal Smooth Muscle Cells Accelerates Small Bowel Transit Speed in Type 1 Diabetic Mouse. Front Physiol 2021; 12:691867. [PMID: 34744757 PMCID: PMC8564290 DOI: 10.3389/fphys.2021.691867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Aims: The underlying mechanism of diabetic enteropathy, a common complication of type 1 diabetes, remains unclear. Store-operated Ca2+ entry (SOCE) is a ubiquitous type of Ca2+ influx involved in various cellular functions. Here, we show that SOCE-related stromal interaction molecule 1 (STIM1) and Orai1 participate in inappropriate cellular Ca2+ homeostasis, augmenting agonist-induced small intestinal smooth muscle contraction and small bowel transit speed in a mouse model of type 1 diabetes. Methods and Results: We used small interfering (si)RNA to suppress STIM1 and Orai1 proteins, and employed intracellular Ca2+, small intestinal contraction and intestinal transit speed measurement to investigate the functional change. We found that SOCE activity and Orai1 and STIM1 expression levels of small intestinal smooth muscle were significantly increased in cells cultured in high glucose medium or in diabetic mice. Gastrointestinal transit speed and SOCE-mediated contractions were markedly increased in diabetic mice; Knocking down Orai1 or STIM1 with siRNA rescued both alterations in diabetic mice. However, the Orai1-large conductance Ca2+-activated K+ (BKCa) channel interaction was decreased in diabetic mice, and suppressing Orai1 expression or inhibiting the BKCa channel increased agonist-induced small intestinal contractions in normal mice. Conclusion: We concluded that the increased SOCE caused by excessive STIM1 and Orai1 expression and decreased Orai1-BKCa interaction augmented small intestinal smooth muscle contraction and accelerated small bowel transit speed in diabetic mice. This finding demonstrates a pathological role for SOCE in diabetic enteropathy and provides a potential therapeutic target for diabetic enteropathy.
Collapse
Affiliation(s)
- Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jizheng Guo
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yang Wang
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tian Jiang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Ying Hu
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xianming Xia
- Digestive Medicine Center, Department of General Practice, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
96
|
Santos DKDDN, Barros BRDS, Filho IJDC, Júnior NDSB, da Silva PR, Nascimento PHDB, Lima MDCAD, Napoleão TH, de Melo CML. Pectin-like polysaccharide extracted from the leaves of Conocarpus erectus Linnaeus promotes antioxidant, immunomodulatory and prebiotic effects. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Naert R, López-Requena A, Talavera K. TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 2021; 22:ijms222111460. [PMID: 34768891 PMCID: PMC8583806 DOI: 10.3390/ijms222111460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
Collapse
Affiliation(s)
- Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Ablynx, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
98
|
Dombroski JA, Hope JM, Sarna NS, King MR. Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells 2021; 10:2815. [PMID: 34831037 PMCID: PMC8616475 DOI: 10.3390/cells10112815] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis is one of the leading causes of death worldwide, motivating research into identifying new methods of preventing cancer metastasis. Recently there has been increasing interest in understanding how cancer cells transduce mechanical forces into biochemical signals, as metastasis is a process that consists of a wide range of physical forces. For instance, the circulatory system through which disseminating cancer cells must transit is an environment characterized by variable fluid shear stress due to blood flow. Cancer cells and other cells can transduce physical stimuli into biochemical responses using the mechanosensitive ion channel Piezo1, which is activated by membrane deformations that occur when cells are exposed to physical forces. When active, Piezo1 opens, allowing for calcium flux into the cell. Calcium, as a ubiquitous second-messenger cation, is associated with many signaling pathways involved in cancer metastasis, such as angiogenesis, cell migration, intravasation, and proliferation. In this review, we discuss the roles of Piezo1 in each stage of cancer metastasis in addition to its roles in immune cell activation and cancer cell death.
Collapse
Affiliation(s)
| | | | | | - Michael R. King
- King Lab, Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA; (J.A.D.); (J.M.H.); (N.S.S.)
| |
Collapse
|
99
|
Phan HTL, Kim HJ, Jo S, Kim WK, Namkung W, Nam JH. Anti-Inflammatory Effect of Licochalcone A via Regulation of ORAI1 and K + Channels in T-Lymphocytes. Int J Mol Sci 2021; 22:ijms221910847. [PMID: 34639190 PMCID: PMC8509259 DOI: 10.3390/ijms221910847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium signaling plays a vital role in the regulation of various cellular processes, including activation, proliferation, and differentiation of T-lymphocytes, which is mediated by ORAI1 and potassium (K+) channels. These channels have also been identified as highly attractive therapeutic targets for immune-related diseases. Licochalcone A is a licorice-derived chalconoid known for its multifaceted beneficial effects in pharmacological treatments, including its anti-inflammatory, anti-asthmatic, antioxidant, antimicrobial, and antitumorigenic properties. However, its anti-inflammatory effects involving ion channels in lymphocytes remain unclear. Thus, the present study aimed to investigate whether licochalcone A inhibits ORAI1 and K+ channels in T-lymphocytes. Our results indicated that licochalcone A suppressed all three channels (ORAI1, Kv1.3, and KCa3.1) in a concentration-dependent matter, with IC50 values of 2.97 ± 1.217 µM, 0.83 ± 1.222 µM, and 11.21 ± 1.07 µM, respectively. Of note, licochalcone A exerted its suppressive effects on the IL-2 secretion and proliferation in CD3 and CD28 antibody-induced T-cells. These results indicate that the use of licochalcone A may provide an effective treatment strategy for inflammation-related immune diseases.
Collapse
Affiliation(s)
- Hong T. L. Phan
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea; (H.J.K.); (W.K.K.)
| | - Hyun J. Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea; (H.J.K.); (W.K.K.)
| | - Sungwoo Jo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Korea;
| | - Woo K. Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea; (H.J.K.); (W.K.K.)
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Goyang 10326, Korea
| | - Wan Namkung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Korea;
- Correspondence: (W.N.); (J.H.N.)
| | - Joo H. Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea; (H.J.K.); (W.K.K.)
- Correspondence: (W.N.); (J.H.N.)
| |
Collapse
|
100
|
Xu B, Liu X, Gao S. IL2-inducible T-cell kinase inhibitor ibrutinib reduces symptoms and Th2 differentiation in mouse allergic-rhinitis model. Drug Dev Res 2021; 83:544-551. [PMID: 34609751 DOI: 10.1002/ddr.21884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022]
Abstract
Th2 and Th17 immune response contribute to allergic rhinitis (AR) development. Targeting Th2 and Th17 response has been shown to ameliorate AR. Ibrutinib is an inhibitor for IL2-inducible T-cell kinase, which can promote Th2 and Th17 immune response. We sought to investigate the effect of ibrutinib on AR and the underlying mechanisms. We established house dust mite-induced AR mouse model and treated AR mice with ibrutinib. The symptoms of AR, serum level of immunoglobulin E, percentage of Th1, Th2, Th17, and Treg in nasal lymphoid tissues were monitored. We also established in vitro T cell differentiation cell culture model. The T cells were treated with ibrutinib and the expression of specific transcriptional factors and cytokines was measured. The activation of PLC-γ1/calcium/NFAT2 signaling pathway was detected. Ibrutinib treatment had no effects on the development of lymphocytes and myeloid cells, but alleviated AR symptoms and decreased Th2 cell population in nasal lymphoid tissue. Meanwhile, iburitnib suppressed Th2 and Th17 differentiation in vitro. Moreover, iburitnib prevented phosphorylation of PLC-γ1and nuclear translocation of NFAT2 in Th2 cells. Our results suggested that ibrutinib could ameliorate AR symptoms through suppression of Th2 differentiation in AR mouse model.
Collapse
Affiliation(s)
- Bing Xu
- Department of ENT, Gucheng County Hospital, Hengshui Gucheng, China
| | - Xiaozhe Liu
- Department of Ophthalmology, Gucheng County Hospital, Hengshui Gucheng, China
| | - Shihao Gao
- Department of Chest Surgery, Gucheng County Hospital, Hengshui Gucheng, China
| |
Collapse
|