51
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
52
|
Rousseau V, Einig E, Jin C, Horn J, Riebold M, Poth T, Jarboui MA, Flentje M, Popov N. Trim33 masks a non-transcriptional function of E2f4 in replication fork progression. Nat Commun 2023; 14:5143. [PMID: 37612308 PMCID: PMC10447549 DOI: 10.1038/s41467-023-40847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Replicative stress promotes genomic instability and tumorigenesis but also presents an effective therapeutic endpoint, rationalizing detailed analysis of pathways that control DNA replication. We show here that the transcription factor E2f4 recruits the DNA helicase Recql to facilitate progression of DNA replication forks upon drug- or oncogene-induced replicative stress. In unperturbed cells, the Trim33 ubiquitin ligase targets E2f4 for degradation, limiting its genomic binding and interactions with Recql. Replicative stress blunts Trim33-dependent ubiquitination of E2f4, which stimulates transient Recql recruitment to chromatin and facilitates recovery of DNA synthesis. In contrast, deletion of Trim33 induces chronic genome-wide recruitment of Recql and strongly accelerates DNA replication under stress, compromising checkpoint signaling and DNA repair. Depletion of Trim33 in Myc-overexpressing cells leads to accumulation of replication-associated DNA damage and delays Myc-driven tumorigenesis. We propose that the Trim33-E2f4-Recql axis controls progression of DNA replication forks along transcriptionally active chromatin to maintain genome integrity.
Collapse
Affiliation(s)
- Vanessa Rousseau
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Interfaculty Institute for Biochemistry, University Hospital Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Julia Horn
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Wakenitzmauer 3, 23552, Lübeck, Germany
| | - Mathias Riebold
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatry, University Hospital Tübingen, Otfried-Müller-Str 12, 72076, Tübingen, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Mohamed-Ali Jarboui
- Core Facility for Medical Bioanalytics, Proteomics Platform Tübingen (PxP), Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str 7, 72076, Tübingen, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
53
|
Rivero Belenchón I, Congregado Ruiz CB, Saez C, Osman García I, Medina López RA. Parp Inhibitors and Radiotherapy: A New Combination for Prostate Cancer (Systematic Review). Int J Mol Sci 2023; 24:12978. [PMID: 37629155 PMCID: PMC10455664 DOI: 10.3390/ijms241612978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
PARPi, in combination with ionizing radiation, has demonstrated the ability to enhance cellular radiosensitivity in different tumors. The rationale is that the exposure to radiation leads to both physical and biochemical damage to DNA, prompting cells to initiate three primary mechanisms for DNA repair. Two double-stranded DNA breaks (DSB) repair pathways: (1) non-homologous end-joining (NHEJ) and (2) homologous recombination (HR); and (3) a single-stranded DNA break (SSB) repair pathway (base excision repair, BER). In this scenario, PARPi can serve as radiosensitizers by leveraging the BER pathway. This mechanism heightens the likelihood of replication forks collapsing, consequently leading to the formation of persistent DSBs. Together, the combination of PARPi and radiotherapy is a potent oncological strategy. This combination has proven its efficacy in different tumors. However, in prostate cancer, there are only preclinical studies to support it and, recently, an ongoing clinical trial. The objective of this paper is to perform a review of the current evidence regarding the use of PARPi and radiotherapy (RT) in PCa and to give future insight on this topic.
Collapse
Affiliation(s)
- Inés Rivero Belenchón
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Belen Congregado Ruiz
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Saez
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Ignacio Osman García
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| |
Collapse
|
54
|
Igarashi T, Mazevet M, Yasuhara T, Yano K, Mochizuki A, Nishino M, Yoshida T, Yoshida Y, Takamatsu N, Yoshimi A, Shiraishi K, Horinouchi H, Kohno T, Hamamoto R, Adachi J, Zou L, Shiotani B. An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress. Nat Commun 2023; 14:4991. [PMID: 37591859 PMCID: PMC10435487 DOI: 10.1038/s41467-023-40578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Marianne Mazevet
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaaki Yasuhara
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Nishino
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Akihide Yoshimi
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, 567-0085, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
55
|
Sharma AB, Ramlee MK, Kosmin J, Higgs MR, Wolstenholme A, Ronson GE, Jones D, Ebner D, Shamkhi N, Sims D, Wijnhoven PWG, Forment JV, Gibbs-Seymour I, Lakin ND. C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption. Nat Commun 2023; 14:5003. [PMID: 37591890 PMCID: PMC10435583 DOI: 10.1038/s41467-023-40779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.
Collapse
Affiliation(s)
| | | | - Joel Kosmin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Wolstenholme
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - George E Ronson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Dylan Jones
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Noor Shamkhi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul W G Wijnhoven
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Josep V Forment
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
56
|
Batenburg NL, Walker JR, Zhu XD. CSB Regulates Pathway Choice in Response to DNA Replication Stress Induced by Camptothecin. Int J Mol Sci 2023; 24:12419. [PMID: 37569794 PMCID: PMC10418903 DOI: 10.3390/ijms241512419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Topoisomerase inhibitor camptothecin (CPT) induces fork stalling and is highly toxic to proliferating cells. However, how cells respond to CPT-induced fork stalling has not been fully characterized. Here, we report that Cockayne syndrome group B (CSB) protein inhibits PRIMPOL-dependent fork repriming in response to a low dose of CPT. At a high concentration of CPT, CSB is required to promote the restart of DNA replication through MUS81-RAD52-POLD3-dependent break-induced replication (BIR). In the absence of CSB, resumption of DNA synthesis at a high concentration of CPT can occur through POLQ-LIG3-, LIG4-, or PRIMPOL-dependent pathways, which are inhibited, respectively, by RAD51, BRCA1, and BRCA2 proteins. POLQ and LIG3 are core components of alternative end joining (Alt-EJ), whereas LIG4 is a core component of nonhomologous end joining (NHEJ). These results suggest that CSB regulates fork restart pathway choice following high-dosage CPT-induced fork stalling, promoting BIR but inhibiting Alt-EJ, NHEJ, and fork repriming. We find that loss of CSB and BRCA2 is a toxic combination to genomic stability and cell survival at a high concentration of CPT, which is likely due to accumulation of ssDNA gaps, underscoring an important role of CSB in regulating the therapy response in cancers lacking functional BRCA2.
Collapse
Affiliation(s)
| | | | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (N.L.B.); (J.R.W.)
| |
Collapse
|
57
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
58
|
Eichman BF. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Curr Opin Struct Biol 2023; 81:102618. [PMID: 37269798 PMCID: PMC10525001 DOI: 10.1016/j.sbi.2023.102618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.
Collapse
Affiliation(s)
- Brandt F Eichman
- Vanderbilt University, Department of Biological Sciences and Department of Biochemistry, 5270A MRBIII, 465 21st Ave S, Nashville, TN 37232 USA.
| |
Collapse
|
59
|
Leung W, Simoneau A, Saxena S, Jackson J, Patel PS, Limbu M, Vindigni A, Zou L. ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep 2023; 42:112792. [PMID: 37454295 PMCID: PMC10529362 DOI: 10.1016/j.celrep.2023.112792] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The ATR kinase safeguards genomic integrity during S phase, but how ATR protects DNA replication forks remains incompletely understood. Here, we combine four distinct assays to analyze ATR functions at ongoing and newly assembled replication forks upon replication inhibition by hydroxyurea. At ongoing forks, ATR inhibitor (ATRi) increases MRE11- and EXO1-mediated nascent DNA degradation from PrimPol-generated, single-stranded DNA (ssDNA) gaps. ATRi also exposes template ssDNA through fork uncoupling and nascent DNA degradation. Electron microscopy reveals that ATRi reduces reversed forks by increasing gap-dependent nascent DNA degradation. At new forks, ATRi triggers MRE11- and CtIP-initiated template DNA degradation by EXO1, exposing nascent ssDNA. Upon PARP inhibition, ATRi preferentially exacerbates gap-dependent nascent DNA degradation at ongoing forks in BRCA1/2-deficient cells and disrupts the restored gap protection in BRCA1-deficient, PARP-inhibitor-resistant cells. Thus, ATR protects ongoing and new forks through distinct mechanisms, providing an extended view of ATR's functions in stabilizing replication forks.
Collapse
Affiliation(s)
- Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
60
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
61
|
Richards F, Llorca-Cardenosa MJ, Langton J, Buch-Larsen SC, Shamkhi NF, Sharma AB, Nielsen ML, Lakin ND. Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3. Nat Commun 2023; 14:4310. [PMID: 37463936 DOI: 10.1038/s41467-023-40071-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Although Poly(ADP-ribose)-polymerases (PARPs) are key regulators of genome stability, how site-specific ADP-ribosylation regulates DNA repair is unclear. Here, we describe a novel role for PARP1 and PARP2 in regulating Rad52-dependent replication fork repair to maintain cell viability when homologous recombination is dysfunctional, suppress replication-associated DNA damage, and maintain genome stability. Mechanistically, Mre11 and ATM are required for induction of PARP activity in response to replication stress that in turn promotes break-induced replication (BIR) through assembly of Rad52 at stalled/damaged replication forks. Further, by mapping ADP-ribosylation sites induced upon replication stress, we identify that PolD3 is a target for PARP1/PARP2 and that its site-specific ADP-ribosylation is required for BIR activity, replication fork recovery and genome stability. Overall, these data identify a critical role for Mre11-dependent PARP activation and site-specific ADP-ribosylation in regulating BIR to maintain genome integrity during DNA synthesis.
Collapse
Affiliation(s)
- Frederick Richards
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | - Jamie Langton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Sara C Buch-Larsen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Noor F Shamkhi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | - Michael L Nielsen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
62
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
63
|
Huang Y, Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Global trends in BRCA-related breast cancer research from 2013 to 2022: A scientometric analysis. Front Oncol 2023; 13:1197168. [PMID: 37476378 PMCID: PMC10354558 DOI: 10.3389/fonc.2023.1197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Since the mid-2000s, breast cancer incidence among women has slowly increased at about 0.5% per year. In the last three decades, Breast Cancer Susceptibility Gene (BRCA) has been proven to be the crucial gene in encouraging the incidence and development of breast cancer. However, scientometric analysis on BRCA-related breast cancer is in shortage. Thus, to have a clear understanding of the current status and catch up with the hotspots, a scientometric analysis was conducted on specific academic publications collected from the Web of Science (WoS). Methods We searched the Web of Science Core Collection (WoSCC) to procure associated articles as our dataset. Bibliometric, CiteSpace, VOSviewer, and HistCite software were then applied to conduct visual analyses of countries, institutions, journals, authors, landmark articles, and keywords in this research field. Results A total of 7,266 articles and 1,310 review articles published between 2013 to 2022 were retrieved eventually. The annual output steadily rose year by year and peaked in 2021. The USA led the way in the number of published works, total citations, and collaboration. Breast Cancer Research and Treatment was the most favoured journal in this research field. Narod SA from the University of Toronto produced the most publications. At last, the most prominent keywords were "breast cancer" (n=1,778), "women" (n=1,369), "brca1" (n=1,276), "ovarian cancer" (n=1,259), "risk" (n=1,181), and "mutations" (n=929), which exposed the hotspots within the BRCA domain of breast cancer study. Conclusion The tendency in the BRCA research field over the past decade was presented by the scientometric analysis. The current research focus is the clinical trials of poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) drugs and their resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyang Li
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| | - Yexi Chen
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| |
Collapse
|
64
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
65
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
66
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
67
|
Datta A, Sommers JA, Jhujh SS, Harel T, Stewart GS, Brosh RM. Discovery of a new hereditary RECQ helicase disorder RECON syndrome positions the replication stress response and genome homeostasis as centrally important processes in aging and age-related disease. Ageing Res Rev 2023; 86:101887. [PMID: 36805074 PMCID: PMC10018417 DOI: 10.1016/j.arr.2023.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.
Collapse
Affiliation(s)
- Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA.
| |
Collapse
|
68
|
Andrs M, Stoy H, Boleslavska B, Chappidi N, Kanagaraj R, Nascakova Z, Menon S, Rao S, Oravetzova A, Dobrovolna J, Surendranath K, Lopes M, Janscak P. Excessive reactive oxygen species induce transcription-dependent replication stress. Nat Commun 2023; 14:1791. [PMID: 36997515 PMCID: PMC10063555 DOI: 10.1038/s41467-023-37341-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.
Collapse
Affiliation(s)
- Martin Andrs
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Barbora Boleslavska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nagaraja Chappidi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Radhakrishnan Kanagaraj
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, London, UK
- School of Life Sciences, University of Bedfordshire, Luton, UK
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Zuzana Nascakova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Shruti Menon
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Satyajeet Rao
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anna Oravetzova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Dobrovolna
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kalpana Surendranath
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, London, UK
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Pavel Janscak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
69
|
Palumbieri MD, Merigliano C, Acosta DG, von Känel T, Welter B, Stoy H, Krietsch J, Ulferts S, Sanchi A, Grosse R, Chiolo I, Lopes M. Replication fork plasticity upon replication stress requires rapid nuclear actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534097. [PMID: 36993227 PMCID: PMC10055433 DOI: 10.1101/2023.03.24.534097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase, rapidly extending in number and thickness upon genotoxic treatments, and taking frequent contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork plasticity is linked to reduced recruitment of RAD51 and SMARCAL1 to nascent DNA. Conversely, PRIMPOL gains access to replicating chromatin, promoting unrestrained and discontinuous DNA synthesis, which is associated with increased chromosomal instability and decreased cellular resistance to replication stress. Hence, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
Collapse
|
70
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
71
|
Patel JA, Kim H. The TIMELESS effort for timely DNA replication and protection. Cell Mol Life Sci 2023; 80:84. [PMID: 36892674 PMCID: PMC9998586 DOI: 10.1007/s00018-023-04738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center and Renaissance School of Medicine, Stony Brook University, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
72
|
Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, Crossley MP, Schmid JA, Cimprich KA, Merrikh H, Lopes M. Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. Nat Struct Mol Biol 2023; 30:348-359. [PMID: 36864174 PMCID: PMC10023573 DOI: 10.1038/s41594-023-00928-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.
Collapse
Affiliation(s)
- Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kevin S Lang
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
73
|
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. J Ovarian Res 2023; 16:6. [PMID: 36611214 PMCID: PMC9826575 DOI: 10.1186/s13048-023-01094-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yongsong Wu
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China ,grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| | - Yu Wang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| |
Collapse
|
74
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
75
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
76
|
Kavlashvili T, Liu W, Mohamed TM, Cortez D, Dewar JM. Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat Struct Mol Biol 2023; 30:115-124. [PMID: 36593312 PMCID: PMC9868089 DOI: 10.1038/s41594-022-00871-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
Genotoxins cause nascent strand degradation (NSD) and fork reversal during DNA replication. NSD and fork reversal are crucial for genome stability and are exploited by chemotherapeutic approaches. However, it is unclear how NSD and fork reversal are triggered. Additionally, the fate of the replicative helicase during these processes is unknown. We developed a biochemical approach to study synchronous, localized NSD and fork reversal using Xenopus egg extracts and validated this approach with experiments in human cells. We show that replication fork uncoupling stimulates NSD of both nascent strands and progressive conversion of uncoupled forks to reversed forks. Notably, the replicative helicase remains bound during NSD and fork reversal. Unexpectedly, NSD occurs before and after fork reversal, indicating that multiple degradation steps take place. Overall, our data show that uncoupling causes NSD and fork reversal and elucidate key events that precede fork reversal.
Collapse
Affiliation(s)
- Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenpeng Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Taha M Mohamed
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
77
|
Zhao S, Goewey Ruiz JA, Sebastian M, Kidane D. Defective DNA polymerase beta invoke a cytosolic DNA mediated inflammatory response. Front Immunol 2022; 13:1039009. [PMID: 36624848 PMCID: PMC9823925 DOI: 10.3389/fimmu.2022.1039009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Base excision repair (BER) has evolved to maintain the genomic integrity of DNA following endogenous and exogenous agent induced DNA base damage. In contrast, aberrant BER induces genomic instability, promotes malignant transformation and can even trigger cancer development. Previously, we have shown that deoxyribo-5'-phosphate (dRP) lyase deficient DNA polymerase beta (POLB) causes replication associated genomic instability and sensitivity to both endogenous and exogenous DNA damaging agents. Specifically, it has been established that this loss of dRP lyase function promotes inflammation associated gastric cancer. However, the way that aberrant POLB impacts the immune signaling and inflammatory responses is still unknown. Here we show that a dRP lyase deficient variant of POLB (Leu22Pro, or L22P) increases mitotic dysfunction associated genomic instability, which eventually leads to a cytosolic DNA mediated inflammatory response. Furthermore, poly(ADP-ribose) polymerase 1 inhibition exacerbates chromosomal instability and enhances the cytosolic DNA mediated inflammatory response. Our results suggest that POLB plays a significant role in modulating inflammatory signaling, and they provide a mechanistic basis for future potential cancer immunotherapies.
Collapse
Affiliation(s)
- Shengyuan Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Julia A. Goewey Ruiz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Manu Sebastian
- Dept. of Veterinary Medicine & Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
- Dept. of Translational Molecular Pathology, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| |
Collapse
|
78
|
Ho YC, Ku CS, Tsai SS, Shiu JL, Jiang YZ, Miriam HE, Zhang HW, Chen YT, Chiu WT, Chang SB, Shen CH, Myung K, Chi P, Liaw H. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet 2022; 18:e1010545. [PMID: 36512630 PMCID: PMC9794062 DOI: 10.1371/journal.pgen.1010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/27/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.
Collapse
Affiliation(s)
- Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Chen-Syun Ku
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Siang-Sheng Tsai
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Hui Emmanuela Miriam
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Han-Wen Zhang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, Republic of Korea
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
79
|
Coll-Bonfill N, Mahajan U, Shashkova EV, Lin CJ, Mecham RP, Gonzalo S. Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience 2022; 45:965-982. [PMID: 36482259 PMCID: PMC9886737 DOI: 10.1007/s11357-022-00694-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a premature aging disease caused by LMNA gene mutation and the production of a truncated prelamin A protein "progerin" that elicits cellular and organismal toxicity. Progerin accumulates in the vasculature, being especially detrimental for vascular smooth muscle cells (VSMC). Vessel stiffening and aortic atherosclerosis in HGPS patients are accompanied by VSMC depletion in the medial layer, altered extracellular matrix (ECM), and thickening of the adventitial layer. Mechanisms whereby progerin causes massive VSMC loss and vessel alterations remain poorly understood. Mature VSMC retain phenotypic plasticity and can switch to a synthetic/proliferative phenotype. Here, we show that progerin expression in human and mouse VSMC causes a switch towards the synthetic phenotype. This switch elicits some level of replication stress in normal cells, which is exacerbated in the presence of progerin, leading to telomere fragility, genomic instability, and ultimately VSMC death. Calcitriol prevents replication stress, telomere fragility, and genomic instability, reducing VSMC death. In addition, RNA-seq analysis shows induction of a profibrotic and pro-inflammatory aging-associated secretory phenotype upon progerin expression in human primary VSMC. Our data suggest that phenotypic switch-induced replication stress might be an underlying cause of VSMC loss in progeria, which together with loss of contractile features and gain of profibrotic and pro-inflammatory signatures contribute to vascular stiffness in HGPS.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Urvashi Mahajan
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Elena V. Shashkova
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Chien-Jung Lin
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA ,grid.262962.b0000 0004 1936 9342Department of Internal Medicine, Cardiovascular Division, Saint Louis University School of Medicine, St Louis, MO 63104 USA
| | - Robert P. Mecham
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO, 63104, USA.
| |
Collapse
|
80
|
Meroni A, Grosser J, Agashe S, Ramakrishnan N, Jackson J, Verma P, Baranello L, Vindigni A. NEDDylated Cullin 3 mediates the adaptive response to topoisomerase 1 inhibitors. SCIENCE ADVANCES 2022; 8:eabq0648. [PMID: 36490343 PMCID: PMC9733930 DOI: 10.1126/sciadv.abq0648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/26/2022] [Indexed: 05/30/2023]
Abstract
DNA topoisomerase 1 (TOP11) inhibitors are mainstays of anticancer therapy. These drugs trap TOP1 on DNA, stabilizing the TOP1-cleavage complex (TOP1-cc). The accumulation of TOP1-ccs perturbs DNA replication fork progression, leading to DNA breaks and cell death. By analyzing the genomic occupancy and activity of TOP1, we show that cells adapt to treatment with multiple doses of TOP1 inhibitor by promoting the degradation of TOP1-ccs, allowing cells to better tolerate subsequent doses of TOP1 inhibitor. The E3-RING Cullin 3 ligase in complex with the BTBD1 and BTBD2 adaptor proteins promotes TOP1-cc ubiquitination and subsequent proteasomal degradation. NEDDylation of Cullin 3 activates this pathway, and inhibition of protein NEDDylation or depletion of Cullin 3 sensitizes cancer cells to TOP1 inhibitors. Collectively, our data uncover a previously unidentified NEDD8-Cullin 3 pathway involved in the adaptive response to TOP1 inhibitors, which can be targeted to improve the efficacy of TOP1 drugs in cancer therapy.
Collapse
Affiliation(s)
- Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jan Grosser
- Karolinska Institutet, CMB, 171 65 Solna, Sweden
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
81
|
Boleslavska B, Oravetzova A, Shukla K, Nascakova Z, Ibini O, Hasanova Z, Andrs M, Kanagaraj R, Dobrovolna J, Janscak P. DDX17 helicase promotes resolution of R-loop-mediated transcription-replication conflicts in human cells. Nucleic Acids Res 2022; 50:12274-12290. [PMID: 36453994 PMCID: PMC9757067 DOI: 10.1093/nar/gkac1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.
Collapse
Affiliation(s)
- Barbora Boleslavska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Anna Oravetzova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Zuzana Nascakova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | - Zdenka Hasanova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Andrs
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radhakrishnan Kanagaraj
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK,School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK,Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Jana Dobrovolna
- Correspondence may also be addressed to Jana Dobrovolna. Tel: +420 241063127;
| | - Pavel Janscak
- To whom correspondence should be addressed. Tel: +41 44 6353470;
| |
Collapse
|
82
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
83
|
Jacobs K, Doerdelmann C, Krietsch J, González-Acosta D, Mathis N, Kushinsky S, Guarino E, Gómez-Escolar C, Martinez D, Schmid JA, Leary PJ, Freire R, Ramiro AR, Eischen CM, Mendez J, Lopes M. Stress-triggered hematopoietic stem cell proliferation relies on PrimPol-mediated repriming. Mol Cell 2022; 82:4176-4188.e8. [PMID: 36152632 PMCID: PMC10251193 DOI: 10.1016/j.molcel.2022.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.
Collapse
Affiliation(s)
- Kurt Jacobs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cyril Doerdelmann
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel González-Acosta
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nicolas Mathis
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Saul Kushinsky
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Estrella Guarino
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Carmen Gómez-Escolar
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter J Leary
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Functional Genomic Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Almudena R Ramiro
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
84
|
Zhu C, Iwase M, Li Z, Wang F, Quinet A, Vindigni A, Shao J. Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L. Nat Commun 2022; 13:6531. [PMID: 36319634 PMCID: PMC9626489 DOI: 10.1038/s41467-022-34310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA replication forks are tightly controlled by a large protein network consisting of well-known core regulators and many accessory factors which remain functionally undefined. In this study, we report previously unknown nuclear functions of the actin-binding factor profilin-1 (PFN1) in DNA replication, which occur in a context-dependent fashion and require its binding to poly-L-proline (PLP)-containing proteins instead of actin. In unperturbed cells, PFN1 increases DNA replication initiation and accelerates fork progression by binding and stimulating the PLP-containing nucleosome remodeler SNF2H. Under replication stress, PFN1/SNF2H increases fork stalling and functionally collaborates with fork reversal enzymes to enable the over-resection of unprotected forks. In addition, PFN1 binds and functionally attenuates the PLP-containing fork protector BODL1 to increase the resection of a subset of stressed forks. Accordingly, raising nuclear PFN1 level decreases genome stability and cell survival during replication stress. Thus, PFN1 is a multi-functional regulator of DNA replication with exploitable anticancer potential.
Collapse
Affiliation(s)
- Cuige Zhu
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Iwase
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ziqian Li
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Faliang Wang
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Annabel Quinet
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- UMR Genetic Stability Stem Cells and Radiation, University of Paris and University of Paris-Saclay, INSERM, iRCM/IBFJ CEA, Fontenay-aux-Roses, France
| | - Alessandro Vindigni
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jieya Shao
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
85
|
Dibitetto D, Marshall S, Sanchi A, Liptay M, Badar J, Lopes M, Rottenberg S, Smolka MB. DNA-PKcs promotes fork reversal and chemoresistance. Mol Cell 2022; 82:3932-3942.e6. [PMID: 36130596 PMCID: PMC9588680 DOI: 10.1016/j.molcel.2022.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
The DNA-PKcs kinase mediates the repair of DNA double-strand breaks via classical non-homologous end joining (NHEJ). DNA-PKcs is also recruited to active replication forks, although a role for DNA-PKcs in the control of fork dynamics is unclear. Here, we identify a crucial role for DNA-PKcs in promoting fork reversal, a process that stabilizes stressed replication forks and protects genome integrity. DNA-PKcs promotes fork reversal and slowing in response to several replication stress-inducing agents in a manner independent of its role in NHEJ. Cells lacking DNA-PKcs activity show increased DNA damage during S-phase and cellular sensitivity to replication stress. Notably, prevention of fork slowing and reversal via DNA-PKcs inhibition efficiently restores chemotherapy sensitivity in BRCA2-deficient mammary tumors with acquired PARPi resistance. Together, our data uncover a new key regulator of fork reversal and show how DNA-PKcs signaling can be manipulated to alter fork dynamics and drug resistance in cancer.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
86
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
87
|
Chu YY, Chen MK, Wei Y, Lee HH, Xia W, Wang YN, Yam C, Hsu JL, Wang HL, Chang WC, Yamaguchi H, Jiang Z, Liu C, Li CF, Nie L, Chan LC, Gao Y, Wang SC, Liu J, Westin SN, Lee S, Sood AK, Yang L, Hortobagyi GN, Yu D, Hung MC. Targeting the ALK-CDK9-Tyr19 kinase cascade sensitizes ovarian and breast tumors to PARP inhibition via destabilization of the P-TEFb complex. NATURE CANCER 2022; 3:1211-1227. [PMID: 36253486 PMCID: PMC9586872 DOI: 10.1038/s43018-022-00438-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2022] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated promising clinical activity in multiple cancers. However, resistance to PARP inhibitors remains a substantial clinical challenge. In the present study, we report that anaplastic lymphoma kinase (ALK) directly phosphorylates CDK9 at tyrosine-19 to promote homologous recombination (HR) repair and PARP inhibitor resistance. Phospho-CDK9-Tyr19 increases its kinase activity and nuclear localization to stabilize positive transcriptional elongation factor b and activate polymerase II-dependent transcription of HR-repair genes. Conversely, ALK inhibition increases ubiquitination and degradation of CDK9 by Skp2, an E3 ligase. Notably, combination of US Food and Drug Administration-approved ALK and PARP inhibitors markedly reduce tumor growth and improve survival of mice in PARP inhibitor-/platinum-resistant tumor xenograft models. Using human tumor biospecimens, we further demonstrate that phosphorylated ALK (p-ALK) expression is associated with resistance to PARP inhibitors and positively correlated with p-Tyr19-CDK9 expression. Together, our findings support a biomarker-driven, combinatorial treatment strategy involving ALK and PARP inhibitors to induce synthetic lethality in PARP inhibitor-/platinum-resistant tumors with high p-ALK-p-Tyr19-CDK9 expression.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
88
|
Thakar T, Dhoonmoon A, Straka J, Schleicher EM, Nicolae CM, Moldovan GL. Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nat Commun 2022; 13:5323. [PMID: 36085347 PMCID: PMC9463168 DOI: 10.1038/s41467-022-33028-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to protect stalled replication forks from nucleolytic degradation drives genome instability and underlies chemosensitivity in BRCA-deficient tumors. An emerging hallmark of BRCA-deficiency is the inability to suppress replication-associated single-stranded DNA (ssDNA) gaps. Here, we report that lagging strand ssDNA gaps interfere with the ASF1-CAF-1 nucleosome assembly pathway, and drive fork degradation in BRCA-deficient cells. We show that CAF-1 function at replication forks is lost in BRCA-deficient cells, due to defects in its recycling during replication stress. This CAF-1 recycling defect is caused by lagging strand gaps which preclude PCNA unloading, causing sequestration of PCNA-CAF-1 complexes on chromatin. Importantly, correcting PCNA unloading defects in BRCA-deficient cells restores CAF-1-dependent fork stability. We further show that the activation of a HIRA-dependent compensatory histone deposition pathway restores fork stability to BRCA-deficient cells. We thus define lagging strand gap suppression and nucleosome assembly as critical enablers of BRCA-mediated fork stability. Efficient DNA replication is crucial for genome stability. Here, Thakar et al. report that accumulation of lagging strand ssDNA gaps during replication interferes with nucleosome assembly and drives replication fork degradation in BRCA-deficient cells.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
89
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
90
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
91
|
Dhoonmoon A, Nicolae CM, Moldovan GL. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat Commun 2022; 13:5063. [PMID: 36030235 PMCID: PMC9420157 DOI: 10.1038/s41467-022-32756-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Suppression of nascent DNA degradation has emerged as an essential role of the BRCA pathway in genome protection. In BRCA-deficient cells, the MRE11 nuclease is responsible for both resection of reversed replication forks, and accumulation of single stranded DNA gaps behind forks. Here, we show that the mono-ADP-ribosyltransferase PARP14 is a critical co-factor of MRE11. PARP14 is recruited to nascent DNA upon replication stress in BRCA-deficient cells, and through its catalytic activity, mediates the engagement of MRE11. Loss or inhibition of PARP14 suppresses MRE11-mediated fork degradation and gap accumulation, and promotes genome stability and chemoresistance of BRCA-deficient cells. Moreover, we show that the KU complex binds reversed forks and protects them against EXO1-catalyzed degradation. KU recruits the PARP14-MRE11 complex, which initiates partial resection to release KU and allow long-range resection by EXO1. Our work identifies a multistep process of nascent DNA processing at stalled replication forks in BRCA-deficient cells. Protection of replication forks against nucleolytic degradation is crucial for genome stability. Here, Dhoonmoon et al identify PARP14 and the KU complex as essential regulators of fork degradation by MRE11 and EXO1 nucleases in BRCA-deficient cells.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
92
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
93
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
94
|
Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell 2022; 82:2363-2369. [PMID: 35568026 PMCID: PMC9271608 DOI: 10.1016/j.molcel.2022.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or "BRCAness" could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
95
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
96
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
97
|
Gupta P, Majumdar AG, Patro BS. Non-enzymatic function of WRN RECQL helicase regulates removal of topoisomerase-I-DNA covalent complexes and triggers NF-κB signaling in cancer. Aging Cell 2022; 21:e13625. [PMID: 35582959 PMCID: PMC9197415 DOI: 10.1111/acel.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Mutation in Werner (WRN) RECQL helicase is associated with premature aging syndrome (Werner syndrome, WS) and predisposition to multiple cancers. In patients with solid cancers, deficiency of the WRN RECQL helicase is paradoxically associated with enhanced overall survival in response to treatment with TOP1 inhibitors, which stabilize pathological TOP1‐DNA‐covalent‐complexes (TOP1cc) on the genome. However, the underlying mechanism of WRN in development of chemoresistance to TOP1 inhibitors is not yet explored. Our whole‐genome transcriptomic analysis for ~25,000 genes showed robust activation of NF‐κB‐dependent prosurvival genes in response to TOP1cc. CRISPR‐Cas9 knockout, shRNA silencing, and under‐expression of WRN confer high‐sensitivity of multiple cancers to TOP1 inhibitor. We demonstrated that WRN orchestrates TOP1cc repair through proteasome‐dependent and proteasome‐independent process, unleashing robust ssDNA generation. This in turn ensues signal transduction for CHK1 mediated NF‐κB‐activation through IκBα‐degradation and nuclear localization of p65 protein. Intriguingly, our site‐directed mutagenesis and rescue experiments revealed that neither RECQL‐helicase nor DNA‐exonuclease enzyme activity of WRN (WRNE84A, WRNK577M, and WRNE84A‐K577M) were required for TOP1cc removal, ssDNA generation and signaling for NF‐κB activation. In correlation with patient data and above results, the TOP1 inhibitor‐based targeted therapy showed that WRN‐deficient melanoma tumors were highly sensitive to TOP1 inhibition in preclinical in vivo mouse model. Collectively, our findings identify hitherto unknown non‐enzymatic role of WRN RECQL helicase in pathological mechanisms underlying TOP1cc processing and subsequent NF‐κB‐activation, offering a potential targeted therapy for WRN‐deficient cancer patients.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Ananda Guha Majumdar
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Birija Sankar Patro
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| |
Collapse
|
98
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
99
|
Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, Kienle SM, Rieth S, Scheffner M, Lopes M, Dobbelstein M. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep 2022; 39:110879. [PMID: 35649362 DOI: 10.1016/j.celrep.2022.110879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022] Open
Abstract
The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.
Collapse
Affiliation(s)
- Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Maria Dilia Palumbieri
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sonja Rieth
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
100
|
Mahmoodi A, Shoqafi A, Sun P, Giannakeas V, Cybulski C, Nofech-Mozes S, Masson JY, Sharma S, Samani AA, Madhusudan S, Narod SA, Akbari MR. High Expression of RECQL Protein in ER-Positive Breast Tumours Is Associated With a Better Survival. Front Oncol 2022; 12:877617. [PMID: 35712517 PMCID: PMC9195420 DOI: 10.3389/fonc.2022.877617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background RECQL (also known as RECQ1 and RECQL1) is a gene of recent interest in breast cancer and an association between high levels of RECQL protein in breast cancer tumour cells and good survival of patients has been reported. Methods To validate this association, we measured the RECQL protein levels in tumours of 933 breast cancer patients using immunohistochemistry analysis and followed the patients for death from breast cancer. Results Women with a level of RECQL protein above the 75th percentile had better 15-year disease-specific survival among ER-positive patients (62.5% vs. 48.7%, HR= 0.72, 95%CI= 0.52-0.98, p-value = 0.04), but not among ER- patients (48.9% vs. 48.0%, HR= 1.07, 95%CI= 0.67-1.69, p-value= 0.79). Among the ER-negative patients, high RECQL protein levels were associated with better survival among women who received tamoxifen treatment (67.0% vs. 51.5%, HR= 0.64, 95%CI= 0.41-0.99, p-value= 0.04). Conclusion RECQL might be a new predictive marker for tamoxifen treatment among ER-positive patients.
Collapse
Affiliation(s)
- Ardalan Mahmoodi
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ping Sun
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Vasily Giannakeas
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Sharon Nofech-Mozes
- Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
- National Human Genome Center, College of Medicine, Howard University, Washington, DC, United States
| | - Amir Abbas Samani
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Humber River Hospital, University of Toronto, Toronto, ON, Canada
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mohammad R. Akbari
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohammad R. Akbari,
| |
Collapse
|