51
|
Vangeel L, Voets T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035048. [PMID: 30910771 DOI: 10.1101/cshperspect.a035048] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient receptor potential (TRP) cation channels play diverse roles in cellular Ca2+ signaling. First, as Ca2+-permeable channels that respond to a variety of stimuli, TRP channels can directly initiate cellular Ca2+ signals. Second, as nonselective cation channels, TRP channel activation leads to membrane depolarization, influencing Ca2+ influx via voltage-gated and store-operated Ca2+ channels. Finally, Ca2+ modulates the activity of most TRP channels, allowing them to function as molecular effectors downstream of intracellular Ca2+ signals. Whereas the TRP channel field has long been devoid of detailed channel structures, recent advances, particularly in cryo-electron microscopy-based structural approaches, have yielded a flurry of TRP channel structures, including members from all seven subfamilies. These structures, in conjunction with mutagenesis-based functional approaches, provided important new insights into the mechanisms whereby TRP channels permeate and sense Ca2+ These insights will be highly instrumental in the rational design of novel treatments for the multitude of TRP channel-related diseases.
Collapse
Affiliation(s)
- Laura Vangeel
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
52
|
Zhang X, Chen W, Gao Q, Yang J, Yan X, Zhao H, Su L, Yang M, Gao C, Yao Y, Inoki K, Li D, Shao R, Wang S, Sahoo N, Kudo F, Eguchi T, Ruan B, Xu H. Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biol 2019; 17:e3000252. [PMID: 31112550 PMCID: PMC6528971 DOI: 10.1371/journal.pbio.3000252] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Junsheng Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xueni Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Han Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lin Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yao Yao
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken Inoki
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shiyi Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Benfang Ruan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- * E-mail: (HX); (BR)
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (HX); (BR)
| |
Collapse
|
53
|
Jiang QX. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Med Chem 2019; 15:443-458. [PMID: 30569868 PMCID: PMC6858087 DOI: 10.2174/1573406415666181219101613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
Cells need high-sensitivity detection of non-self molecules in order to fight against pathogens. These cellular sensors are thus of significant importance to medicinal purposes, especially for treating novel emerging pathogens. RIG-I-like receptors (RLRs) are intracellular sensors for viral RNAs (vRNAs). Their active forms activate mitochondrial antiviral signaling protein (MAVS) and trigger downstream immune responses against viral infection. Functional and structural studies of the RLR-MAVS signaling pathway have revealed significant supramolecular variability in the past few years, which revealed different aspects of the functional signaling pathway. Here I will discuss the molecular events of RLR-MAVS pathway from the angle of detecting single copy or a very low copy number of vRNAs in the presence of non-specific competition from cytosolic RNAs, and review key structural variability in the RLR / vRNA complexes, the MAVS helical polymers, and the adapter-mediated interactions between the active RLR / vRNA complex and the inactive MAVS in triggering the initiation of the MAVS filaments. These structural variations may not be exclusive to each other, but instead may reflect the adaptation of the signaling pathways to different conditions or reach different levels of sensitivity in its response to exogenous vRNAs.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
54
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
55
|
Plesch E, Chen CC, Butz E, Scotto Rosato A, Krogsaeter EK, Yinan H, Bartel K, Keller M, Robaa D, Teupser D, Holdt LM, Vollmar AM, Sippl W, Puertollano R, Medina D, Biel M, Wahl-Schott C, Bracher F, Grimm C. Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. eLife 2018; 7:39720. [PMID: 30479274 PMCID: PMC6257821 DOI: 10.7554/elife.39720] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cytokines and chemokines are produced and secreted by a broad range of immune cells including macrophages. Remarkably, little is known about how these inflammatory mediators are released from the various immune cells. Here, the endolysosomal cation channel TRPML2 is shown to play a direct role in chemokine trafficking and secretion from murine macrophages. To demonstrate acute and direct involvement of TRPML2 in these processes, the first isoform-selective TRPML2 channel agonist was generated, ML2-SA1. ML2-SA1 was not only found to directly stimulate release of the chemokine CCL2 from macrophages but also to stimulate macrophage migration, thus mimicking CCL2 function. Endogenous TRPML2 is expressed in early/recycling endosomes as demonstrated by endolysosomal patch-clamp experimentation and ML2-SA1 promotes trafficking through early/recycling endosomes, suggesting CCL2 being transported and secreted via this pathway. These data provide a direct link between TRPML2 activation, CCL2 release and stimulation of macrophage migration in the innate immune response.
Collapse
Affiliation(s)
- Eva Plesch
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisabeth Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Einar K Krogsaeter
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hua Yinan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marco Keller
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Franz Bracher
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
56
|
Zhang X, Hu M, Yang Y, Xu H. Organellar TRP channels. Nat Struct Mol Biol 2018; 25:1009-1018. [PMID: 30374082 DOI: 10.1038/s41594-018-0148-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Mammalian transient receptor potential (TRP) channels mediate Ca2+ flux and voltage changes across membranes in response to environmental and cellular signals. At the plasma membrane, sensory TRPs act as neuronal detectors of physical and chemical environmental signals, and receptor-operated (metabotropic) TRPs decode extracellular neuroendocrine cues to control body homeostasis. In intracellular membranes, such as those in lysosomes, organellar TRPs respond to compartment-derived signals to control membrane trafficking, signal transduction, and organelle function. Complementing mouse and human genetics and high-resolution structural approaches, physiological studies employing natural agonists and synthetic inhibitors have become critical in resolving the in vivo functions of metabotropic, sensory, and organellar TRPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
57
|
Kasimova MA, Yazici AT, Yudin Y, Granata D, Klein ML, Rohacs T, Carnevale V. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 2018; 150:1554-1566. [PMID: 30333107 PMCID: PMC6219692 DOI: 10.1085/jgp.201812124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
TRPV1 channels comprise four subunits containing six transmembrane segments (S1–S6) that surround a central pore. Kasimova et al. hypothesize that channel opening involves rotation of an S6 asparagine residue toward the pore, as well as associated pore hydration and external cavity dehydration. The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4–S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4–S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.
Collapse
Affiliation(s)
- Marina A Kasimova
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Daniele Granata
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| |
Collapse
|
58
|
Fine M, Schmiege P, Li X. Structural basis for PtdInsP 2-mediated human TRPML1 regulation. Nat Commun 2018; 9:4192. [PMID: 30305615 PMCID: PMC6180102 DOI: 10.1038/s41467-018-06493-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4-S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.
Collapse
Affiliation(s)
- Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
59
|
Membrane protein structural biology in the era of single particle cryo-EM. Curr Opin Struct Biol 2018; 52:58-63. [PMID: 30219656 DOI: 10.1016/j.sbi.2018.08.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
In the past few years, significant technological breakthroughs in single particle cryo-electron microscopy enabled a 'resolution revolution' of this technique. It also changed structural biology in an unprecedented way. For many biological macromolecules, obtaining well-ordered crystals of suitable size is no longer a prerequisite for determining their atomic structures. One of the most impacted areas is the structural biology of integral membrane proteins. New structures are now determined at a rapid pace. Despite these advances, further technological developments are still required to overcome new technical challenges that face membrane protein structural biology. In this review, I attempt to discuss some of these challenges.
Collapse
|
60
|
Su Q, Hu F, Ge X, Lei J, Yu S, Wang T, Zhou Q, Mei C, Shi Y. Structure of the human PKD1-PKD2 complex. Science 2018; 361:science.aat9819. [DOI: 10.1126/science.aat9819] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Mutations in two genes, PKD1 and PKD2, account for most cases of autosomal dominant polycystic kidney disease, one of the most common monogenetic disorders. Here we report the 3.6-angstrom cryo–electron microscopy structure of truncated human PKD1-PKD2 complex assembled in a 1:3 ratio. PKD1 contains a voltage-gated ion channel (VGIC) fold that interacts with PKD2 to form the domain-swapped, yet noncanonical, transient receptor potential (TRP) channel architecture. The S6 helix in PKD1 is broken in the middle, with the extracellular half, S6a, resembling pore helix 1 in a typical TRP channel. Three positively charged, cavity-facing residues on S6b may block cation permeation. In addition to the VGIC, a five–transmembrane helix domain and a cytosolic PLAT domain were resolved in PKD1. The PKD1-PKD2 complex structure establishes a framework for dissecting the function and disease mechanisms of the PKD proteins.
Collapse
|
61
|
Zheng W, Yang X, Hu R, Cai R, Hofmann L, Wang Z, Hu Q, Liu X, Bulkley D, Yu Y, Tang J, Flockerzi V, Cao Y, Cao E, Chen XZ. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nat Commun 2018; 9:2302. [PMID: 29899465 PMCID: PMC5998024 DOI: 10.1038/s41467-018-04586-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 01/20/2023] Open
Abstract
PKD2 and PKD1 genes are mutated in human autosomal dominant polycystic kidney disease. PKD2 can form either a homomeric cation channel or a heteromeric complex with the PKD1 receptor, presumed to respond to ligand(s) and/or mechanical stimuli. Here, we identify a two-residue hydrophobic gate in PKD2L1, and a single-residue hydrophobic gate in PKD2. We find that a PKD2 gain-of-function gate mutant effectively rescues PKD2 knockdown-induced phenotypes in embryonic zebrafish. The structure of a PKD2 activating mutant F604P by cryo-electron microscopy reveals a π- to α-helix transition within the pore-lining helix S6 that leads to repositioning of the gate residue and channel activation. Overall the results identify hydrophobic gates and a gating mechanism of PKD2 and PKD2L1. Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ruiqi Cai
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiaolin Hu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - David Bulkley
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China. .,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
62
|
Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells 2018; 7:E52. [PMID: 29865154 PMCID: PMC6025525 DOI: 10.3390/cells7060052] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Proteins of the TRPC family can form many homo- and heterotetrameric cation channels permeable to Na⁺, K⁺ and Ca2+. In this review, we focus on channels formed by the isoforms TRPC1, TRPC4 and TRPC5. We review evidence for the formation of different TRPC1/4/5 tetramers, give an overview of recently developed small-molecule TRPC1/4/5 activators and inhibitors, highlight examples of biological roles of TRPC1/4/5 channels in different tissues and pathologies, and discuss how high-quality chemical probes of TRPC1/4/5 modulators can be used to understand the involvement of TRPC1/4/5 channels in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Aisling Minard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | - Claudia C Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Wright
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Hussein N Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, UK.
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan.
| | - David J Beech
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin S Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
63
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
Affiliation(s)
| | - Thomas Mager
- Department of Biophysical ChemistryMax Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Amir Apelbaum
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Arne Bothe
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Christos Gatsogiannis
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
64
|
Schmiege P, Fine M, Li X. The regulatory mechanism of mammalian TRPMLs revealed by cryo-EM. FEBS J 2018; 285:2579-2585. [PMID: 29577631 DOI: 10.1111/febs.14443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/18/2023]
Abstract
Transient receptor potential mucolipin (TRPML) channels are the most recently identified subfamily of TRP channels and have seen a surge of new reports revealing both structural and functional insight. In 2017, several groups published multiple conformations of TRPML channels using cryo-EM. Similar to other TRP channels, the ML subfamily consists of six transmembrane helices (S1-S6), and a pore region including S5, S6, and two pore helices (PH1 and PH2). However, these reports also reveal distinct structural characteristics of the ML subfamily. Asp residues within the luminal pore may function to control calcium/pH regulation. A synthetic agonist, ML-SA1, can bind to the pore region of TRPMLs to force a direct dilation of the lower gate. Finally, biophysical and electrophysiological characterizations reveal another natural agonist binding site in the unique domain of TRPMLs, presumably regulating the conformation of the S4-S5 linker to open the channel. This work elucidates the molecular architecture and provides insights into how multiple ligands regulate TRPMLs.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
65
|
Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J, Zhang Y, Liu X, Wang T. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat Commun 2018; 9:1192. [PMID: 29567962 PMCID: PMC5864754 DOI: 10.1038/s41467-018-03606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.
Collapse
Affiliation(s)
- Qiang Su
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Feizhuo Hu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuxia Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.,X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China, 102402
| | - Xiaofei Ge
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shengqiang Yu
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Aiwen Shen
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qiang Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.,School of Medicine, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaodong Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,School of Medicine, Tsinghua University, Beijing, 100084, China. .,X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China, 102402.
| | - Tingliang Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. .,School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
66
|
Abstract
Cells utilize calcium ions (Ca2+) to signal almost all aspects of cellular life, ranging from cell proliferation to cell death, in a spatially and temporally regulated manner. A key aspect of this regulation is the compartmentalization of Ca2+ in various cytoplasmic organelles that act as intracellular Ca2+ stores. Whereas Ca2+ release from the large-volume Ca2+ stores, such as the endoplasmic reticulum (ER) and Golgi apparatus, are preferred for signal transduction, Ca2+ release from the small-volume individual vesicular stores that are dispersed throughout the cell, such as lysosomes, may be more useful in local regulation, such as membrane fusion and individualized vesicular movements. Conceivably, these two types of Ca2+ stores may be established, maintained or refilled via distinct mechanisms. ER stores are refilled through sustained Ca2+ influx at ER-plasma membrane (PM) membrane contact sites (MCSs). In this review, we discuss the release and refilling mechanisms of intracellular small vesicular Ca2+ stores, with a special focus on lysosomes. Recent imaging studies of Ca2+ release and organelle MCSs suggest that Ca2+ exchange may occur between two types of stores, such that the small stores acquire Ca2+ from the large stores via ER-vesicle MCSs. Hence vesicular stores like lysosomes may be viewed as secondary Ca2+ stores in the cell.
Collapse
|
67
|
Sterea AM, Almasi S, El Hiani Y. The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium 2018; 72:91-103. [PMID: 29748137 DOI: 10.1016/j.ceca.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
Lysosomes serve as the control centre for cellular clearance. These membrane-bound organelles receive biomolecules destined for degradation from intracellular and extracellular pathways; thus, facilitating the production of energy and shaping the fate of the cell. At the base of their functionality are the lysosomal ion channels which mediate the function of the lysosome through the modulation of ion influx and efflux. Ion channels form pores in the membrane of lysosomes and allow the passage of ions, a seemingly simple task which harbours the potential of overthrowing the cell's stability. Considered the master regulators of ion homeostasis, these integral membrane proteins enable the proper operation of the lysosome. Defects in the structure or function of these ion channels lead to the development of lysosomal storage diseases, neurodegenerative diseases and cancer. Although more than 50 years have passed since their discovery, lysosomes are not yet fully understood, with their ion channels being even less well characterized. However, significant improvements have been made in the development of drugs targeted against these ion channels as a means of combating diseases. In this review, we will examine how Ca2+, K+, Na+ and Cl- ion channels affect the function of the lysosome, their involvement in hereditary and spontaneous diseases, and current ion channel-based therapies.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shekoufeh Almasi
- Departments of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
68
|
Madej MG, Ziegler CM. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 2018; 470:213-225. [PMID: 29344776 DOI: 10.1007/s00424-018-2107-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
Abstract
Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures-a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.
Collapse
Affiliation(s)
- M Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany
| | - Christine M Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany.
| |
Collapse
|