51
|
Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem Soc Trans 2021; 49:893-901. [PMID: 33666217 PMCID: PMC8106491 DOI: 10.1042/bst20200835] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are critical regulators of many cellular processes including cell survival, proliferation, migration, cytoskeletal reorganization, and intracellular vesicular trafficking. They are a family of lipid kinases that phosphorylate membrane phosphoinositide lipids at the 3′ position of their inositol rings, and in mammals they are divided into three classes. The role of the class III PI3K Vps34 is well-established, but recent evidence suggests the physiological significance of class II PI3K isoforms in vesicular trafficking. This review focuses on the recently discovered functions of the distinct PI3K-C2α and PI3K-C2β class II PI3K isoforms in clathrin-mediated endocytosis and consequent endosomal signaling, and discusses recently reported data on class II PI3K isoforms in different physiological contexts in comparison with class I and III isoforms.
Collapse
|
52
|
Zhang R, Mo WJ, Huang LS, Chen JT, Wu WZ, He WY, Feng ZB. Identifying the Prognostic Risk Factors of Synaptojanin 2 and Its Underlying Perturbations Pathways in Hepatocellular Carcinoma. Bioengineered 2021; 12:855-874. [PMID: 33641617 PMCID: PMC8806346 DOI: 10.1080/21655979.2021.1890399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synaptojanin 2 (SYNJ2) regulates cell proliferation and apoptosis via dephosphorylating plasma membrane phosphoinositides. Aim of this study is to first seek the full-scale expression levels and potential emerging roles of SYNJ2 in hepatocellular carcinoma (HCC). We systematically analyzed SYNJ2 mRNA expression and protein levels in HCC tissues based on large-scale data and in-house immunohistochemistry (IHC). The clinical significance and risk factors for SYNJ2-related HCC cases were identified. A nomogram of prognosis was created and its performance was validated by concordance index (C-index) and shown in calibration plots. Based on the identified differentially coexpressed genes (DCGs) of SYNJ2, enriched annotations and potential pathways were predicted, and the protein interacting networks were mapped. Upregulated SYNJ2 in 3,728 HCC and 3,203 non-HCC tissues were verified and in-house IHC showed higher protein levels of SYNJ2 in HCC tissues. Pathologic T stage was identified as a risk factor. Upregulated mRNA levels and mutated SYNJ2 might cause a poorer outcome. The C-index of the nomogram model constructed by SYNJ2 level, age, gender, TNM classification, grade, and stage was evaluated as 0.643 (95%CI = 0.619–0.668) with well-calibrated plots. A total of 2,533 DCGs were extracted and mainly functioned together with SYNJ2 in metabolic pathways. Possible transcriptional axis of CTCF/POLR2A-SYNJ2/INPP5B (transcription factor-target) in metabolic pathways was discovered based on ChIP-seq datasets. In summary, transcriptional regulatory axis CTCF/POLR2A-SYNJ2 might influence SYNJ2 expression levels. Increased SYNJ2 expression level could be utilized for predicting HCC prognosis and potentially accelerates the occurrence and development of HCC via metabolic perturbations pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lan-Shan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ji-Tian Chen
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zi Wu
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Ying He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
53
|
Flynn CM, Kespohl B, Daunke T, Garbers Y, Düsterhöft S, Rose-John S, Haybaeck J, Lokau J, Aparicio-Siegmund S, Garbers C. Interleukin-6 controls recycling and degradation, but not internalization of its receptors. J Biol Chem 2021; 296:100434. [PMID: 33610555 PMCID: PMC8010714 DOI: 10.1016/j.jbc.2021.100434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine implicated in proinflammatory as well as regenerative processes and acts via receptor complexes consisting of the ubiquitously expressed, signal-transducing receptor gp130 and the IL-6 receptor (IL-6R). The IL-6R is expressed only on hepatocytes and subsets of leukocytes, where it mediates specificity of the receptor complex to IL-6 as the subunit gp130 is shared with all other members of the IL-6 cytokine family such as IL-11 or IL-27. The amount of IL-6R at the cell surface thus determines the responsiveness of the cell to the cytokine and might therefore be decisive in the development of inflammatory disorders. However, how the expression levels of IL-6R and gp130 at the cell surface are controlled is largely unknown. Here, we show that IL-6R and gp130 are constitutively internalized independent of IL-6. This process depends on dynamin and clathrin and is temporally controlled by motifs within the intracellular region of gp130 and IL-6R. IL-6 binding and internalization of the receptors is a prerequisite for activation of the Jak/STAT signaling cascade. Targeting of gp130, but not of the IL-6R, to the lysosome for degradation depends on stimulation with IL-6. Furthermore, we show that after internalization and activation of signaling, both the IL-6R and gp130 are recycled back to the cell surface, a process that is enhanced by IL-6. These data reveal an important function of IL-6 beyond the pure activation of signaling.
Collapse
Affiliation(s)
| | - Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tina Daunke
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Stefan Düsterhöft
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
54
|
Dembla E, Becherer U. Biogenesis of large dense core vesicles in mouse chromaffin cells. Traffic 2021; 22:78-93. [PMID: 33369005 DOI: 10.1111/tra.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.
Collapse
Affiliation(s)
- Ekta Dembla
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| |
Collapse
|
55
|
Jang HD, Lee SE, Yang J, Lee HC, Shin D, Lee H, Lee J, Jin S, Kim S, Lee SJ, You J, Park HW, Nam KY, Lee SH, Park SW, Kim JS, Kim SY, Kwon YW, Kwak SH, Yang HM, Kim HS. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur Heart J 2021; 41:239-252. [PMID: 31419281 PMCID: PMC6945527 DOI: 10.1093/eurheartj/ehz566] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Aims Proprotein convertase subtilisin/kexin type-9 (PCSK9), a molecular determinant of low-density lipoprotein (LDL) receptor (LDLR) fate, has emerged as a promising therapeutic target for atherosclerotic cardiovascular diseases. However, the precise mechanism by which PCSK9 regulates the internalization and lysosomal degradation of LDLR is unknown. Recently, we identified adenylyl cyclase-associated protein 1 (CAP1) as a receptor for human resistin whose globular C-terminus is structurally similar to the C-terminal cysteine-rich domain (CRD) of PCSK9. Herein, we investigated the role of CAP1 in PCSK9-mediated lysosomal degradation of LDLR and plasma LDL cholesterol (LDL-C) levels. Methods and results The direct binding between PCSK9 and CAP1 was confirmed by immunoprecipitation assay, far-western blot, biomolecular fluorescence complementation, and surface plasmon resonance assay. Fine mapping revealed that the CRD of PCSK9 binds with the Src homology 3 binding domain (SH3BD) of CAP1. Two loss-of-function polymorphisms found in human PCSK9 (S668R and G670E in CRD) were attributed to a defective interaction with CAP1. siRNA against CAP1 reduced the PCSK9-mediated degradation of LDLR in vitro. We generated CAP1 knock-out mice and found that the viable heterozygous CAP1 knock-out mice had higher protein levels of LDLR and lower LDL-C levels in the liver and plasma, respectively, than the control mice. Mechanistic analysis revealed that PCSK9-induced endocytosis and lysosomal degradation of LDLR were mediated by caveolin but not by clathrin, and they were dependent on binding between CAP1 and caveolin-1. Conclusion We identified CAP1 as a new binding partner of PCSK9 and a key mediator of caveolae-dependent endocytosis and lysosomal degradation of LDLR. ![]()
Collapse
Affiliation(s)
- Hyun-Duk Jang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sang Eun Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Jimin Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Chae Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Dasom Shin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hwan Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jaewon Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sooryeonhwa Jin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Soungchan Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Seung Ji Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jihye You
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Woo Park
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Ky-Youb Nam
- Bio AI Research Center, Pharos I&BT Co., Ltd., Anyang-si, Gyeonggi-do 14059, Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120752, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120752, Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul 120752, Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Yoo-Wook Kwon
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Han-Mo Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Hyo-Soo Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| |
Collapse
|
56
|
Human-derived NLS enhance the gene transfer efficiency of chitosan. Biosci Rep 2021; 41:227253. [PMID: 33305307 PMCID: PMC7789810 DOI: 10.1042/bsr20201026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Abstract
Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA. In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5. These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.
Collapse
|
57
|
Kim B, Park YS, Sung JS, Lee JW, Lee SB, Kim YH. Clathrin-mediated EGFR endocytosis as a potential therapeutic strategy for overcoming primary resistance of EGFR TKI in wild-type EGFR non-small cell lung cancer. Cancer Med 2021; 10:372-385. [PMID: 33314735 PMCID: PMC7826488 DOI: 10.1002/cam4.3635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently noted in non-small cell lung cancer (NSCLC). In recent decades, EGFR tyrosine kinase inhibitors (TKIs) have been developed, although the therapeutic efficacy of these inhibitor is restricted to EGFR-mutant patients. In this study, we investigated that clathrin-mediated EGFR endocytosis hampers the effects of gefitinib and sustains NSCLC cells with wild-type EGFR. MATERIALS AND METHODS NSCLC cell lines (H358, Calu-3, SNU-1327, and H1703) were stimulated with the EGF and treated with gefitinib and endocytosis inhibitors (phenylarsine oxide (PAO) and Filipin III). Growth inhibition and apoptosis were evaluated. Immunofluorescence, immunoprecipitation, and western blot assay were performed to investigate EGFR endocytosis and determine the signaling pathway. Xenograft mouse models were used to verify the combination effect of gefitinib and PAO in vivo. RESULTS We confirmed the differences in EGFR endocytosis according to gefitinib response in wild-type EGFR NSCLC cell lines. EGFR in gefitinib-sensitive and -refractory cell lines tended to internalize through distinct routes, caveolin-mediated endocytosis (CVE), and clathrin-mediated endocytosis (CME). Interestingly, while suppressing CME and CVE did not affect cell survival in sensitive cell lines significantly, CME inhibition combined with gefitinib treatment decreased cell survival and induced apoptosis in gefitinib-refractory cell lines. In addition, blocking CME in the refractory cell lines led to downregulate of p-STAT3 and inhibit nuclear localization of STAT3 in vivo, combination treatment with gefitinib and a CME inhibitor resulted in tumor regression accompanying apoptosis in xenograft mouse models. CONCLUSION Clathrin-mediated EGFR endocytosis contribute primary resistance of gefitinib treatment and CME inhibition combined with gefitinib could be an option in treatment of wild-type EGFR NSCLC.
Collapse
Affiliation(s)
- Boyeon Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Young Soo Park
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jae Sook Sung
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jong Won Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Saet Byeol Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Yeul Hong Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
- Department of Oncology/HematologyKorea University Anam HospitalSeoulRepublic of Korea
| |
Collapse
|
58
|
Kiani AK, Dhuli K, Anpilogov K, Bressan S, Dautaj A, Dundar M, Beccari T, Ergoren MC, Bertelli M. Natural compounds as inhibitors of SARS-CoV-2 endocytosis: A promising approach against COVID-19. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020008. [PMID: 33170174 PMCID: PMC8023130 DOI: 10.23750/abm.v91i13-s.10520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM The recent COVID-19 pandemic caused by SARS-CoV-2 affected more than six million people and caused thousands of deaths. The lack of effective drugs or vaccines against SARS-CoV-2 further worsened the situation. This review is focused on the identification of molecules that may inhibit viral entry into host cells by endocytosis. METHODS We performed the literature search for these natural compounds in the articles indexed in PubMed. RESULTS Natural products against viral infections have been gaining importance in recent years. Specific natural compounds like phytosterols, polyphenols, flavonoids, citrus, galangal, curcuma and hydroxytyrosol are being analyzed to understand whether they could inhibit SARS-CoV-2. CONCLUSIONS We reviewed natural compounds with potential antiviral activity against SARS-CoV-2 that could be used as a treatment for COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Mahmut C Ergoren
- Department of Medical Biology, Faculty of Medicine, Near East University, Nicosia, Cyprus; DESAM Institute, Near East University, Nicosia, Cyprus.
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
59
|
Huber K, Mestres-Arenas A, Fajas L, Leal-Esteban LC. The multifaceted role of cell cycle regulators in the coordination of growth and metabolism. FEBS J 2020; 288:3813-3833. [PMID: 33030287 PMCID: PMC8359344 DOI: 10.1111/febs.15586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Adapting to changes in nutrient availability and environmental conditions is a fundamental property of cells. This adaptation requires a multi‐directional coordination between metabolism, growth, and the cell cycle regulators (consisting of the family of cyclin‐dependent kinases (CDKs), their regulatory subunits known as cyclins, CDK inhibitors, the retinoblastoma family members, and the E2F transcription factors). Deciphering the mechanisms accountable for this coordination is crucial for understanding various patho‐physiological processes. While it is well established that metabolism and growth affect cell division, this review will focus on recent observations that demonstrate how cell cycle regulators coordinate metabolism, cell cycle progression, and growth. We will discuss how the cell cycle regulators directly regulate metabolic enzymes and pathways and summarize their involvement in the endolysosomal pathway and in the functions and dynamics of mitochondria.
Collapse
Affiliation(s)
- Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
60
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
61
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
62
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
63
|
Fischer K, Groschup MH, Diederich S. Importance of Endocytosis for the Biological Activity of Cedar Virus Fusion Protein. Cells 2020; 9:cells9092054. [PMID: 32911832 PMCID: PMC7565975 DOI: 10.3390/cells9092054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
Endocytosis plays a particular role in the proteolytic activation of highly pathogenic henipaviruses Hendra (HeV) and Nipah virus (NiV) fusion (F) protein precursors. These proteins require endocytic uptake from the cell surface to be cleaved by cellular proteases within the endosomal compartment, followed by recycling to the plasma membrane for incorporation into budding virions or mediation of cell-cell fusion. This internalization largely depends on a tyrosine-based consensus motif for endocytosis present in the cytoplasmic tail of HeV and NiV F. Given the large number of tyrosine residues present in the F protein cytoplasmic domain of Cedar virus (CedV), a closely related but low pathogenic henipavirus, we aimed to investigate whether CedV F protein undergoes signal-mediated endocytosis from the cell surface controlled by tyrosine-based motifs present in its cytoplasmic tail and whether endocytosis is relevant for its biological activity. Therefore, tyrosine-based signals were mutated, and mutations were assessed for their effect on F cell surface expression, endocytosis, and biological activity. A membrane-proximal YXXΦ motif and a C-terminal di-tyrosine motif are of particular importance for cell surface expression and endocytosis rate. Furthermore, our data strongly indicate the pivotal role of endocytosis for the biological activity of the CedV F protein.
Collapse
|
64
|
Li H, Pinilla-Macua I, Ouyang Y, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles 2020; 9:1812261. [PMID: 32944196 PMCID: PMC7480505 DOI: 10.1080/20013078.2020.1812261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a unique situation, in which placenta-derived small extracellular vesicles (sEVs) may communicate with maternal and foetal tissues. While relevant to homoeostatic and pathological functions, the mechanisms underlying sEV entry and cargo handling in target cells remain largely unknown. Using fluorescently or luminescently labelled sEVs, derived from primary human placental trophoblasts or from a placental cell line, we interrogated the endocytic pathways used by these sEVs to enter relevant target cells, including the neighbouring primary placental fibroblasts and human uterine microvascular endothelial cells. We found that trophoblastic sEVs can enter target cells, where they retain biological activity. Importantly, using a broad series of pharmacological inhibitors and siRNA-dependent silencing approaches, we showed that trophoblastic sEVs enter target cells using macropinocytosis and clathrin-mediated endocytosis pathways, but not caveolin-dependent endocytosis. Tracking their intracellular course, we localized the sEVs to early endosomes, late endosomes, and lysosomes. Finally, we used coimmunoprecipitation to demonstrate the association of the sEV microRNA (miRNA) with the P-body proteins AGO2 and GW182. Together, our data systematically detail endocytic pathways used by placental sEVs to enter relevant fibroblastic and endothelial target cells, and provide support for “endocytic escape” of sEV miRNA to P-bodies, a key site for cytoplasmic RNA regulation.
Collapse
Affiliation(s)
- Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
65
|
Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020; 25:E3760. [PMID: 32824757 PMCID: PMC7464666 DOI: 10.3390/molecules25163760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
Collapse
Affiliation(s)
- Arturo Sánchez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| | - Susana P. Mejía
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), Carrera, 72A Nº 78B–141 Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| |
Collapse
|
66
|
Haack F, Budde K, Uhrmacher AM. Exploring the mechanistic and temporal regulation of LRP6 endocytosis in canonical WNT signaling. J Cell Sci 2020; 133:jcs243675. [PMID: 32661084 DOI: 10.1242/jcs.243675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Endocytosis plays a pivotal regulatory role in canonical WNT signaling. Internalization of the low-density lipoprotein receptor-related protein 6 (LRP6) receptor complex can either promote or attenuate canonical WNT signaling, depending on the employed internalization pathway. Detailed analysis of the mechanism of LRP6 internalization and its temporal regulation is crucial for understanding the different cellular responses to WNT stimulation under varying conditions and in various cell types. Here, we elucidate the mechanisms involved in the internalization of LRP6 and re-evaluate existing, partly contradicting, theories on the regulation of LRP6 receptor internalization. We utilize a computational approach that aims at finding a set of mechanisms that accounts for the temporal dynamics of LRP6 receptor internalization upon WNT stimulation. Starting with a simple simulation model, we successively extend and probe the model's behavior based on quantitative measurements. The final model confirms that LRP6 internalization is clathrin independent in vertebrates, is not restricted to microdomains, and that signalosome formation delays LRP6 internalization within the microdomains. These findings partly revise the current understanding of LRP6 internalization in vertebrates.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Kai Budde
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| |
Collapse
|
67
|
Wu Y, Ruan H, Dong Z, Zhao R, Yu J, Tang X, Kou X, Zhang X, Wu M, Luo F, Yuan J, Fang X. Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. Anal Chem 2020; 92:12088-12096. [PMID: 32867488 DOI: 10.1021/acs.analchem.0c02821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy provides subdiffraction resolution while preserving the benefits of fluorescence confocal microscopy in live-cell imaging. However, there are several challenges for multicolor STED nanoscopy, including sophisticated microscopy architectures, fast photobleaching, and cross talk of fluorescent probes. Here, we introduce two types of nanoscale fluorescent semiconducting polymer dots (Pdots) with different emission wavelengths: CNPPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)]) Pdots and PDFDP (poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorene}-alt-co-{2,5-bis (N,N'-diphenylamino)-1,4-phenylene}]) Pdots, for dual-color STED bioimaging and cellular tracking. Besides bright fluorescence, strong photostability, and easy bioconjugation, these Pdots have large Stokes shifts, which make it possible to share both excitation and depletion beams, thus requiring only a single pair of laser beams for the dual-color STED imaging. Long-term tracking of cellular organelles by the Pdots has been achieved in living cells, and the dynamic interaction of endosomes derived from clathrin-mediated and caveolae-mediated endocytic pathways has been monitored for the first time to propose their interaction models. These results demonstrate the promise of Pdots as excellent probes for live-cell multicolor STED nanoscopy.
Collapse
Affiliation(s)
- Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaojun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Manchen Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
68
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
69
|
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020; 154:153-165. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Interest in the use of metallic nanoparticles (NPs) in medicine is constantly increasing. The key challenge to the introduction of NPs into anticancer treatment is to limit the contact of their surface with healthy cells and to enable specific targeting of certain tissues, for example, cancerous cells. These aspects have raised a question whether the recent methods of drug delivery allow restricting the contact of NPs with healthy and/or nontarget cells. NPs can be restricted by encapsulation, which involves entrapping them into organic layers. This review is the first to present the different approaches for the encapsulation of metallic NPs, using liposomes, dendrimers, and proteins. The types and methods of entrapping are shown in an accessible way, enriched with graphics, and the pros and cons of these methods are disputable. Furthermore, the potential uses of NP complexes in medicine are described.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
70
|
Barattucci A, Campagna S, Papalia T, Galletta M, Santoro A, Puntoriero F, Bonaccorsi P. BODIPY on Board of Sugars: A Short Enlightened Journey up to the Cells. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Barattucci
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Sebastiano Campagna
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Teresa Papalia
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Maurilio Galletta
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Antonio Santoro
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Fausto Puntoriero
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| | - Paola Bonaccorsi
- Dip. Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di Messina viale F. Stagno d'Alcontres Messina 98166 Italy
| |
Collapse
|
71
|
Cronqvist T, Erlandsson L, Tannetta D, Hansson SR. Placental syncytiotrophoblast extracellular vesicles enter primary endothelial cells through clathrin-mediated endocytosis. Placenta 2020; 100:133-141. [PMID: 32980046 DOI: 10.1016/j.placenta.2020.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The aim was to investigate syncytiotrophoblast extracellular vesicle (STBEV) uptake mechanisms by primary endothelial cells, the effects on gene expression, cell activation as well as the effect of aspirin. METHODS The STBEVs were derived using the placental perfusion system, from normal or preeclamptic placentas. Endothelial uptake was analysed with flow cytometry. To elucidate uptake, different inhibitors were tested; Cytochalasin D, Chlorpromazine hydrochloride, Methyl-B-cyclodextrin, Dynasore and Wortmannin. Endothelial gene expression was evaluated using an endothelial cell biology qPCR array. Cell activation was studied by ICAM-1 surface expression after STBEV exposure, with and without aspirin treatment. RESULTS Normal and preeclamptic STBEV uptake was blocked in similar ways. Chlorpromazine, Dynasore and Wortmannin almost completely blocked STBEV uptake. Methyl-B-cyclodextrin blocked 45-60% of the uptake while Cytochalasin D did not block uptake at all. Neither normal nor preeclamptic STBEVs had any significant effects on endothelial gene expression. Normal STBEVs down-regulated cell surface protein ICAM-1 expression, with and without aspirin treatment. Aspirin had no effect on STBEV uptake or cellular gene expression on its own, however it down regulated ICAM-1 protein expression in combination with preeclamptic STBEV exposure. DISCUSSION STBEV uptake primarily occurred through clathrin-mediated endocytosis. The STBEVs had no significant effect on gene expression but did have effects on ICAM-1 surface expression. The prophylactic mechanisms of aspirin may be by preventing the endothelium from being activated by the preeclamptic STBEVs.
Collapse
Affiliation(s)
- Tina Cronqvist
- Lund University, Department of Obstetrics and Gynecology, Institute of Clinical Sciences in Lund, Lund University, SE-22185, Lund, Sweden.
| | - Lena Erlandsson
- Lund University, Department of Obstetrics and Gynecology, Institute of Clinical Sciences in Lund, Lund University, SE-22185, Lund, Sweden
| | - Dionne Tannetta
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Stefan R Hansson
- Lund University, Department of Obstetrics and Gynecology, Institute of Clinical Sciences in Lund, Lund University, SE-22185, Lund, Sweden
| |
Collapse
|
72
|
Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat Commun 2020; 11:3017. [PMID: 32541798 PMCID: PMC7295786 DOI: 10.1038/s41467-020-16832-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer brain metastases (BCBM) have a 5-20 year latency and account for 30% of mortality; however, mechanisms governing adaptation to the brain microenvironment remain poorly defined. We combine time-course RNA-sequencing of BCBM development with a Drosophila melanogaster genetic screen, and identify Rab11b as a functional mediator of metastatic adaptation. Proteomic analysis reveals that Rab11b controls the cell surface proteome, recycling proteins required for successful interaction with the microenvironment, including integrin β1. Rab11b-mediated control of integrin β1 surface expression allows efficient engagement with the brain ECM, activating mechanotransduction signaling to promote survival. Lipophilic statins prevent membrane association and activity of Rab11b, and we provide proof-of principle that these drugs prevent breast cancer adaptation to the brain microenvironment. Our results identify Rab11b-mediated recycling of integrin β1 as regulating BCBM, and suggest that the recycleome, recycling-based control of the cell surface proteome, is a previously unknown driver of metastatic adaptation and outgrowth.
Collapse
|
73
|
Kang D, Jung SH, Lee GH, Lee S, Park HJ, Ko YG, Kim YN, Lee JS. Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB J 2020; 34:10316-10328. [PMID: 32530114 DOI: 10.1096/fj.201902714r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be triggered by various intrinsic and extrinsic stimuli. We previously reported that silencing of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2) induces cellular senescence through augmented fibroblast growth factor receptor 1 (FGFR1) signaling. However, the exact molecular mechanism connecting heparan sulfation and cellular senescence remains unclear. Here, we investigated the potential involvement of heparan sulfate proteoglycans (HSPGs) in augmented FGFR1 signaling and cellular senescence. Depletion of several types of HSPGs revealed that cells depleted of syndecan 1 (SDC1) exhibited typical senescence phenotypes, and those depleted of PAPSS2-, SDC1-, or heparan sulfate 2-O sulfotransferase 1 (HS2ST1) showed decreased FGFR1 internalization along with hyperresponsiveness to and prolonged activation of fibroblast growth factor 2 (FGF2)-stimulated FGFR1- v-akt murine thymoma viral oncogene homolog (AKT) signaling. Clathrin- and caveolin-mediated FGFR1 endocytosis contributed to cellular senescence through the FGFR1-AKT-p53-p21 signaling pathway. Dynasore treatment triggered senescence phenotypes, augmented FGFR1-AKT-p53-p21 signaling, and decreased SDC1 expression. Finally, the replicatively and prematurely senescent cells were characterized by decreases of SDC1 expression and FGFR1 internalization, and an increase in FGFR1-AKT-p53-p21 signaling. Together, our results demonstrate that properly sulfated SDC1 plays a critical role in preventing cellular senescence through the regulation of FGFR1 endocytosis.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Gun-Hee Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seongju Lee
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Anatomy, Inha University College of Medicine, Incheon, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
74
|
Möller N, Ziesemer S, Hildebrandt P, Assenheimer N, Völker U, Hildebrandt JP. S. aureus alpha-toxin monomer binding and heptamer formation in host cell membranes - Do they determine sensitivity of airway epithelial cells toward the toxin? PLoS One 2020; 15:e0233854. [PMID: 32470006 PMCID: PMC7259691 DOI: 10.1371/journal.pone.0233854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Alpha-toxin (Hla) is a major virulence factor of Staphylococcus aureus (S. aureus) and plays an important role in S. aureus-induced pneumonia. It binds as a monomer to the cell surface of eukaryotic host cells and forms heptameric transmembrane pores. Sensitivities toward the toxin of various types of potential host cells have been shown to vary substantially, and the reasons for these differences are unclear. We used three human model airway epithelial cell lines (16HBE14o-, S9, A549) to correlate cell sensitivity (measured as rate of paracellular gap formation in the cell layers) with Hla monomer binding, presence of the potential Hla receptors ADAM10 or α5β1 integrin, presence of the toxin-stabilizing factor caveolin-1 as well as plasma membrane lipid composition (phosphatidylserine/choline, sphingomyelin). The abundance of ADAM10 correlated best with gap formation or cell sensitivities, respectively, when the three cell types were compared. Caveolin-1 or α5β1 integrin did not correlate with toxin sensitivity. The relative abundance of sphingomyelin in plasma membranes may also be used as a proxi for cellular sensitivity against alpha-toxin as sphingomyelin abundances correlated well with the intensities of alpha-toxin mediated gap formation in the cell layers.
Collapse
Affiliation(s)
- Nils Möller
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Assenheimer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
75
|
Duffney PF, Embong AK, McGuire CC, Thatcher TH, Phipps RP, Sime PJ. Cigarette smoke increases susceptibility to infection in lung epithelial cells by upregulating caveolin-dependent endocytosis. PLoS One 2020; 15:e0232102. [PMID: 32437367 PMCID: PMC7241776 DOI: 10.1371/journal.pone.0232102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Cigarette smoke exposure is a risk factor for many pulmonary diseases, including Chronic Obstructive Pulmonary Disease (COPD). Cigarette smokers are more prone to respiratory infections with more severe symptoms. In those with COPD, viral infections can lead to acute exacerbations resulting in lung function decline and death. Epithelial cells in the lung are the first line of defense against inhaled insults such as tobacco smoke and are the target for many respiratory pathogens. Endocytosis is an essential cell function involved in nutrient uptake, cell signaling, and sensing of the extracellular environment, yet, the effect of cigarette smoke on epithelial cell endocytosis is not known. Here, we report for the first time that cigarette smoke alters the function of several important endocytic pathways in primary human small airway epithelial cells. Cigarette smoke exposure impairs clathrin-mediated endocytosis and fluid phase macropinocytosis while increasing caveolin mediated endocytosis. We also show that influenza virus uptake is enhanced by cigarette smoke exposure. These results support the concept that cigarette smoke-induced dysregulation of endocytosis contributes to lung infection in smokers. Targeting endocytosis pathways to restore normal epithelial cell function may be a new therapeutic approach to reduce respiratory infections in current and former smokers.
Collapse
Affiliation(s)
- Parker F. Duffney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - A. Karim Embong
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Connor C. McGuire
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Thomas H. Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Patricia J. Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|
76
|
Pereira PMR, Parada B, Ribeiro-Rodrigues TM, Fontes-Ribeiro CA, Girão H, Tomé JPC, Fernandes R. Caveolin-1 Modulation Increases Efficacy of a Galacto-Conjugated Phthalocyanine in Bladder Cancer Cells Resistant to Photodynamic Therapy. Mol Pharm 2020; 17:2145-2154. [DOI: 10.1021/acs.molpharmaceut.0c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patrícia M. R. Pereira
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), 3004-561 Coimbra, Portugal
| | - Teresa M. Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos A. Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - João P. C. Tomé
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
77
|
Sun R, Hedl M, Abraham C. IL23 induces IL23R recycling and amplifies innate receptor-induced signalling and cytokines in human macrophages, and the IBD-protective IL23R R381Q variant modulates these outcomes. Gut 2020; 69:264-273. [PMID: 31097538 PMCID: PMC6858485 DOI: 10.1136/gutjnl-2018-316830] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The interleukin (IL)23 pathway contributes to IBD pathogenesis and is being actively studied as a therapeutic target in patients with IBD. Unexpected outcomes in these therapeutic trials have highlighted the importance of understanding the cell types and mechanisms through which IL23 regulates immune outcomes. How IL23 regulates macrophage outcomes and the consequences of the IL23R R381Q IBD-protective variant on macrophages are not well defined; macrophages are key players in IBD pathogenesis and inflammation. DESIGN We analysed protein and RNA expression, signalling and localisation in human monocyte-derived macrophages (MDMs) through western blot, ELISA, real-time PCR, flow cytometry, immunoprecipitation and microscopy. RESULTS IL23R was critical for optimal levels of pattern-recognition receptor (PRR)-induced signalling and cytokines in human MDMs. In contrast to the coreceptor IL12Rβ1, IL23 induced dynamic IL23R cell surface regulation and this required clathrin and dynamin-mediated endocytosis and endocytic recycling-dependent pathways; these pathways were essential for IL23R-mediated outcomes. The IBD-protective IL23R R381Q variant showed distinct outcomes. Relative to IL23R R381, HeLa cells expressing IL23R Q381 showed decreased IL23R recycling and reduced assembly of IL23R Q381 with Janus kinase/signal transducer and activator of transcription pathway members. In MDMs from IL23R Q381 carriers, IL23R accumulated in late endosomes and lysosomes on IL23 treatment and cells demonstrated decreased IL23R- and PRR-induced signalling and cytokines relative to IL23R R381 MDMs. CONCLUSION Macrophage-mediated inflammatory pathways are key contributors to IBD pathogenesis, and we identify an autocrine/paracrine IL23 requirement in PRR-initiated human macrophage outcomes and in human intestinal myeloid cells, establish that IL23R undergoes ligand-induced recycling, define mechanisms regulating IL23R-induced signalling and determine how the IBD-protective IL23R R381Q variant modulates these processes.
Collapse
Affiliation(s)
- Rui Sun
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Matija Hedl
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Clara Abraham
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
78
|
Han Y, Da Y, Yu M, Cheng Y, Wang X, Xiong J, Guo G, Li Y, Jiang X, Cai X. Protein labeling approach to improve lysosomal targeting and efficacy of antibody–drug conjugates. Org Biomol Chem 2020; 18:3229-3233. [DOI: 10.1039/d0ob00265h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An anti-EGFR nanobody was labeled at the C-terminus with a lysosome-sorting NPGY (Asn-Pro-Gly-Tyr) motifviasortase-mediated ligation to enhance the clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Ying Han
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yifan Da
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yaping Cheng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xin Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jiale Xiong
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Guoying Guo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yan Li
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
79
|
CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep 2019; 12:100237. [PMID: 31886324 PMCID: PMC6921147 DOI: 10.1016/j.bonr.2019.100237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Immunomodulatory peptide cathelicidin/LL-37 induces human monocyte differentiation into a novel bone repair cell, the monoosteophil. We now demonstrate that LL-37 is endocytosed by monocytes over a period of 6 days producing large (10 × 2 μm), specialized LL-37 and integrin α3 positive vesicles. CXCR2, a membrane receptor previously associated with the binding of LL-37 to neutrophils, was co-endocytosed with LL-37 where both markers remained within the cytosol over a 16 h observation period. Endocytosis of LL-37 was mediated by a clathrin- and cavoelin/lipid raft-dependent pathway into early Rab5+ endosomes expressing APPL1 and EEA1. From 4 to 16 h, LL-37 vesicles co-localized with the Golgi, mitochondria, and to a lesser extent lysosomes and ER. By day 6, LL-37 was associated with large (>10 μm) vesicles, adjacent to Golgi, mitochondria, ER and lysosomes. LL-37 co-stained with integrin α3, tetraspanin CD9, GPI-linked CD59 and costimulatory molecule CD276 (B7-H3) in these vesicles. Continuous tracking of LL-37 with its associated vesicles over 6 days indicates that LL-37 is an extremely stable, membrane-associated peptide that plays a critical role in the differentiation of monocytes into monoosteophils. LL37 treated monocytes undergo CXCR2 mediated endocytosis generating monoosteophils. LL37 induces α3-integrin and co-localizes with α3-integrin positive vesicles. After 6 days of treatment, the LL37 positive vesicles are >10 μm in size.
Collapse
|
80
|
Qi S, Su L, Li J, Zhang C, Ma Z, Liu G, Zhang Q, Jia G, Piao Y, Zhang S. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:471. [PMID: 31752956 PMCID: PMC6868876 DOI: 10.1186/s13046-019-1464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adhesion molecules distributed on the cell-surface depends upon their dynamic trafficking that plays an important role during cancer progression. ADP-ribosylation factor 6 (Arf6) is a master regulator of membrane trafficking. CD147, a tumor-related adhesive protein, can promote the invasion of liver cancer. However, the role of Arf6 in CD147 trafficking and its contribution to liver cancer progression remain unclear. METHODS Stable liver cancer cell lines with Arf6 silencing and over-expression were established. Confocal imaging, flow cytometry, biotinylation and endomembrane isolation were used to detect CD147 uptake and recycling. GST-pull down, gelatin zymography, immunofluorescence, cell adhesion, aggregation and tight junction formation, Transwell migration, and invasion assays were used to examine the cellular phenotypes. GEPIA bioinformatics, patient's specimens and electronic records collection, and immunohistochemistry were performed to obtain the clinical relevance for Arf6-CD147 signaling. RESULTS We found that the endocytic recycling of CD147 in liver cancer cells was controlled by Arf6 through concurrent Rab5 and Rab22 activation. Disruption of Arf6-mediated CD147 trafficking reduced the cell-matrix and cell-cell adhesion, weakened cell aggregation and junction stability, attenuated MMPs secretion and cytoskeleton reorganization, impaired HGF-stimulated Rac1 activation, and markedly decreased the migration and invasion of liver cancer cells. Moreover, high-expression of the Arf6-CD147 signaling components in HCC (hepatocellular carcinoma) was closely correlated with poor clinical outcome of patients. CONCLUSIONS Our results revealed that Arf6-mediated CD147 endocytic recycling is required for the malignant phenotypes of liver cancer. The Arf6-driven signaling machinery provides excellent biomarkers or therapeutic targets for the prevention of liver cancer.
Collapse
Affiliation(s)
- Shanshan Qi
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Jing Li
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Chuanshan Zhang
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Zhe Ma
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Guiqiu Liu
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, China
| | - Guhe Jia
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Yongjun Piao
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
81
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
82
|
Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, Chen L, Yan N. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2019; 21:249-257. [PMID: 31746388 PMCID: PMC6896369 DOI: 10.3892/mmr.2019.10802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has been reported to serve vital roles in regulating the progress of cancer metastasis. In addition, lipid rafts enriched in sphingolipids and cholesterol serve important roles in physiological and biochemical processes as a signaling platform. The present study explored the effects of hydroxypropyl-β-cyclodextrin (HP-β-CD), a cholesterol-depleting agent of lipid rafts, on the transforming growth factor (TGF)-β/Smad signaling pathway and endoplasmic reticulum (ER) stress in mediating EMT in MDA-MB-231 breast cancer cells. HP-β-CD treatment inhibited TGF-β1-induced EMT, based on increased expression of E-cadherin and decreased expression of vimentin. HP-β-CD reduced the expression of the TGF receptor TβRI and blocked the phosphorylation of Smad2. In addition, HP-β-CD increased the expression of ER stress-related proteins (binding immunoglobulin protein and activating transcription factor 6), but TGF-β1 could reverse these changes. Sodium 4-phenylbutyrate, an inhibitor of ER stress, suppressed these effects of HP-β-CD on EMT and TGF-β/Smad signaling pathway inhibition in breast cancer cells. Thus, HP-β-CD can block the TGF-β/Smad signaling pathway via diminishing the expression of TβRI which helps to activate ER stress and attenuate EMT in MDA-MB-231 cells, highlighting a potential target of lipid rafts for breast cancer treatment.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiyang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
83
|
Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking. Cell Rep 2019; 22:3277-3291. [PMID: 29562183 DOI: 10.1016/j.celrep.2018.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Intracellular transport of membranous organelles and protein complexes to various destinations is fundamental to signaling transduction and cellular function. The cytoplasmic dynein motor and its regulatory proteins LIS1 and NDE1 are required for transporting a variety of cellular cargos along the microtubule network. In this study, we show that deletion of Lis1 in developing lung endoderm and limb mesenchymal cells causes agenesis of the lungs and limbs. In both mutants, there is increased cell death and decreased fibroblast growth factor (FGF) signaling activity. Mechanistically, LIS1 and its interacting protein NDE1/NDEL1 are associated with FGF receptor-containing vesicles and regulate FGF receptor intracellular trafficking and degradation. Notably, FGF signaling promotes NDE1 tyrosine phosphorylation, which leads to dissociation of LIS1/NDE1 complex. Thus, our studies identify the LIS1/NDE1 complex as an important FGF signaling regulator and provide insights into the bidirectional regulation of cell signaling and transport machinery for endocytosis.
Collapse
Affiliation(s)
- Liansheng Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Mujun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
84
|
Shearer LJ, Petersen NO. Distribution and Co-localization of endosome markers in cells. Heliyon 2019; 5:e02375. [PMID: 31687537 PMCID: PMC6819826 DOI: 10.1016/j.heliyon.2019.e02375] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Clathrin mediated endocytosis is one pathway for internalization of extracellular nano materials into cells [1, 2]. In this pathway, proteins attached to receptors and the internalized materials are encapsulated in clathrin coated membrane vesicles that subsequently fuse with or transform into intracellular compartments (early and late endosomes) as their contents are being directed to the lysosomes for degradation. The following proteins are commonly used to mark the pathway at various stages: Rab5 (early endosome), Rab7 (late endosome), and LAMP-1 (lysosome). In this work, we studied the distribution and co-localization of these marker proteins in two cell lines (C2C12 and A549) to determine whether these markers are unique for specific endosome types or whether they can co-exist with other markers. We estimate the densities and sizes of the endosomes containing the three markers, as well as the number of marker antibodies attached to each endosome. We determine that the markers are not unique to one endosome type but that the extent of co-localization is different for the two cell types. In fact, we find endosomes that contain all three markers simultaneously. Our results suggest that the use of these proteins as specific markers for specific endosome types should be reevaluated. This was the first successful use of triple image cross correlation spectroscopy to qualitatively and quantitatively study the extent of interaction among three different species in cells and also the first experimental study of three-way interactions of clathrin mediated endocytic markers.
Collapse
Affiliation(s)
- Lindsay J. Shearer
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Nils O. Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
85
|
Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci Rep 2019; 9:11922. [PMID: 31417133 PMCID: PMC6695423 DOI: 10.1038/s41598-019-47462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Donepezil, a therapeutic drug for Alzheimer’s disease, ameliorates cognitive dysfunction through selective inhibition of acetylcholinesterase. However, recent studies have also reported off-target effects of donepezil that likely contribute to its therapeutic effects. In this study, we investigated the (i) role of donepezil in amyloid precursor protein (APP) processing and (ii) involvement of sorting nexin protein 33 (SNX33), a member of the sorting nexin protein family, in this processing. Results showed that donepezil induces an increase in SNX33 expression in primary cortical neurons. The secretion of sAPPα in culture media increased, whereas the expression of full-length APP in the cell lysate remained unchanged. Exposure of cortical cultures to donepezil led to a decrease in amyloid β (Aβ) protein levels in a concentration- and time-dependent manner. This decrease was not affected by concomitant treatment with acetylcholine receptor antagonists. SNX33 knockdown by target-specific morpholino oligos inhibited the effects of donepezil. Donepezil treatment increased cell membrane surface expression of APP in SNX33 expression-dependent manner. These results suggested that donepezil decreases the level of Aβ by increasing SNX33 expression and APP cleavage by α-secretase in cortical neurons.
Collapse
|
86
|
Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10:828. [PMID: 31379590 PMCID: PMC6658195 DOI: 10.3389/fphys.2019.00828] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal myofibers are injured due to mechanical stresses experienced during physical activity, or due to myofiber fragility caused by genetic diseases. The injured myofiber needs to be repaired or regenerated to restore the loss in muscle tissue function. Myofiber repair and regeneration requires coordinated action of various intercellular signaling factors-including proteins, inflammatory cytokines, miRNAs, and membrane lipids. It is increasingly being recognized release and transmission of these signaling factors involves extracellular vesicle (EV) released by myofibers and other cells in the injured muscle. Intercellular signaling by these EVs alters the phenotype of their target cells either by directly delivering the functional proteins and lipids or by modifying longer-term gene expression. These changes in the target cells activate downstream pathways involved in tissue homeostasis and repair. The EVs are heterogeneous with regards to their size, composition, cargo, location, as well as time-course of genesis and release. These differences impact on the subsequent repair and regeneration of injured skeletal muscles. This review focuses on how intracellular vesicle production, cargo packaging, and secretion by injured muscle, modulates specific reparative, and regenerative processes. Insights into the formation of these vesicles and their signaling properties offer new understandings of the orchestrated response necessary for optimal muscle repair and regeneration.
Collapse
Affiliation(s)
- Daniel C Bittel
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
87
|
Miller DSJ, Schmierer B, Hill CS. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci 2019; 132:jcs234039. [PMID: 31217285 PMCID: PMC6679586 DOI: 10.1242/jcs.234039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/29/2022] Open
Abstract
Growth factor-induced signal transduction pathways are tightly regulated at multiple points intracellularly, but how cells monitor levels of extracellular ligand and translate this information into appropriate downstream responses remains unclear. Understanding signalling dynamics is thus a key challenge in determining how cells respond to external cues. Here, we demonstrate that different TGF-β family ligands, namely activin A and BMP4, signal with distinct dynamics, which differ profoundly from those of TGF-β itself. The signalling dynamics are driven by differences in the localisation and internalisation of receptors for each ligand, which in turn determine the capability of cells to monitor levels of extracellular ligand. By using mathematical modelling, we demonstrate that the distinct receptor behaviours and signalling dynamics observed may be primarily driven by differences in ligand-receptor affinity. Furthermore, our results provide a clear rationale for the different mechanisms of pathway regulation found in vivo for each of these growth factors.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bernhard Schmierer
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics and SciLifeLab Biomedicum 9B, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
88
|
Janzen E, Mendoza-Ferreira N, Hosseinibarkooie S, Schneider S, Hupperich K, Tschanz T, Grysko V, Riessland M, Hammerschmidt M, Rigo F, Bennett CF, Kye MJ, Torres-Benito L, Wirth B. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 2019; 141:2343-2361. [PMID: 29961886 PMCID: PMC6061875 DOI: 10.1093/brain/awy167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive spinal muscular atrophy (SMA), the leading genetic cause of infant lethality, is caused by homozygous loss of the survival motor neuron 1 (SMN1) gene. SMA disease severity inversely correlates with the number of SMN2 copies, which in contrast to SMN1, mainly produce aberrantly spliced transcripts. Recently, the first SMA therapy based on antisense oligonucleotides correcting SMN2 splicing, namely SPINRAZATM, has been approved. Nevertheless, in type I SMA-affected individuals—representing 60% of SMA patients—the elevated SMN level may still be insufficient to restore motor neuron function lifelong. Plastin 3 (PLS3) and neurocalcin delta (NCALD) are two SMN-independent protective modifiers identified in humans and proved to be effective across various SMA animal models. Both PLS3 overexpression and NCALD downregulation protect against SMA by restoring impaired endocytosis; however, the exact mechanism of this protection is largely unknown. Here, we identified calcineurin-like EF-hand protein 1 (CHP1) as a novel PLS3 interacting protein using a yeast-two-hybrid screen. Co-immunoprecipitation and pull-down assays confirmed a direct interaction between CHP1 and PLS3. Although CHP1 is ubiquitously present, it is particularly abundant in the central nervous system and at SMA-relevant sites including motor neuron growth cones and neuromuscular junctions. Strikingly, we found elevated CHP1 levels in SMA mice. Congruently, CHP1 downregulation restored impaired axonal growth in Smn-depleted NSC34 motor neuron-like cells, SMA zebrafish and primary murine SMA motor neurons. Most importantly, subcutaneous injection of low-dose SMN antisense oligonucleotide in pre-symptomatic mice doubled the survival rate of severely-affected SMA mice, while additional CHP1 reduction by genetic modification prolonged survival further by 1.6-fold. Moreover, CHP1 reduction further ameliorated SMA disease hallmarks including electrophysiological defects, smaller neuromuscular junction size, impaired maturity of neuromuscular junctions and smaller muscle fibre size compared to low-dose SMN antisense oligonucleotide alone. In NSC34 cells, Chp1 knockdown tripled macropinocytosis whereas clathrin-mediated endocytosis remained unaffected. Importantly, Chp1 knockdown restored macropinocytosis in Smn-depleted cells by elevating calcineurin phosphatase activity. CHP1 is an inhibitor of calcineurin, which collectively dephosphorylates proteins involved in endocytosis, and is therefore crucial in synaptic vesicle endocytosis. Indeed, we found marked hyperphosphorylation of dynamin 1 in SMA motor neurons, which was restored to control level by the heterozygous Chp1 mutant allele. Taken together, we show that CHP1 is a novel SMA modifier that directly interacts with PLS3, and that CHP1 reduction ameliorates SMA pathology by counteracting impaired endocytosis. Most importantly, we demonstrate that CHP1 reduction is a promising SMN-independent therapeutic target for a combinatorial SMA therapy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Svenja Schneider
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Theresa Tschanz
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Markus Riessland
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Laura Torres-Benito
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
89
|
Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A, Ito F, Yamamoto T, Kawachi S, Akagawa KS, Ōmura S, Sunazuka T, Ito N, Mimaki M, Suzuki K. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo) 2019; 72:759-768. [PMID: 31300721 DOI: 10.1038/s41429-019-0204-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
The pandemic influenza 2009 (A(H1N1)pdm09) virus currently causes seasonal and annual epidemic outbreaks. The widespread use of anti-influenza drugs such as neuraminidase and matrix protein 2 (M2) channel inhibitors has resulted in the emergence of drug-resistant influenza viruses. In this study, we aimed to determine the anti-influenza A(H1N1)pdm09 virus activity of azithromycin, a re-positioned macrolide antibiotic with potential as a new anti-influenza candidate, and to elucidate its underlying mechanisms of action. We performed in vitro and in vivo studies to address this. Our in vitro approaches indicated that progeny virus replication was remarkably inhibited by treating viruses with azithromycin before infection; however, azithromycin administration after infection did not affect this process. We next investigated the steps inhibited by azithromycin during virus invasion. Azithromycin did not affect attachment of viruses onto the cell surface, but blocked internalization into host cells during the early phase of infection. We further demonstrated that azithromycin targeted newly budded progeny virus from the host cells and inactivated their endocytic activity. This unique inhibitory mechanism has not been observed for other anti-influenza drugs, indicating the potential activity of azithromycin before and after influenza virus infection. Considering these in vitro observations, we administered azithromycin intranasally to mice infected with A(H1N1)pdm09 virus. Single intranasal azithromycin treatment successfully reduced viral load in the lungs and relieved hypothermia, which was induced by infection. Our findings indicate the possibility that azithromycin could be an effective macrolide for the treatment of human influenza.
Collapse
Affiliation(s)
- Dat Huu Tran
- Department of Health Protection, Graduate School of Medicine, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Ryuichi Sugamata
- Department of Health Protection, Graduate School of Medicine, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,General Medical Education and Research Center (G-MEC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Shoichi Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,General Medical Education and Research Center (G-MEC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshihiko Noguchi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba 6-3, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Fuyu Ito
- Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomoko Yamamoto
- Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shoji Kawachi
- Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.,General Medical Education and Research Center (G-MEC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kiyoko S Akagawa
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Naoki Ito
- The Pediatric Department, Teikyo Hospital University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masakazu Mimaki
- The Pediatric Department, Teikyo Hospital University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan. .,Asia International Institute of Infectious Disease Control (ADC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan. .,General Medical Education and Research Center (G-MEC), Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
90
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
91
|
Mahapatra KK, Panigrahi DP, Praharaj PP, Bhol CS, Patra S, Mishra SR, Behera BP, Bhutia SK. Molecular interplay of autophagy and endocytosis in human health and diseases. Biol Rev Camb Philos Soc 2019; 94:1576-1590. [PMID: 30989802 DOI: 10.1111/brv.12515] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Autophagy, an evolutionarily conserved process for maintaining the physio-metabolic equilibrium of cells, shares many common effector proteins with endocytosis. For example, tethering proteins involved in fusion like Ras-like GTPases (Rabs), soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), lysosomal-associated membrane protein (LAMP), and endosomal sorting complex required for transport (ESCRT) have a dual role in endocytosis and autophagy, and the trafficking routes of these processes converge at lysosomes. These common effectors indicate an association between budding and fusion of membrane-bound vesicles that may have a substantial role in autophagic lysosome reformation, by sensing cellular stress levels. Therefore, autophagy-endocytosis crosstalk may be significant and implicates a novel endocytic regulatory pathway of autophagy. Moreover, endocytosis has a pivotal role in the intake of signalling molecules, which in turn activates cascades that can result in pathophysiological conditions. This review discusses the basic mechanisms of this crosstalk and its implications in order to identify potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| |
Collapse
|
92
|
Duan D, Derynck R. Transforming growth factor-β (TGF-β)-induced up-regulation of TGF-β receptors at the cell surface amplifies the TGF-β response. J Biol Chem 2019; 294:8490-8504. [PMID: 30948511 DOI: 10.1074/jbc.ra118.005763] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Functional activation of the transforming growth factor-β (TGF-β) receptors (TGFBRs) is carefully regulated through integration of post-translational modifications, spatial regulation at the cellular level, and TGFBR availability at the cell surface. Although the bulk of TGFBRs resides inside the cells, AKT Ser/Thr kinase (AKT) activation in response to insulin or other growth factors rapidly induces transport of TGFBRs to the cell surface, thereby increasing the cell's responsiveness to TGF-β. We now demonstrate that TGF-β itself induces a rapid translocation of its own receptors to the cell surface and thus amplifies its own response. This mechanism of response amplification, which hitherto has not been reported for other cell-surface receptors, depended on AKT activation and TGF-β type I receptor kinase. In addition to an increase in cell-surface TGFBR levels, TGF-β treatment promoted TGFBR internalization, suggesting an overall amplification of TGFBR cycling. The TGF-β-induced increase in receptor presentation at the cell surface amplified TGF-β-induced SMAD family member (SMAD) activation and gene expression. Furthermore, bone morphogenetic protein 4 (BMP-4), which also induces AKT activation, increased TGFBR levels at the cell surface, leading to enhanced autocrine activation of TGF-β-responsive SMADs and gene expression, providing context for the activation of TGF-β signaling in response to BMP during development. In summary, our results indicate that TGF-β- and BMP-induced activation of low levels of cell surface-associated TGFBRs rapidly mobilizes additional TGFBRs from intracellular stores to the cell surface, increasing the abundance of cell-surface TGFBRs and cells' responsiveness to TGF-β signaling.
Collapse
Affiliation(s)
- Dana Duan
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143; Anatomy, University of California at San Francisco, San Francisco, California 94143.
| |
Collapse
|
93
|
Mani I, Pandey KN. Emerging concepts of receptor endocytosis and concurrent intracellular signaling: Mechanisms of guanylyl cyclase/natriuretic peptide receptor-A activation and trafficking. Cell Signal 2019; 60:17-30. [PMID: 30951863 DOI: 10.1016/j.cellsig.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States.
| |
Collapse
|
94
|
Yamaguchi T, Hayashi M, Ida L, Yamamoto M, Lu C, Kajino T, Cheng J, Nakatochi M, Isomura H, Yamazaki M, Suzuki M, Fujimoto T, Takahashi T. ROR1-CAVIN3 interaction required for caveolae-dependent endocytosis and pro-survival signaling in lung adenocarcinoma. Oncogene 2019; 38:5142-5157. [PMID: 30894682 DOI: 10.1038/s41388-019-0785-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a transcriptional target of the lineage-survival oncogene NKX2-1/TTF-1 in lung adenocarcinomas. In addition to its kinase-dependent role, ROR1 functions as a scaffold protein to facilitate interaction between caveolin-1 (CAV1) and CAVIN1, and consequently maintains caveolae formation, which in turn sustains pro-survival signaling toward AKT from multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET (proto-oncogene, receptor tyrosine kinase), and IGF-IR (insulin-like growth factor receptor 1). Therefore, ROR1 is an attractive target for overcoming EGFR-TKI resistance due to various mechanisms such as EGFR T790M double mutation and bypass signaling from other RTKs. Here, we report that ROR1 possesses a novel scaffold function indispensable for efficient caveolae-dependent endocytosis. CAVIN3 was found to bind with ROR1 at a site distinct from sites for CAV1 and CAVIN1, a novel function required for proper CAVIN3 subcellular localization and caveolae-dependent endocytosis, but not caveolae formation itself. Furthermore, evidence of a mechanistic link between ROR1-CAVIN3 interaction and consequential caveolae trafficking, which was found to utilize a binding site distinct from those for ROR1 interactions with CAV1 and CAVIN1, with RTK-mediated pro-survival signaling towards AKT in early endosomes in lung adenocarcinoma cells was also obtained. The present findings warrant future study to enable development of novel therapeutic strategies for inhibiting the multifaceted scaffold functions of ROR1 in order to reduce the intolerable death toll from this devastating cancer.
Collapse
Affiliation(s)
- Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Miyu Hayashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Lisa Ida
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masatoshi Yamamoto
- Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Can Lu
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Hisanori Isomura
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Masaya Yamazaki
- Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,Aichi Cancer Center, 1-1Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan.
| |
Collapse
|
95
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
96
|
Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 57:203-234. [PMID: 30097777 DOI: 10.1007/978-3-319-96704-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.
Collapse
|
97
|
Yang X, Wei C, Liu N, Wu F, Chen J, Wang C, Sun Z, Wang Y, Liu L, Zhang X, Wang B, Zhang Y, Zhong H, Han Y, He X. GP73, a novel TGF-β target gene, provides selective regulation on Smad and non-Smad signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:588-597. [PMID: 30615900 DOI: 10.1016/j.bbamcr.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/26/2022]
Abstract
Increased GP73 expression in hepatocytes from patients with acute hepatitis, through disease progression to cirrhosis and chronic liver disease suggests that progressive tissue remodeling and fibrogenesis are driving forces for GP73 upregulation. Nevertheless, details about regulation of GP73 expression and its biological functions remain elusive and await further characterization. In this study, we demonstrate that GP73 is a direct target of TGF-β1 transcriptional regulation. Its induced expression inhibits TGF-β-Smad mediated growth suppression. On the other hand, elevated GP73 results in upregulation of ERK/Akt signaling induced by TGF-β1. Mechanistically, upregulation of lipid raft and caveolae-1 induced by GP73 overexpression mediates its regulatory effect on TGF-β1 signaling. Notably, lipid raft expression is elevated in HCC tumors and tissues with higher GP73 expression yield more intensive Flotillin staining. Our results establish the linkage between GP73 and TGF-β signaling, indicating that GP73 may promote HCC tumorigenesis by selectively regulating TGF-β signaling through lipid raft modulation.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ning Liu
- Jinzhou Medical University, Jinzhou 121001, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiankang Chen
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Cui Wang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Zhenyu Sun
- Harbin Medical University, Harbin 150001, China
| | - Yufei Wang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Liping Liu
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Xiaoli Zhang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Beihan Wang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Yue Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiang He
- Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
98
|
Vetten M, Gulumian M. Differences in uptake of 14 nm PEG-liganded gold nanoparticles into BEAS-2B cells is dependent on their functional groups. Toxicol Appl Pharmacol 2019; 363:131-141. [DOI: 10.1016/j.taap.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023]
|
99
|
Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2018; 19:1159-1167. [PMID: 30535436 PMCID: PMC6323219 DOI: 10.3892/mmr.2018.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Panpan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, Centre of Experimental Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
100
|
Miller DSJ, Bloxham RD, Jiang M, Gori I, Saunders RE, Das D, Chakravarty P, Howell M, Hill CS. The Dynamics of TGF-β Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Rep 2018; 25:1841-1855.e5. [PMID: 30428352 PMCID: PMC7615189 DOI: 10.1016/j.celrep.2018.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Signal transduction pathways stimulated by secreted growth factors are tightly regulated at multiple levels between the cell surface and the nucleus. The trafficking of cell surface receptors is emerging as a key step for regulating appropriate cellular responses, with perturbations in this process contributing to human diseases, including cancer. For receptors recognizing ligands of the transforming growth factor β (TGF-β) family, little is known about how trafficking is regulated or how this shapes signaling dynamics. Here, using whole genome small interfering RNA (siRNA) screens, we have identified the ESCRT (endosomal sorting complex required for transport) machinery as a crucial determinant of signal duration. Downregulation of ESCRT components increases the outputs of TGF-β signaling and sensitizes cells to low doses of ligand in their microenvironment. This sensitization drives an epithelial-to-mesenchymal transition (EMT) in response to low doses of ligand, and we demonstrate a link between downregulation of the ESCRT machinery and cancer survival.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert D Bloxham
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Debipriya Das
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|