51
|
Gupta R. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion. PLoS Comput Biol 2018; 14:e1005984. [PMID: 29444074 PMCID: PMC5812565 DOI: 10.1371/journal.pcbi.1005984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 12/03/2022] Open
Abstract
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. The transmembrane AMPA receptors (AMPARs) prominently exhibit lateral diffusion in the postsynaptic membrane at excitatory synapses. Steric obstructions to AMPAR diffusion due to the crowd of other relatively static transmembrane proteins and binding of AMPARs to the submembranous scaffold proteins in the specialized region of postsynaptic density (PSD) are well known to retard receptor diffusion, which causes receptor trapping and accumulation within PSD. However, AMPARs are significantly bulky structures and may also obstruct their own diffusion paths in the presence of their high density. It is shown here that intense self-crowding of AMPARs may lead to highly obstructed and confined receptor diffusion even in the obstacle-free medium, and the presence of other obstacles further aggravates this effect. AMPAR-scaffold binding reduces confined diffusion arising from self-crowding and strong binding engenders normal diffusion even at high receptor density. However, it overall causes reduction in the effective diffusion coefficient of the receptor diffusion.
Collapse
Affiliation(s)
- Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
52
|
Yu A, Salazar H, Plested AJR, Lau AY. Neurotransmitter Funneling Optimizes Glutamate Receptor Kinetics. Neuron 2017; 97:139-149.e4. [PMID: 29249286 PMCID: PMC5766834 DOI: 10.1016/j.neuron.2017.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate neurotransmission at the majority of excitatory synapses in the brain. Little is known, however, about how glutamate reaches the recessed binding pocket in iGluR ligand-binding domains (LBDs). Here we report the process of glutamate binding to a prototypical iGluR, GluA2, in atomistic detail using unbiased molecular simulations. Charged residues on the LBD surface form pathways that facilitate glutamate binding by effectively reducing a three-dimensional diffusion process to a spatially constrained, two-dimensional one. Free energy calculations identify residues that metastably bind glutamate and help guide it into the binding pocket. These simulations also reveal that glutamate can bind in an inverted conformation and also reorient while in its pocket. Electrophysiological recordings demonstrate that eliminating these transient binding sites slows activation and deactivation, consistent with slower glutamate binding and unbinding. These results suggest that binding pathways have evolved to optimize rapid responses of AMPA-type iGluRs at synapses.
Collapse
Affiliation(s)
- Alvin Yu
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Héctor Salazar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Andrew J R Plested
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany.
| | - Albert Y Lau
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
53
|
Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0260. [PMID: 28093558 DOI: 10.1098/rstb.2016.0260] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Synapses are complex because they perform multiple functions, including at least six mechanistically different forms of plasticity. Here, I comment on recent developments regarding these processes. (i) Short-term potentiation (STP), a Hebbian process that requires small amounts of synaptic input, appears to make strong contributions to some forms of working memory. (ii) The rules for long-term potentiation (LTP) induction in CA3 have been clarified: induction does not depend obligatorily on backpropagating sodium spikes but, rather, on dendritic branch-specific N-methyl-d-aspartate (NMDA) spikes. (iii) Late LTP, a process that requires a dopamine signal (and is therefore neoHebbian), is mediated by trans-synaptic growth of the synapse, a growth that occurs about an hour after LTP induction. (iv) LTD processes are complex and include both homosynaptic and heterosynaptic forms. (v) Synaptic scaling produced by changes in activity levels are not primarily cell-autonomous, but rather depend on network activity. (vi) The evidence for distance-dependent scaling along the primary dendrite is firm, and a plausible structural-based mechanism is suggested.Ideas about the mechanisms of synaptic function need to take into consideration newly emerging data about synaptic structure. Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70-80 nm), as predicted by theoretical work. Modules are trans-synaptic structures and have high concentrations of postsynaptic density-95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity.'
Collapse
Affiliation(s)
- John Lisman
- Biology Department, Brandeis University, Waltham, MA, USA
| |
Collapse
|
54
|
Costa RP, Mizusaki BEP, Sjöström PJ, van Rossum MCW. Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0153. [PMID: 28093547 PMCID: PMC5247585 DOI: 10.1098/rstb.2016.0153] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Rui Ponte Costa
- Institute for Adaptive and Neural Computation, School of Informatics University of Edinburgh, Edinburgh, UK.,Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Beatriz E P Mizusaki
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Program for Brain Repair and Integrative Neuroscience, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Program for Brain Repair and Integrative Neuroscience, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Mark C W van Rossum
- Institute for Adaptive and Neural Computation, School of Informatics University of Edinburgh, Edinburgh, UK
| |
Collapse
|
55
|
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points. J Neurosci 2017; 37:9519-9533. [PMID: 28871036 DOI: 10.1523/jneurosci.0891-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Neurotransmitter release depends on voltage-gated Na+ channels (Navs) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na+ channels. Using optical recordings of Ca2+ and membrane voltage, we demonstrate here that Na+ channel β2 subunits (Navβ2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Navβ2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Navβ2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons.SIGNIFICANCE STATEMENT Voltage-gated Ca2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na+ channel β2 subunits modulate AP-evoked Ca2+-influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain.
Collapse
|
56
|
Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts. J Neurosci 2017; 36:6906-16. [PMID: 27358449 DOI: 10.1523/jneurosci.0739-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Thalamocortical neurons relay sensory and motor information to the neocortex using both single spikes and bursts; bursts prevail during low-vigilance states but also occur during awake behavior. Bursts are suggested to provide an alerting signal to the cortex and enhance stimulus detection, but the synaptic mechanisms underlying these effects are not clear, because the postsynaptic responses of different subtypes of cortical neurons to unitary thalamocortical bursts are mostly unknown. Using optogenetically guided recordings in mouse thalamocortical slices, we achieved the first reported paired intracellular recordings from nine monosynaptically connected thalamic and cortical neurons, including principal cells and two subtypes of inhibitory interneurons, and compared between cortical responses to single thalamocortical spikes and bursts. In 18 additional cortical neurons, we elicited unitary burst responses optogenetically. Short-term dynamics and temporal summation of burst-evoked EPSPs were cell-type dependent: in principal cells and somatostatin-containing (SOM), but not fast-spiking (FS), interneurons, peak response during a burst was on average more than twofold larger than the response to the first spike. Thus, firing a burst instead of a single spike would more than double the probability of firing in postsynaptic excitatory neurons and in SOM, but not FS, interneurons. Consistent with this prediction, FS interneurons held near firing threshold fired most often on the first burst component, whereas SOM interneurons fired only on the second or later components. By increasing excitation of principal cells together with SOM-mediated, distally directed inhibition, thalamocortical bursts could momentarily enhance the saliency of the ascending sensory stimulus over less urgent, top-down inputs. SIGNIFICANCE STATEMENT Thalamocortical neurons relay sensory and motor information to the cerebral cortex using both single spikes and high-frequency bursts, but the function of bursts is not fully understood. Using brain slices from mouse somatosensory thalamus and cortex, we achieved the first dual recordings of directly connected thalamic and cortical neurons and compared between cortical responses to single thalamic spikes and to bursts. We report that bursts enhanced the responses of excitatory neurons and of inhibitory interneurons that preferentially target dendrites. A potential consequence is that bursts will enhance the response to the immediate sensory event over responses to less urgent, modulatory inputs.
Collapse
|
57
|
The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct Funct 2017; 222:3375-3393. [PMID: 28397107 PMCID: PMC5676837 DOI: 10.1007/s00429-017-1408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.
Collapse
|
58
|
Watson JF, Ho H, Greger IH. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain. eLife 2017; 6. [PMID: 28290985 PMCID: PMC5370185 DOI: 10.7554/elife.23024] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/04/2017] [Indexed: 12/02/2022] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI:http://dx.doi.org/10.7554/eLife.23024.001 Neurons send signals via electrical impulses that are transmitted between cells by small molecules known as neurotransmitters. The information is passed from neuron to neuron at specialized points of contact termed synapses. On release of neurotransmitters from the first neuron, the molecules attach to ‘docking stations’ called receptors on the next neuron, referred to as the postsynaptic cell. One of these receptors, the AMPA receptor, transmits signals by binding to a neurotransmitter called glutamate. Previous research has shown that in order to bind glutamate effectively, these receptors need to be trapped and anchored at the correct location at the synapse. This trapping mechanism controls the number of receptors present, which strengthens the synapse, and ultimately mediates learning and memory. However, it is still not clear how AMPA receptor trapping is achieved. To investigate this question, Watson et al. examined how AMPA receptors (and mutant forms of the receptor) affect the communication between neurons using brain slices from mice. The experiments show that an external segment of the AMPA receptor called the N-terminal domain (or NTD for short) is a key element for receptor anchoring at the postsynapse. The AMPA receptor is made out of four different subunits; when the NTD portion was removed from one specific subunit, fewer receptors were anchored correctly at the postsynapse. When the NTD was removed from another subunit, it completely prevented the synapse from learning. Therefore, the NTD brings about subunit-selective anchoring of the AMPA receptor, which affects the ability of the synapse to transmit signals. Important next steps would be to identify the proteins that interact with the NTD and how this specific anchoring affects the strength of the synapse. Another key step will be to understand what mechanisms control the number of AMPA receptors at synapses, to ultimately enable learning. DOI:http://dx.doi.org/10.7554/eLife.23024.002
Collapse
Affiliation(s)
- Jake F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hinze Ho
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
59
|
Sawant-Pokam PM, Suryavanshi P, Mendez JM, Dudek FE, Brennan KC. Mechanisms of Neuronal Silencing After Cortical Spreading Depression. Cereb Cortex 2017; 27:1311-1325. [PMID: 26733536 PMCID: PMC6317285 DOI: 10.1093/cercor/bhv328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cortical spreading depression (CSD) is associated with migraine, stroke, and traumatic brain injury, but its mechanisms remain poorly understood. One of the major features of CSD is an hour-long silencing of neuronal activity. Though this silencing has clear ramifications for CSD-associated disease, it has not been fully explained. We used in vivo whole-cell recordings to examine the effects of CSD on layer 2/3 pyramidal neurons in mouse somatosensory cortex and used in vitro recordings to examine their mechanism. We found that CSD caused a reduction in spontaneous synaptic activity and action potential (AP) firing that lasted over an hour. Both pre- and postsynaptic mechanisms contributed to this silencing. Reductions in frequency of postsynaptic potentials were due to a reduction in presynaptic transmitter release probability as well as reduced AP activity. Decreases in postsynaptic potential amplitude were due to an inhibitory shift in the ratio of excitatory and inhibitory postsynaptic currents. This inhibitory shift in turn contributed to the reduced frequency of APs. Thus, distinct but complementary mechanisms generate the long neuronal silence that follows CSD. These cellular changes could contribute to wider network dysfunction in CSD-associated disease, while the pre- and postsynaptic mechanisms offer separate targets for therapy.
Collapse
Affiliation(s)
| | | | | | - F. E. Dudek
- Department of Neurosurgery
,
University of Utah School of Medicine
,
Salt Lake City, UT
,
USA
| | | |
Collapse
|
60
|
Szíber Z, Liliom H, Morales COO, Ignácz A, Rátkai AE, Ellwanger K, Link G, Szűcs A, Hausser A, Schlett K. Ras and Rab interactor 1 controls neuronal plasticity by coordinating dendritic filopodial motility and AMPA receptor turnover. Mol Biol Cell 2017; 28:285-295. [PMID: 27852895 PMCID: PMC5231897 DOI: 10.1091/mbc.e16-07-0526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023] Open
Abstract
Ras and Rab interactor 1 (RIN1) is predominantly expressed in the nervous system. RIN1-knockout animals have deficits in latent inhibition and fear extinction in the amygdala, suggesting a critical role for RIN1 in preventing the persistence of unpleasant memories. At the molecular level, RIN1 signals through Rab5 GTPases that control endocytosis of cell-surface receptors and Abl nonreceptor tyrosine kinases that participate in actin cytoskeleton remodeling. Here we report that RIN1 controls the plasticity of cultured mouse hippocampal neurons. Our results show that RIN1 affects the morphology of dendritic protrusions and accelerates dendritic filopodial motility through an Abl kinase-dependent pathway. Lack of RIN1 results in enhanced mEPSC amplitudes, indicating an increase in surface AMPA receptor levels compared with wild-type neurons. We further provide evidence that the Rab5 GEF activity of RIN1 regulates surface GluA1 subunit endocytosis. Consequently loss of RIN1 blocks surface AMPA receptor down-regulation evoked by chemically induced long-term depression. Our findings indicate that RIN1 destabilizes synaptic connections and is a key player in postsynaptic AMPA receptor endocytosis, providing multiple ways of negatively regulating memory stabilization during neuronal plasticity.
Collapse
Affiliation(s)
- Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Anikó Erika Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
61
|
Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores. Biophys J 2016; 110:1538-1550. [PMID: 27074679 DOI: 10.1016/j.bpj.2016.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
Flickering of fusion pores during exocytotic release of hormones and neurotransmitters is well documented, but without assays that use biochemically defined components and measure single-pore dynamics, the mechanisms remain poorly understood. We used total internal reflection fluorescence microscopy to quantify fusion-pore dynamics in vitro and to separate the roles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and lipid bilayer properties. When small unilamellar vesicles bearing neuronal v-SNAREs fused with planar bilayers reconstituted with cognate t-SNARES, lipid and soluble cargo transfer rates were severely reduced, suggesting that pores flickered. From the lipid release times we computed pore openness, the fraction of time the pore is open, which increased dramatically with cholesterol. For most lipid compositions tested, SNARE-mediated and nonspecifically nucleated pores had similar openness, suggesting that pore flickering was controlled by lipid bilayer properties. However, with physiological cholesterol levels, SNAREs substantially increased the fraction of fully open pores and fusion was so accelerated that there was insufficient time to recruit t-SNAREs to the fusion site, consistent with t-SNAREs being preclustered by cholesterol into functional docking and fusion platforms. Our results suggest that cholesterol opens pores directly by reducing the fusion-pore bending energy, and indirectly by concentrating several SNAREs into individual fusion events.
Collapse
|
62
|
Gupta R, Reneaux M. Role of Heterogeneous Macromolecular Crowding and Geometrical Irregularity at Central Excitatory Synapses in Shaping Synaptic Transmission. PLoS One 2016; 11:e0167505. [PMID: 27907112 PMCID: PMC5131996 DOI: 10.1371/journal.pone.0167505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023] Open
Abstract
Besides the geometrical tortousity due to the extrasynaptic structures, macromolecular crowding and geometrical irregularities constituting the cleft composition at central excitatory synapses has a major and direct role in retarding the glutamate diffusion within the cleft space. However, the cleft composition may not only coarsely reduce the overall diffusivity of the glutamate but may also lead to substantial spatial variation in the diffusivity across the cleft space. Decrease in the overall diffusivity of the glutamate may have straightforward consequences to the glutamate transients in the cleft. However, how spatial variation in the diffusivity may further affect glutamate transients is an intriguing aspect. Therefore, to understand the role of cleft heterogeneity, the present study adopts a novel approach of glutamate diffusion which considers a gamma statistical distribution of the diffusion coefficient of glutamate (Dglut) across the cleft space, such that its moments discernibly capture the dual impacts of the cleft composition, and further applies the framework of superstatistics. The findings reveal a power law behavior in the glutamate transients, akin to the long-range anomalous subdiffusion, which leads to slower decay profile of cleft glutamate at higher intensity of cleft heterogeneity. Moreover, increase in the cleft heterogeneity is seen to eventually cause slower-rising excitatory postsynaptic currents with higher amplitudes, lesser noise, and prolonged duration of charge transfer across the postsynaptic membrane. Further, with regard to the conventional standard diffusion approach, the study suggests that the effective Dglut essentially derives from the median of the Dglut distribution and does not necessarily need to be the mean Dglut. Together, the findings indicate a strong implication of cleft heterogeneity to the metabolically cost-effective tuning of synaptic response during the phenomenon of plasticity at individual synapses and also provide an additional factor of variability in transmission across identical synapses.
Collapse
Affiliation(s)
- Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India 110067
| | - Melissa Reneaux
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India 110067
| |
Collapse
|
63
|
Contini D, Price SD, Art JJ. Accumulation of K + in the synaptic cleft modulates activity by influencing both vestibular hair cell and calyx afferent in the turtle. J Physiol 2016; 595:777-803. [PMID: 27633787 DOI: 10.1113/jp273060] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/11/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft. High-fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance. Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion. Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential. With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+ ]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. ABSTRACT Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch-clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High-fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA-dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high-speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Steven D Price
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jonathan J Art
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
64
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
65
|
MacGillavry HD, Blanpied TA. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines. ACTA ACUST UNITED AC 2016; 65:2.20.1-2.20.19. [PMID: 25429311 DOI: 10.1002/0471142301.ns0220s65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Super-resolution microscopy has rapidly become an indispensable tool in cell biology and neuroscience by enabling measurement in live cells of structures smaller than the classical limit imposed by diffraction. The most widely applied super-resolution method currently is localization microscopy, which takes advantage of the ability to determine the position of individual fluorescent molecules with nanometer accuracy even in cells. By iteratively measuring sparse subsets of photoactivatable fluorescent proteins, protein distribution in macromolecular structures can be accurately reconstructed. Moreover, the motion trajectories of individual molecules within cells can be measured, providing unique ability to measure transport kinetics, exchange rates, and binding affinities of even small subsets of molecules with high temporal resolution and great spatial specificity. This unit describes protocols to measure and quantify the distribution of scaffold proteins within single synapses of cultured hippocampal neurons, and to track and measure the diffusion of intracellular constituents of the neuronal plasma membrane.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
66
|
Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins. J Neurosci 2016; 36:4276-95. [PMID: 27076425 DOI: 10.1523/jneurosci.3154-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/19/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Mechanisms regulating lateral diffusion and positioning of glutamate receptors within the postsynaptic density (PSD) determine excitatory synaptic strength. Scaffold proteins in the PSD are abundant receptor binding partners, yet electron microscopy suggests that the PSD is highly crowded, potentially restricting the diffusion of receptors regardless of binding. However, the contribution of macromolecular crowding to receptor retention remains poorly understood. We combined experimental and computational approaches to test the effect of synaptic crowding on receptor movement and positioning in Sprague Dawley rat hippocampal neurons. We modeled AMPA receptor diffusion in synapses where the distribution of scaffold proteins was determined from photoactivated localization microscopy experiments, and receptor-scaffold association and dissociation rates were adjusted to fit single-molecule tracking and fluorescence recovery measurements. Simulations predicted that variation of receptor size strongly influences the fractional synaptic area the receptor may traverse, and the proportion that may exchange in and out of the synapse. To test the model experimentally, we designed a set of novel transmembrane (TM) probes. A single-pass TM protein with one PDZ binding motif concentrated in the synapse as do AMPARs yet was more mobile there than the much larger AMPAR. Furthermore, either the single binding motif or an increase in cytoplasmic bulk through addition of a single GFP slowed synaptic movement of a small TM protein. These results suggest that both crowding and binding limit escape of AMPARs from the synapse. Moreover, tight protein packing within the PSD may modulate the synaptic dwell time of many TM proteins important for synaptic function. SIGNIFICANCE STATEMENT Small alterations to the distribution within synapses of key transmembrane proteins, such as receptors, can dramatically change synaptic strength. Indeed, many diseases are thought to unbalance neural circuit function in this manner. Processes that regulate this in healthy synapses are unclear, however. By combining computer simulations with imaging methods that examined protein dynamics at multiple scales in space and time, we showed that both steric effects and protein-protein binding each regulate the mobility of receptors in the synapse. Our findings extend our knowledge of the synapse as a crowded environment that counteracts molecular diffusion, and support the idea that both molecular collisions and biochemical binding can be involved in the regulation of neural circuit performance.
Collapse
|
67
|
Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 2016; 73:3053-73. [PMID: 27105623 PMCID: PMC11108290 DOI: 10.1007/s00018-016-2214-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
Abstract
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France.
| |
Collapse
|
68
|
Körber C, Kuner T. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone. Front Synaptic Neurosci 2016; 8:5. [PMID: 26973506 PMCID: PMC4773589 DOI: 10.3389/fnsyn.2016.00005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
69
|
Calcium binding promotes conformational flexibility of the neuronal Ca(2+) sensor synaptotagmin. Biophys J 2016; 108:2507-2520. [PMID: 25992729 DOI: 10.1016/j.bpj.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that serves as a calcium sensor of neuronal secretion. It is established that calcium binding to Syt1 triggers vesicle fusion and release of neuronal transmitters, however, the dynamics of this process is not fully understood. To investigate how Ca(2+) binding affects Syt1 conformational dynamics, we performed prolonged molecular dynamics (MD) simulations of Ca(2+)-unbound and Ca(2+)-bound forms of Syt1. MD simulations were performed at a microsecond scale and combined with Monte Carlo sampling. We found that in the absence of Ca(2+) Syt1 structure in the solution is represented by an ensemble of conformational states with tightly coupled domains. To investigate the effect of Ca(2+) binding, we used two different strategies to generate a molecular model of a Ca(2+)-bound form of Syt1. First, we employed subsequent replacements of monovalent cations transiently captured within Syt1 Ca(2+)-binding pockets by Ca(2+) ions. Second, we performed MD simulations of Syt1 at elevated Ca(2+) levels. All the simulations produced Syt1 structures bound to four Ca(2+) ions, two ions chelated at the binding pocket of each domain. MD simulations of the Ca(2+)-bound form of Syt1 revealed that Syt1 conformational flexibility drastically increased upon Ca(2+) binding. In the presence of Ca(2+), the separation between domains increased, and interdomain rotations became more frequent. These findings suggest that Ca(2+) binding to Syt1 may induce major changes in the Syt1 conformational state, which in turn may initiate the fusion process.
Collapse
|
70
|
Stanley EF. The Nanophysiology of Fast Transmitter Release. Trends Neurosci 2016; 39:183-197. [PMID: 26896416 DOI: 10.1016/j.tins.2016.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 01/26/2023]
Abstract
Action potentials invading the presynaptic terminal trigger discharge of docked synaptic vesicles (SVs) by opening voltage-dependent calcium channels (CaVs) and admitting calcium ions (Ca(2+)), which diffuse to, and activate, SV sensors. At most synapses, SV sensors and CaVs are sufficiently close that release is gated by individual CaV Ca(2+) nanodomains centered on the channel mouth. Other synapses gate SV release with extensive Ca(2+) microdomains summed from many, more distant CaVs. We review the experimental preparations, theories, and methods that provided principles of release nanophysiology and highlight expansion of the field into synaptic diversity and modifications of release gating for specific synaptic demands. Specializations in domain gating may adapt the terminal for roles in development, transmission of rapid impulse frequencies, and modulation of synaptic strength.
Collapse
Affiliation(s)
- Elise F Stanley
- Laboratory of Synaptic Transmission, KD 7-418, The Krembil Institute, 60 Leonard Street, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
71
|
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0182. [PMID: 26009761 DOI: 10.1098/rstb.2014.0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Javier Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
72
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
73
|
Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AHC, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 2015; 139:509-25. [DOI: 10.1093/brain/awv355] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/17/2015] [Indexed: 11/12/2022] Open
Abstract
Abstract
Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer’s disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer’s disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer’s disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization. For investigating the biological effects of amyloid-β dimers, we stabilized amyloid-β dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-β peptide (Aβ-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-β dimers, but not monomers, amyloid-β plaques or insoluble amyloid-β during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer’s disease mouse models. Although the amyloid-β dimers were unable to initiate the formation of insoluble amyloid-β aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-β plaque generating mouse model, Aβ-S8C dimers were sequestered into amyloid-β plaques, suggesting that amyloid-β plaques incorporate neurotoxic amyloid-β dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-β species, amyloid-β dimer neurotoxic signalling, in the absence of amyloid-β plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer’s disease.
10.1093/brain/awv355_video_abstract awv355_video_abstract
Collapse
Affiliation(s)
| | - Arne Herring
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Laila Abdel-Hafiz
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Aisa N. Chepkova
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Schäble
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
- *Present address: Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Diana Wedel
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Anselm H. C. Horn
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kurt Gottmann
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Olga A. Sergeeva
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Joseph P. Huston
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Kathy Keyvani
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Carsten Korth
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
74
|
Sturgeon M, Davis D, Albers A, Beatty D, Austin R, Ferguson M, Tounsel B, Liebl FLW. The Notch ligand E3 ligase, Mind Bomb1, regulates glutamate receptor localization in Drosophila. Mol Cell Neurosci 2015; 70:11-21. [PMID: 26596173 DOI: 10.1016/j.mcn.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.
Collapse
Affiliation(s)
- Morgan Sturgeon
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Dustin Davis
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Amanda Albers
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Derek Beatty
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Rik Austin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Matt Ferguson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Brittany Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| |
Collapse
|
75
|
Tong XJ, Hu Z, Liu Y, Anderson D, Kaplan JM. A network of autism linked genes stabilizes two pools of synaptic GABA(A) receptors. eLife 2015; 4:e09648. [PMID: 26575289 PMCID: PMC4642926 DOI: 10.7554/elife.09648] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023] Open
Abstract
Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI:http://dx.doi.org/10.7554/eLife.09648.001 Behaviors ranging from movement to memory are dependent on the activity of extensive networks of cells called neurons. Within these networks, neurons communicate across junctions called synapses. The arrival of an electrical signal called an action potential at the ‘presynaptic’ neuron on one side of the synapse triggers the neuron to release chemical neurotransmitter molecules into the synapse. These molecules then bind to receptors on the ‘postsynaptic’ cell on the other side of the synapse. At excitatory synapses, the binding of neurotransmitter to postsynaptic receptors increases the likelihood that the postsynaptic cell will fire its own action potential. By contrast, at inhibitory synapses the binding of neurotransmitters reduces the chances of the postsynaptic cell firing. Most inhibitory synapses use a type of neurotransmitter called GABA, which exerts its effects mainly by binding to a class of receptors called GABA-activated chloride channels (also known as GABAA receptors). GABAA receptors at inhibitory synapses can themselves be divided into two groups: ‘mobile’ receptors, which can move within the cell membrane that surrounds the postsynaptic cell; and ‘immobilized’ receptors that form clusters and cannot move. Recent work in mammalian cells identified a protein complex that anchors GABAA receptors to the cell's internal skeleton to immobilize the receptors. However, there is evidence to suggest that these are not the only proteins that control the location of the receptors. By studying the inhibitory synapses formed between neurons and body muscles in the roundworm species Caenorhabditis elegans, Tong, Hu et al. now show that different groups of proteins maintain the positioning of immobilized and mobile receptors. Specifically, proteins called LIN-2A (a component of the cell's internal skeleton) and FRM-3 (which joins receptors to the cell's skeleton) immobilize GABAA receptors, whilst the proteins Neuroligin and Neurexin ensure that mobile GABAA receptors remain within the synapse. Disturbances to the activity of inhibitory synapses are often seen in autism spectrum disorders, and so too are mutations in the genes that encode the mammalian equivalents of Neuroligin, Neurexin and LIN-2A. The work of Tong, Hu et al. thus suggests a mechanism by which these mutations might contribute to information processing impairments in people with autism. Further research could now investigate if (and how) other genes linked to autism spectrum disorders alter inhibitory synapses. DOI:http://dx.doi.org/10.7554/eLife.09648.002
Collapse
Affiliation(s)
- Xia-Jing Tong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Yu Liu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Dorian Anderson
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
76
|
Setiadi J, Heinzelmann G, Kuyucak S. Computational Studies of Glutamate Transporters. Biomolecules 2015; 5:3067-86. [PMID: 26569328 PMCID: PMC4693270 DOI: 10.3390/biom5043067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| | - Germano Heinzelmann
- Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| |
Collapse
|
77
|
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 2015; 5:3356. [PMID: 24561832 PMCID: PMC4267856 DOI: 10.1038/ncomms4356] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] Open
Abstract
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.
Collapse
|
78
|
Slater CR. The functional organization of motor nerve terminals. Prog Neurobiol 2015; 134:55-103. [DOI: 10.1016/j.pneurobio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/28/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
|
79
|
Malkin S, Kim K, Tikhonov D, Magazanik L, Zaitsev A. Statistical models suggest presence of two distinct subpopulations of miniature EPSCs in fast-spiking interneurons of rat prefrontal cortex. Neuroscience 2015; 301:508-19. [DOI: 10.1016/j.neuroscience.2015.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 01/30/2023]
|
80
|
Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina. Eur J Neurosci 2015; 42:2615-32. [PMID: 26173960 DOI: 10.1111/ejn.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
As all visual information is represented in the spatio-temporal dynamics of transmitter release from photoreceptors and the combined postsynaptic responses of second-order neurons, appropriate synaptic transfer functions are fundamental for a meaningful perception of the visual world. The functional contribution of horizontal cells to gain control and organization of bipolar and ganglion cell receptive fields can only be evaluated with an in-depth understanding of signal processing in horizontal cells. Therefore, a horizontal slice preparation of the mouse retina was established to record from horizontal cell bodies with their dendritic fields intact and receiving functional synaptic input from cone photoreceptors. Horizontal cell bodies showed spontaneous excitatory currents (spEPSCs) of monophasic and more complex multi-peak waveforms. spEPSCs were induced by quantal release of glutamate from presynaptic cones with a unitary amplitude of 3 pA. Non-stationary noise analysis revealed that spEPSCs with a monoexponential decay were mediated by 7-8 glutamate receptors with a single-channel amplitude of 1.55 pA. Responses to photopic full-field illumination were characterized by reduction of a tonic inward current or hyperpolarization, inhibition of spEPSCs, followed by a fast and transient inward current at light offset. The response to periodic dark/light transitions of different frequencies was dependent on the adaptational status of the cell with a limiting frequency of 10 Hz. Both on and off components of the light response were mediated by AMPA and kainate receptors. Detailed analysis of horizontal cell synaptic physiology is a prerequisite for understanding signal coding and processing at the photoreceptor ribbon synapse.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| | - Norbert Babai
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| |
Collapse
|
81
|
Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster. Anesthesiology 2015; 122:1060-74. [PMID: 25738637 DOI: 10.1097/aln.0000000000000629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. METHODS Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. RESULTS The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). CONCLUSION The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.
Collapse
|
82
|
Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains. Cell Rep 2015; 12:326-34. [PMID: 26146087 DOI: 10.1016/j.celrep.2015.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/14/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023] Open
Abstract
A diverse array of neuromodulators governs cellular function in the prefrontal cortex (PFC) via the activation of G-protein-coupled receptors (GPCRs). However, these functionally diverse signals are carried and amplified by a relatively small assortment of intracellular second messengers. Here, we examine whether two distinct Gαi-coupled neuromodulators (norepinephrine and GABA) act as redundant regulators of glutamatergic synaptic transmission. Our results reveal that, within single dendritic spines of layer 5 pyramidal neurons, alpha-2 adrenergic receptors (α2Rs) selectively inhibit excitatory transmission mediated by AMPA-type glutamate receptors, while type B GABA receptors (GABA(B)Rs) inhibit NMDA-type receptors. We show that both modulators act via the downregulation of cAMP and PKA. However, by restricting the lifetime of active Gαi, RGS4 promotes the independent control of these two distinct target proteins. Our findings highlight a mechanism by which neuromodulatory microdomains can be established in subcellular compartments such as dendritic spines.
Collapse
|
83
|
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model. PLoS One 2015; 10:e0130924. [PMID: 26107874 PMCID: PMC4479604 DOI: 10.1371/journal.pone.0130924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023] Open
Abstract
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
Collapse
|
84
|
Stern JE. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J Neuroendocrinol 2015; 27:487-97. [PMID: 25546497 PMCID: PMC4447596 DOI: 10.1111/jne.12252] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Communication between pairs of neurones in the central nervous system typically involves classical 'hard-wired' synaptic transmission, characterised by high temporal and spatial precision. Over the last two decades, however, knowledge regarding the repertoire of communication modalities used in the brain has notably expanded to include less conventional forms, characterised by a diffuse and less temporally precise transfer of information. These forms are best suited to mediate communication among entire neuronal populations, now recognised to be a fundamental process in the brain for the generation of complex behaviours. In response to an osmotic stressor, the hypothalamic paraventricular nucleus (PVN) generates a multimodal homeostatic response that involves orchestrated neuroendocrine (i.e. systemic release of vasopressin) and autonomic (i.e. sympathetic outflow to the kidneys) components. The precise mechanisms that underlie interpopulation cross-talk between these two distinct neuronal populations, however, remain largely unknown. The present review summarises and discusses a series of recent studies that have identified the dendritic release of neuropeptides as a novel interpopulation signalling modality in the PVN. A current working model is described in which it is proposed that the activity-dependent dendritic release of vasopressin from neurosecretory neurones in the PVN acts in a diffusible manner to increase the activity of distant presympathetic neurones, resulting in an integrated sympathoexcitatory population response, particularly within the context of a hyperosmotic challenge. The cellular mechanism underlying this novel form of intercellular communication, as well as its physiological and pathophysiological implications, is discussed.
Collapse
Affiliation(s)
- J E Stern
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
85
|
Ochs SM, Dorostkar MM, Aramuni G, Schön C, Filser S, Pöschl J, Kremer A, Van Leuven F, Ovsepian SV, Herms J. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin. Mol Psychiatry 2015; 20:482-9. [PMID: 24912492 PMCID: PMC4378257 DOI: 10.1038/mp.2014.55] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023]
Abstract
Central nervous glycogen synthase kinase 3β (GSK3β) is implicated in a number of neuropsychiatric diseases, such as bipolar disorder, depression, schizophrenia, fragile X syndrome or anxiety disorder. Many drugs employed to treat these conditions inhibit GSK3β either directly or indirectly. We studied how conditional knockout of GSK3β affected structural synaptic plasticity. Deletion of the GSK3β gene in a subset of cortical and hippocampal neurons in adult mice led to reduced spine density. In vivo imaging revealed that this was caused by a loss of persistent spines, whereas stabilization of newly formed spines was reduced. In electrophysiological recordings, these structural alterations correlated with a considerable drop in the frequency and amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-dependent miniature excitatory postsynaptic currents. Expression of constitutively active β-catenin caused reduction in spine density and electrophysiological alterations similar to GSK3β knockout, suggesting that the effects of GSK3β knockout were mediated by the accumulation of β-catenin. In summary, changes of dendritic spines, both in quantity and in morphology, are correlates of experience-dependent synaptic plasticity; thus, these results may help explain the mechanism of action of psychotropic drugs inhibiting GSK3β.
Collapse
Affiliation(s)
- S M Ochs
- German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Munich, Germany
| | - M M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - G Aramuni
- German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Munich, Germany
| | - C Schön
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - S Filser
- German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Munich, Germany
| | - J Pöschl
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - A Kremer
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics KU Leuven, Leuven, Belgium
| | - F Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics KU Leuven, Leuven, Belgium
| | - S V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Munich, Germany
| | - J Herms
- German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Munich, Germany,Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,German Center for Neurodegenerative Diseases (DZNE), Ludwig Maximilian University Munich, Feodor-Lynen-Strasse 23, Munich 81377, Germany. E-mail:
| |
Collapse
|
86
|
MacGillavry HD, Hoogenraad CC. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far? Exp Cell Res 2015; 335:180-6. [PMID: 25746722 DOI: 10.1016/j.yexcr.2015.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
87
|
Constals A, Penn A, Compans B, Toulmé E, Phillipat A, Marais S, Retailleau N, Hafner AS, Coussen F, Hosy E, Choquet D. Glutamate-Induced AMPA Receptor Desensitization Increases Their Mobility and Modulates Short-Term Plasticity through Unbinding from Stargazin. Neuron 2015; 85:787-803. [DOI: 10.1016/j.neuron.2015.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 11/30/2014] [Accepted: 01/07/2015] [Indexed: 11/24/2022]
|
88
|
Dutta-Roy R, Rosenmund C, Edelstein SJ, Le Novère N. Ligand-dependent opening of the multiple AMPA receptor conductance states: a concerted model. PLoS One 2015; 10:e0116616. [PMID: 25629405 PMCID: PMC4309570 DOI: 10.1371/journal.pone.0116616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023] Open
Abstract
Modulation of the properties of AMPA receptors at the post-synaptic membrane is one of the main suggested mechanisms underlying fast synaptic transmission in the central nervous system of vertebrates. Electrophysiological recordings of single channels stimulated with agonists showed that both recombinant and native AMPA receptors visit multiple conductance states in an agonist concentration dependent manner. We propose an allosteric model of the multiple conductance states based on concerted conformational transitions of the four subunits, as an iris diaphragm. Our model predicts that the thermodynamic behaviour of the conductance states upon full and partial agonist stimulations can be described with increased affinity of receptors as they progress to higher conductance states. The model also predicts the existence of AMPA receptors in non-liganded conductive substates. However, the probability of spontaneous openings decreases with increasing conductances. Finally, we predict that the large conductance states are stabilized within the rise phase of a whole-cell EPSC in glutamatergic hippocampal neurons. Our model provides a mechanistic link between ligand concentration and conductance states that can explain thermodynamic and kinetic features of AMPA receptor gating.
Collapse
Affiliation(s)
- Ranjita Dutta-Roy
- Department of Medicine Solna, Karolinska Insitutet, 171 76 Stockholm, Sweden
- NWFZ, Charite Universitatsmedizin, 101 17 Berlin, Germany
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | | - Nicolas Le Novère
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- The Babraham Institute, Babraham, Cambridgeshire CB22 3AT, UK
- * E-mail:
| |
Collapse
|
89
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
90
|
Ventura AC, Bush A, Vasen G, Goldín MA, Burkinshaw B, Bhattacharjee N, Folch A, Brent R, Chernomoretz A, Colman-Lerner A. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range. Proc Natl Acad Sci U S A 2014; 111:E3860-9. [PMID: 25172920 PMCID: PMC4169960 DOI: 10.1073/pnas.1322761111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.
Collapse
Affiliation(s)
- Alejandra C Ventura
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Alan Bush
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Gustavo Vasen
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Matías A Goldín
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Brianne Burkinshaw
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195; and
| | - Roger Brent
- Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Physics Institute of Buenos Aires (IFIBA), CONICET, and Department of Physics, FCEN, UBA, C1428EGA Buenos Aires, Argentina; Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN),
| |
Collapse
|
91
|
Organization and dynamics of AMPA receptors inside synapses—nano-organization of AMPA receptors and main synaptic scaffolding proteins revealed by super-resolution imaging. Curr Opin Chem Biol 2014; 20:120-6. [DOI: 10.1016/j.cbpa.2014.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
|
92
|
Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 2014; 13:419-31. [DOI: 10.1038/nrd4309] [Citation(s) in RCA: 872] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
93
|
Gandini MA, Henríquez DR, Grimaldo L, Sandoval A, Altier C, Zamponi GW, Felix R, González-Billault C. CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pflugers Arch 2014; 466:2113-26. [PMID: 24566975 DOI: 10.1007/s00424-014-1476-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/18/2022]
Abstract
Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.
Collapse
Affiliation(s)
- María A Gandini
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, (Cinvestav-IPN), Avenida IPN 2508, Colonia Zacatenco, Mexico DF, 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhang Q. Imaging single synaptic vesicles in mammalian central synapses with quantum dots. Methods Mol Biol 2014; 1026:57-69. [PMID: 23749569 DOI: 10.1007/978-1-62703-468-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nerve system. This technique makes use of fluorescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with other fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle recycling. This application is spectrally compatible with existing optical labels for synapses and thus allows multichannel and simultaneous imaging. With easy modification, this technique can be applied to other types of cells.
Collapse
Affiliation(s)
- Qi Zhang
- Pharmacology Department, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
95
|
Vitureira N, Goda Y. Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. ACTA ACUST UNITED AC 2013; 203:175-86. [PMID: 24165934 PMCID: PMC3812972 DOI: 10.1083/jcb.201306030] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departmento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay
| | | |
Collapse
|
96
|
Savtchenko LP, Rusakov DA. Moderate AMPA receptor clustering on the nanoscale can efficiently potentiate synaptic current. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130167. [PMID: 24298165 PMCID: PMC3843895 DOI: 10.1098/rstb.2013.0167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The prevailing view at present is that postsynaptic expression of the classical NMDA receptor-dependent long-term potentiation relies on an increase in the numbers of local AMPA receptors (AMPARs). This is thought to parallel an expansion of postsynaptic cell specializations, for instance dendritic spine heads, which accommodate synaptic receptor proteins. However, glutamate released into the synaptic cleft can normally activate only a hotspot of low-affinity AMPARs that occur in the vicinity of the release site. How the enlargement of the AMPAR pool is causally related to the potentiated AMPAR current remains therefore poorly understood. To understand possible scenarios of postsynaptic potentiation, here we explore a detailed Monte Carlo model of the typical small excitatory synapse. Simulations suggest that approximately 50% increase in the synaptic AMPAR current could be provided by expanding the existing AMPAR pool at the expense of 100–200% new AMPARs added at the same packing density. Alternatively, reducing the inter-receptor distances by only 30–35% could achieve a similar level of current potentiation without any changes in the receptor numbers. The NMDA receptor current also appears sensitive to the NMDA receptor crowding. Our observations provide a quantitative framework for understanding the ‘resource-efficient’ ways to enact use-dependent changes in the architecture of central synapses.
Collapse
Affiliation(s)
- Leonid P Savtchenko
- UCL Institute of Neurology, University College London, , Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
97
|
Stochastic computations in cortical microcircuit models. PLoS Comput Biol 2013; 9:e1003311. [PMID: 24244126 PMCID: PMC3828141 DOI: 10.1371/journal.pcbi.1003311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving.
Collapse
|
98
|
Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 2013; 33:13204-24. [PMID: 23926273 DOI: 10.1523/jneurosci.2381-12.2013] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ∼70 nm that contain ∼20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains.
Collapse
|
99
|
O’Donnell C, Nolan MF. Stochastic Ion Channel Gating and Probabilistic Computation in Dendritic Neurons. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-8094-5_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
100
|
|