51
|
Autophagic Degradation of Gasdermin D Protects against Nucleus Pulposus Cell Pyroptosis and Retards Intervertebral Disc Degeneration In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5584447. [PMID: 34239691 PMCID: PMC8238599 DOI: 10.1155/2021/5584447] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is the primary culprit of low back pain and renders heavy social burden worldwide. Pyroptosis is a newly discovered form of programmed cell death, which is also involved in nucleus pulposus (NP) cells during IDD progression. Moderate autophagy activity is critical for NP cell survival, but its relationship with pyroptosis remains unknown. This study is aimed at investigating the relationship between autophagy and pyroptotic cell death. The pyroptosis executor N-terminal domain of gasdermin D (GSDMD-N) and inflammation-related proteins were measured in lipopolysaccharide- (LPS-) treated human NP cells. Inhibition of autophagy by siRNA transfection and chemical drugs aggravated human NP cell pyroptosis. Importantly, we found that the autophagy-lysosome pathway and not the proteasome pathway mediated the degradation of GSDMD-N as lysosome dysfunction promoted the accumulation of cytoplasmic GSDMD-N. Besides, P62/SQSTM1 colocalized with GSDMD-N and mediated its degradation. The administration of the caspase-1 inhibitor VX-765 could reduce cell pyroptosis as confirmed in a rat disc IDD model in vivo, whereas ATG5 knockdown significantly accelerated the progression of IDD. In conclusion, our study indicated that autophagy protects against LPS-induced human NP cell pyroptosis via a P62/SQSTM1-mediated degradation mechanism and the inhibition of pyroptosis retards IDD progression in vivo. These findings deepen the understanding of IDD pathogenesis and hold implications in unraveling therapeutic targets for IDD treatment.
Collapse
|
52
|
Qiao L, Peng SY, Zhou YP, Yin J, Xu JP, Chen B, Zhang H, Zhu C, Yu XD. Long non-coding RNA RP11-81H3.2 suppresses apoptosis by targeting microRNA-1539/COL2A1 in human nucleus pulposus cells. Exp Ther Med 2021; 22:884. [PMID: 34194562 PMCID: PMC8237274 DOI: 10.3892/etm.2021.10316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intervertebral disk degeneration (IDD) is a severe health problem that results in lower back pain and disability. Previous evidence has indicated that excessive apoptosis of nucleus pulposus (NP) cell is involved in the occurrence and development of IDD. However, the underlying mechanisms regulating NP cell apoptosis are unclear. The present study aimed to investigate the function of a novel long non-coding RNA RP11-81H3.2 in modulating NP cell apoptosis and the potential underlying mechanisms. The results demonstrated that the RP11-81H3.2 expression levels were significantly decreased in NP tissues from patients with IDD compared with those from healthy controls, and that lower expression levels were associated with higher-grade disk degeneration. Functionally, RP11-81H3.2 silencing promoted apoptosis and decreased the viability of NP cells derived from tissue samples of patients with IDD, whereas RP11-81H3.2 overexpression induced opposite effects. Bioinformatics analysis, luciferase assays and reverse transcription-quantitative PCR revealed that microRNA (miR)-1539 was a direct target of RP11-81H3.2. A mechanistic analysis demonstrated that RP11-81H3.2 functioned as an RNA sink to downregulate miR-1539, which led to the upregulation of collagen type 2 α 1 chain (COL2A1), a target of miR-1539. Collectively, the present results suggested that lower RP11-81H3.2 expression levels were associated with higher-grade IDD, and that RP11-81H3.2 inhibited NP cell apoptosis by decreasing the levels of miR-1539 to increase COL2A1 expression levels. The present study identified a beneficial role of RP11-81H3.2 against NP cell apoptosis.
Collapse
Affiliation(s)
- Lin Qiao
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Shi-Yuan Peng
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Yu-Ping Zhou
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Jie Yin
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Jun-Peng Xu
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Bo Chen
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Huan Zhang
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Chao Zhu
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| | - Xiao-Dong Yu
- Department of Orthopaedics, 987 Hospital of Peoples Liberation Army of China Joint Logistics Support Force, Baoji, Shaanxi 721004, P.R. China
| |
Collapse
|
53
|
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci 2021; 273:119266. [PMID: 33631177 DOI: 10.1016/j.lfs.2021.119266] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular recirculation system that delivers cytoplasmic content to lysosomes for degradation, thereby maintaining metabolism and homeostasis. Recent studies have found that autophagy plays a dual role in intervertebral disc degeneration (IDD). Most studies have shown that inducing autophagy can slow down the process of IDD. A few studies have shown that extensive autophagy activation-mediated apoptosis accelerates IDD. In this review, we describe the pathophysiological characteristics of intervertebral disc (IVD), the mechanism of autophagy and the application of regulating autophagy in the treatment of IDD, hoping to provide a certain theoretical basis for the biotherapy of IDD.
Collapse
Affiliation(s)
- Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China.
| |
Collapse
|
54
|
Wu T, Li X, Jia X, Zhu Z, Lu J, Feng H, Shen B, Guo K, Li Y, Wang Q, Gao Z, Yu B, Ba Z, Huang Y, Wu D. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo. J Orthop Translat 2021; 29:19-29. [PMID: 34094855 PMCID: PMC8141503 DOI: 10.1016/j.jot.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background Krüppel like factor 10 (KLF10), which is also known as TGF-β Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. Methods The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. Results We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1β induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-β signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. Conclusions This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-β signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hang Feng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuzhi Li
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
55
|
Induced pluripotent stem cell-derived mesenchymal stem cells deliver exogenous miR-105-5p via small extracellular vesicles to rejuvenate senescent nucleus pulposus cells and attenuate intervertebral disc degeneration. Stem Cell Res Ther 2021; 12:286. [PMID: 33985571 PMCID: PMC8117270 DOI: 10.1186/s13287-021-02362-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have emerged as a promising new therapeutic strategy for intervertebral disc degeneration (IVDD). However, the drawbacks of MSCs, including their invasive access, the donor age, and their limited proliferative capacity, hinder the quantity and quality of MSC-sEVs. Induced pluripotent stem cell-derived MSCs (iMSCs) provide an indefinite source of MSCs with well-defined phenotype and function. This study aimed to investigate the therapeutic effect of sEVs derived from iMSC (iMSC-sEVs) on IVDD and explore the underlying molecular mechanisms. Methods IVDD models were established by puncturing discs from the tails of rats. Then, iMSC-sEVs were injected into the punctured discs. The degeneration of punctured discs was assessed using MRI and HE and immunofluorescence staining. The age-related phenotypes were used to determine the effects of iMSC-sEVs on senescent nucleus pulposus cells (NPCs) in vitro. Western blotting was used to detect the expression of Sirt6. miRNA sequencing analysis was used to find miRNAs that potentially mediate the activation of Sirt6. Results After intradiscally injecting iMSC-sEVs, NPC senescence and IVDD were significantly improved. iMSC-sEVs could rejuvenate senescent NPCs and restore the age-related function by activating the Sirt6 pathway in vitro. Further, microRNA sequence analysis showed that iMSC-sEVs were highly enriched in miR-105-5p, which played a pivotal role in the iMSC-sEV-mediated therapeutic effect by downregulating the level of the cAMP-specific hydrolase PDE4D and could lead to Sirt6 activation. Conclusion iMSC-sEVs could rejuvenate the senescence of NPCs and attenuate the development of IVDD. iMSC-sEVs exerted their anti-ageing effects by delivering miR-105-5p to senescent NPCs and activating the Sirt6 pathway. Our findings indicate that iMSCs are a promising MSC candidate for obtaining sEVs on a large scale, while avoiding several defects related to the present applications of MSCs, and that iMSC-sEVs could be a novel cell-free therapeutic tool for the treatment of IVDD.
Collapse
|
56
|
Yuan X, Chen G, Guo D, Xu L, Gu Y. Polydatin Alleviates Septic Myocardial Injury by Promoting SIRT6-Mediated Autophagy. Inflammation 2021; 43:785-795. [PMID: 32394287 DOI: 10.1007/s10753-019-01153-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a life-threatening condition. Polydatin (PD), a small natural compound from Polygonum cuspidatum, possesses antioxidant and anti-inflammatory properties. However, the protective mechanism of PD on sepsis-induced acute myocardial damage is still unclear. The aim of this study was to investigate the effect and mechanism of action of PD on lipopolysaccharide (LPS)-induced H9c2 cells and in a rat model of sepsis, and explored the role of PD-upregulated sirtuin (SIRT)6. LPS-induced H9c2 cells were used to simulate sepsis. Cecal ligation and puncture (CLP)-induced sepsis in rats were used to verify the protective effect of PD. ELISA, western blotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to study the protective mechanism of PD against septic myocardial injury. PD pretreatment suppressed LPS-induced H9c2 cell apoptosis by promotion of SIRT6-mediated autophagy. Downregulation of SIRT6 or inhibition of autophagy reversed the protective effect of PD on LPS-induced apoptosis. PD pretreatment also suppressed LPS-induced inflammatory factor expression. CLP-induced sepsis in rats showed that PD pretreatment decreased CLP-induced myocardial apoptosis and serum tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 expression. 3-Methyladenine (autophagy inhibitor) pretreatment prevented the protective effect of PD on septic cardiomyopathy. SIRT6 expression was increased with PD treatment, which confirmed that PD attenuates septic cardiomyopathy by promotion of SIRT6-mediated autophagy. All these results indicate that PD has potential therapeutic effects that alleviate septic myocardial injury by promotion of SIRT6-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.,Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Lei Xu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Yongfeng Gu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| |
Collapse
|
57
|
Collins JA, Kapustina M, Bolduc JA, Pike JFW, Diekman BO, Mix K, Chubinskaya S, Eroglu E, Michel T, Poole LB, Furdui CM, Loeser RF. Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radic Biol Med 2021; 166:90-103. [PMID: 33600943 PMCID: PMC8009856 DOI: 10.1016/j.freeradbiomed.2021.01.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
The nuclear localized protein deacetylase, SIRT6, has been identified as a crucial regulator of biological processes that drive aging. Among these processes, SIRT6 can promote resistance to oxidative stress conditions, but the precise mechanisms remain unclear. The objectives of this study were to examine the regulation of SIRT6 activity by age and oxidative stress and define the role of SIRT6 in maintaining redox homeostasis in articular chondrocytes. Although SIRT6 levels did not change with age, SIRT6 activity was significantly reduced in chondrocytes isolated from older adults. Using dimedone-based chemical probes that detect oxidized cysteines, we identified that SIRT6 is oxidized in response to oxidative stress conditions, an effect that was associated with reduced SIRT6 activity. Enhancement of SIRT6 activity through adenoviral SIRT6 overexpression specifically increased the basal levels of two antioxidant proteins, peroxiredoxin 1 (Prx1) and sulfiredoxin (Srx) and decreased the levels of an inhibitor of antioxidant activity, thioredoxin interacting protein (TXNIP). Conversely, in chondrocytes derived from mice with cartilage specific Sirt6 knockout, Sirt6 loss decreased Prx1 levels and increased TXNIP levels. SIRT6 overexpression decreased nuclear-generated H2O2 levels and oxidative stress-induced accumulation of nuclear phosphorylated p65. Our data demonstrate that SIRT6 activity is altered with age and oxidative stress conditions associated with aging. SIRT6 contributes to chondrocyte redox homeostasis by regulating specific members of the Prx catalytic cycle. Targeted therapies aimed at preventing the age-related decline in SIRT6 activity may represent a novel strategy to maintain redox balance in joint tissues and decrease catabolic signaling events implicated in osteoarthritis (OA).
Collapse
Affiliation(s)
- John A Collins
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Maryna Kapustina
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesalyn A Bolduc
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Brussels Center for Redox Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - James F W Pike
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian O Diekman
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Kimberlee Mix
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Emrah Eroglu
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA; Sabanci University, Faculty of Engineering and Natural Sciences, Genetics and Bioengineering Program, Nanotechnology Research and Application Center, Istanbul, Turkey
| | - Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Leslie B Poole
- Department of Biochemistry, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
58
|
Inhibition of LRRK2 restores parkin-mediated mitophagy and attenuates intervertebral disc degeneration. Osteoarthritis Cartilage 2021; 29:579-591. [PMID: 33434630 DOI: 10.1016/j.joca.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/24/2020] [Accepted: 01/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To elucidate the role of LRRK2 in intervertebral disc degeneration (IDD) as well as its mitophagy regulation mechanism. METHODS The expression of LRRK2 in human degenerative nucleus pulposus tissues as well as in oxidative stress-induced rat nucleus pulposus cells (NPCs) was detected by western blot. LRRK2 was knocked down in NPCs by lentivirus (LV)-shLRRK2 transfection; apoptosis and mitophagy were assessed by western blot, TUNEL assay, immunofluorescence staining and mitophagy detection assay in LRRK2-deficient NPCs under oxidative stress. After knockdown of Parkin in NPCs with siRNA transfection, apoptosis and mitophagy were further assessed. In puncture-induced rat IDD model, X-ray, MRI, hematoxylin-eosin (HE) and Safranin O-Fast green (SO) staining were performed to evaluate the therapeutic effects of LV-shLRRK2 on IDD. RESULTS We found that the expression of LRRK2 was increased in degenerative NPCs both in vivo and in vitro. LRRK2 deficiency significantly suppressed oxidative stress-induced mitochondria-dependent apoptosis in NPCs; meanwhile, mitophagy was promoted. However, these effects were abolished by the mitophagy inhibitor, suggesting the effect of LRRK2 on apoptosis in NPCs is mitophagy-dependent. Furthermore, Parkin knockdown study showed that LRRK2 deficiency activated mitophagy by recruiting Parkin. In vivo study demonstrated that LRRK2 inhibition ameliorated IDD in rats. CONCLUSIONS The results revealed that LRRK2 is involved in the pathogenesis of IDD, while knockdown of LRRK2 inhibits oxidative stress-induced apoptosis through mitophagy. Thus, inhibition of LRRK2 may be a promising therapeutic strategy for IDD.
Collapse
|
59
|
Zhou Y, Deng M, Su J, Zhang W, Liu D, Wang Z. The Role of miR-31-5p in the Development of Intervertebral Disc Degeneration and Its Therapeutic Potential. Front Cell Dev Biol 2021; 9:633974. [PMID: 33816484 PMCID: PMC8012912 DOI: 10.3389/fcell.2021.633974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) refers to the abnormal response of cell-mediated progressive structural failure. In order to understand the molecular mechanism of the maintenance and destruction of the intervertebral disc, new IDD treatment methods are developed. Here, we first analyzed the key regulators of IDD through microRNAs microarrays. Then, the level of miR-31-5p was evaluated by qRT-PCR. The association between miR-31-5p and Stromal cell-derived factor 1 (SDF-1)/CXCR7 axis was assessed by 3′-untranslated region (UTR) cloning and luciferase assay. The apoptosis of cells under different treatments was evaluated by flow cytometer. The cell proliferation was assessed by EdU assay. After IDD model establishment, the discs of mice tail were harvested for histological and radiographic evaluation in each group. Finally, the protein levels of SDF-1, CXCR7, ADAMTS-5, Col II, Aggrecan, and MMP13 were assessed by western blot. The results show that miR-31-5p is a key regulator of IDD and its level is down-regulated in IDD. Overexpression of miR-31-5p facilitates nucleus pulposus cell proliferation, inhibits apoptosis, facilitates ECM formation, and inhibits the level of matrix degrading enzymes in NP cells. The SDF-1/CXCR7 axis is the direct target of miR-31-5p. miR-31-5p acts on IDD by regulating SDF-1/CXCR7. In vitro experiments further verified that the up-regulation of miR-31-5p prevented the development of IDD. In conclusion, overexpression of miR-31-5p can inhibit IDD by regulating SDF-1/CXCR7.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mingsi Deng
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, China
| | - Jiqing Su
- Department of Oncology, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dongbiao Liu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhengguang Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Advances in medical care and preventive measures have contributed to increasing life expectancy. Therefore, it is critical to expand our understanding of the physiological and pathophysiological adaptations of the hematological system in aging. We highlight and review the findings from recent investigations aimed at understanding the effects of aging on megakaryocytes and platelets. RECENT FINDINGS Biochemical and transcriptomic studies of megakaryocytes and platelets from older humans and mice have advanced our understanding of the molecular and functional characteristics of megakaryocytes and platelets during aging. These studies have led to the identification of metabolic and inflammatory pathways associated with the generation of hyperreactive platelets that may significantly contribute to the high incidence of thrombosis in aging. SUMMARY By increasing our research efforts to understand and identify the characteristics of megakaryocytes and platelets in aging, we will increase our potential to develop novel therapies aimed at decreasing the incidence of aging-associated thrombosis. These efforts will also serve as a foundation to better understand the role of megakaryocytes and platelets in other age-related hematological conditions with high thrombotic risk such as clonal hematopoiesis of indeterminate potential and myeloproliferative neoplasms.
Collapse
|
61
|
Zhang Y, Xia H, Yi W, Lan H, Yang Z, Han F, Tang P, Liu B. [Experimental study on the effect of zinc finger protein A20 on lumbar intervertebral disc degeneration in rabbits]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:366-374. [PMID: 33719247 DOI: 10.7507/1002-1892.202009057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective To investigate the effect of zinc finger protein A20 on lumbar intervertebral disc degeneration in rabbits. Methods Twenty-six 3-month-old New Zealand rabbits, 2.0-2.5 kg in weight, were used to establish the model of intervertebral disc degeneration at L 3, 4, L 4, 5, and L 5, 6 by transabdominal needle puncture. At 4 weeks after operation, the 24 rabbits were randomly divided into 4 groups after successful modeling, which checked by MRI. The target intervertebral discs of each group were injected with zinc finger protein A20 overexpressed adenovirus (Ov-A20 group), empty carrier adenovirus (NC group), phosphate buffer saline (control group), and shRNA-A20 adenovirus (Sh-A20 group). The biological responses of animals in each group were comprehensive scored before 1 day of injection and after 1, 2, 3, and 6 days of injection. At 2, 4, and 8 weeks after injection, the animals in each group were observed by MRI to obtain the exact T2 relaxation time (T2 signal value). After MRI examination, the animals were killed to take the degenerative intervertebral disc tissue; and the tissue was detected by Alcian blue staining to observed the intervertebral disc degeneration. The expressions of zinc finger protein A20, collagen Ⅱ, and aggrecan were detected by immunohistochemistry staining. The expressions of zinc finger protein A20, nuclear factor κB binding protein [P65, phosphate P65 (P-P65), collagen Ⅱ, aggrecan], inflammatory factors [tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β)], autophagy-related protein [LC3 (LC3Ⅱ/LC3Ⅰ) and P62] were detected by Western blot. Results The comprehensive score of biological response in each group after injection was significantly lower than that before injection ( P<0.05). At 6 days after injection, the comprehensive score of biological response in the Sh-A20 group was significantly lower than that in other groups ( P<0.05), and there was no significant difference among other groups ( P>0.05). The detection of MRI showed that the T2 signal value in the Ov-A20 group was the highest at 2, 4, and 8 weeks after injection ( P<0.05), and the T2 signal value in the Sh-A20 group was the lowest at 2 and 4 weeks after injection ( P<0.05). There was no significant difference between other groups ( P>0.05). Alcian blue staining showed that the expression of aggrecan was the highest in Ov-A20 group and the lowest in Sh-A20 group at 4 weeks ( P<0.05); the expression of aggrecan in Ov-A20 group was the highest at 8 weeks ( P<0.05), and there was no significant difference between other groups ( P>0.05). Immunohistochemical staining showed that the expressions of zinc finger protein A20, collagen Ⅱ, and aggrecan were the highest in Ov-A20 group and lowest in Sh-A20 group ( P<0.05). Western blot showed that the expressions of zinc finger protein A20, collagen Ⅱ, aggrecan, and LC3 (LC3Ⅱ/LC3Ⅰ) proteins were the highest in the Ov-A20 group and the lowest in Sh-A20 group ( P<0.05), while the expressions of P-P65, TNF-α, IL-1β, and P62 proteins were the lowest in Ov-A20 group and the highest in Sh-A20 group ( P<0.05). There was no significant difference in the expression of p65 protein between groups ( P>0.05). Conclusion Zinc finger protein A20 can effectively regulate the process of lumbar intervertebral disc degeneration in rabbits by inhibiting inflammation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Huiqiang Xia
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Weiwei Yi
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Haiyang Lan
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Zhijie Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Fei Han
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Pan Tang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Bo Liu
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| |
Collapse
|
62
|
SIRT6 enhances telomerase activity to protect against DNA damage and senescence in hypertrophic ligamentum flavum cells from lumbar spinal stenosis patients. Aging (Albany NY) 2021; 13:6025-6040. [PMID: 33568575 PMCID: PMC7950242 DOI: 10.18632/aging.202536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Lumbar spinal stenosis (LSS) is a condition wherein patients exhibit age-related fibrosis, elastin-to-collagen ratio reductions, and ligamentum flavum hypertrophy. This study was designed to assess the relationship between SIRT6 and telomerase activity in hypertrophic ligamentum flavum (LFH) cells from LSS patients. We observed significant reductions in SIRT6, TPP1, and POT1 protein levels as well as increases in telomerase reverse transcriptase (TERT) levels and telomerase activity in LFH tissues relative to non- hypertrophic ligamentum flavum (LFN) tissues. When SIRT6 was overexpressed in these LFH cells, this was associated with significant increases in telomerase activity and a significant reduction in fibrosis-related protein expression. These effects were reversed, however, when telomerase activity was inactivated by hTERT knockdown in these same cells. SIRT6 overexpression was further found to reduce the frequency of senescence-associated β-galactosidase (SA-β-Gal)-positive LFH cells and to decrease p16, MMP3, and L1 mRNA levels and telomere dysfunction-induced foci (TIFs) in LFH cells. In contrast, hTERT knockdown-induced telomerase inactivation eliminated these SIRT6-dependent effects. Overall, our results indicate that SIRT6 functions as a key protective factor that prevents cellular senescence and telomere dysfunction in ligamentum flavum cells, with this effect being at least partially attributable to SIRT6-dependent telomerase activation.
Collapse
|
63
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
64
|
Li P, Mao WW, Zhang S, Zhang L, Chen ZR, Lu ZD. Sodium hydrosulfide alleviates dexamethasone-induced cell senescence and dysfunction through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells. Exp Ther Med 2021; 21:238. [PMID: 33603846 PMCID: PMC7851607 DOI: 10.3892/etm.2021.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
65
|
Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci 2021; 78:3333-3354. [PMID: 33439271 PMCID: PMC8038995 DOI: 10.1007/s00018-020-03746-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
In recent years, cellular senescence has become the focus of attention in multiple areas of biomedical research. Typically defined as an irreversible cell cycle arrest accompanied by increased cellular growth, metabolic activity and by a characteristic messaging secretome, cellular senescence can impact on multiple physiological and pathological processes such as wound healing, fibrosis, cancer and ageing. These unjustly called 'zombie cells' are indeed a rich source of opportunities for innovative therapeutic development. In this review, we collate the current understanding of the process of cellular senescence and its two-faced nature, i.e. beneficial/detrimental, and reason this duality is linked to contextual aspects. We propose the senescence programme as an endogenous pro-resolving mechanism that may lead to sustained inflammation and damage when dysregulated or when senescent cells are not cleared efficiently. This pro-resolving model reconciles the paradoxical two faces of senescence by emphasising that it is the unsuccessful completion of the programme, and not senescence itself, what leads to pathology. Thus, pro-senescence therapies under the right context, may favour inflammation resolution. We also review the evidence for the multiple therapeutic approaches under development based on senescence, including its induction, prevention, clearance and the use of senolytic and senomorphic drugs. In particular, we highlight the importance of the immune system in the favourable outcome of senescence and the implications of an inefficient immune surveillance in completion of the senescent cycle. Finally, we identify and discuss a number of challenges and existing gaps to encourage and stimulate further research in this exciting and unravelled field, with the hope of promoting and accelerating the clinical success of senescence-based therapies.
Collapse
|
66
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
67
|
Tang N, Dong Y, Chen C, Zhao H. Anisodamine Maintains the Stability of Intervertebral Disc Tissue by Inhibiting the Senescence of Nucleus Pulposus Cells and Degradation of Extracellular Matrix via Interleukin-6/Janus Kinases/Signal Transducer and Activator of Transcription 3 Pathway. Front Pharmacol 2021; 11:519172. [PMID: 33384595 PMCID: PMC7769940 DOI: 10.3389/fphar.2020.519172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives: Anisodamine (ANI) has been used to treat a variety of diseases. However, the study of ANI in intervertebral disc degeneration (IVDD) is unclear. This study investigated the effects of ANI on degenerative nucleus pulposus cells (NPCs) and IVDD rats, and its possible mechanisms. Methods: Human nucleus pulposus cells (HNPCs) were treated with IL-1β (20 ng/ml) to simulate IVDD, and an IVDD rat model was constructed. IL-1β-induced HNPCs were treated with different concentrations (10, 20, or 40 μM) of ANI, and IVDD rats were also treated with ANI (1 mg/kg). Results: ANI treatment significantly reduced the apoptosis, caspase-3 and SA-β-gal activities, and p53 and p21 proteins expression, while promoted telomerase activity and aggrecan and collagen II synthesis in IL-1β-induced HNPCs. Moreover, the introduction of ANI inhibited the expression of IL-6, phosphorylation of JAK and STAT3, and nuclear translocation of p-STAT3 in Degenerated HNPCs. Additionally, the application of ANI abolished the effects of IL-6 on apoptosis, SA-β-gal and telomerase activity, and the expression of p53, p21, aggrecan and collagen II proteins in degenerated HNPCs. Simultaneously, ANI treatment enhanced the effects of AG490 (inhibitor of JAK/STAT3 pathway) on IL-1β-induced apoptosis, senescence and ECM degradation in HNPCs. Furthermore, ANI treatment markedly inhibited the apoptosis and senescence in the nucleus pulposus of IVDD rats, while promoted the synthesis of aggrecan and collagen II. ANI treatment obviously inhibited JAK and STAT3 phosphorylation and inhibited nuclear translocation of p-STAT3 in IVDD rats. Conclusion: ANI inhibited the senescence and ECM degradation of NPCs by regulating the IL-6/JAK/STAT3 pathway to improve the function of NPCs in IVDD, which may provide new ideas for the treatment of IVDD.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Yulei Dong
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Chong Chen
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Hong Zhao
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
68
|
The miR-623/CXCL12 axis inhibits LPS-induced nucleus pulposus cell apoptosis and senescence. Mech Ageing Dev 2020; 194:111417. [PMID: 33333129 DOI: 10.1016/j.mad.2020.111417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Nucleus pulposus cell (NPC) is the major cell type maintaining the physiological function of intervertebral discs by producing extracellular matrix (ECM). NPC apoptosis and senescence together contribute to NPC loss, finally leading to intervertebral disc degeneration (IDD). Herein, miR-623 showed to be downregulated within IDD tissue samples according to both bioinformatics and experimental analyses. In LPS-injured NPCs, miR-623 overexpression promoted LPS-suppressed cell proliferation; moreover, miR-623 overexpression inhibited cell apoptosis and senescence, increased ECM secretion, and reduced levels of inflammatory factors. In contrast to miR-623, CXCL12 expression was significantly upregulated in IDD tissues; miR-623 directly bound CXCL12 to inhibit its expression. In LPS-stimulated NPCs, CXCL12 silencing also LPS-induced changes in cell proliferation, cell senescence, ECM secretion, and inflammatory factor levels. More importantly, CXCL12 overexpression aggravated LPS-induced changes and significantly reversed the protective effects of miR-623 overexpression. In conclusion, the miR-623/CXCL12 axis could affect NPC apoptosis and senescence, ECM deposition, and inflammatory factor levels under LPS stimulation in vitro. The p65 signaling might be involved.
Collapse
|
69
|
Yi SJ, Kim K. New Insights into the Role of Histone Changes in Aging. Int J Mol Sci 2020; 21:ijms21218241. [PMID: 33153221 PMCID: PMC7662996 DOI: 10.3390/ijms21218241] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.
Collapse
|
70
|
Chang H, Yang X, You K, Jiang M, Cai F, Zhang Y, Liu L, Liu H, Liu X. Integrating multiple microarray dataset analysis and machine learning methods to reveal the key genes and regulatory mechanisms underlying human intervertebral disc degeneration. PeerJ 2020; 8:e10120. [PMID: 33083145 PMCID: PMC7566771 DOI: 10.7717/peerj.10120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a major cause of lower back pain, has multiple contributing factors including genetics, environment, age, and loading history. Bioinformatics analysis has been extensively used to identify diagnostic biomarkers and therapeutic targets for IDD diagnosis and treatment. However, multiple microarray dataset analysis and machine learning methods have not been integrated. In this study, we downloaded the mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) expression profiles (GSE34095, GSE15227, GSE63492 GSE116726, GSE56081 and GSE67566) associated with IDD from the GEO database. Using differential expression analysis and recursive feature elimination, we extracted four optimal feature genes. We then used the support vector machine (SVM) to make a classification model with the four optimal feature genes. The ROC curve was used to evaluate the model's performance, and the expression profiles (GSE63492, GSE116726, GSE56081, and GSE67566) were used to construct a competitive endogenous RNA (ceRNA) regulatory network and explore the underlying mechanisms of the feature genes. We found that three miRNAs (hsa-miR-4728-5p, hsa-miR-5196-5p, and hsa-miR-185-5p) and three circRNAs (hsa_circRNA_100723, hsa_circRNA_104471, and hsa_circRNA_100750) were important regulators with more interactions than the other RNAs across the whole network. The expression level analysis of the three datasets revealed that BCAS4 and SCRG1 were key genes involved in IDD development. Ultimately, our study proposes a novel approach to determining reliable and effective targets in IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Hongze Chang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaolong Yang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Kemin You
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingwei Jiang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Feng Cai
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Zhang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Liang Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Hui Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaodong Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
71
|
Shao Z, Pan Z, Lin J, Zhao Q, Wang Y, Ni L, Feng S, Tian N, Wu Y, Sun L, Gao W, Zhou Y, Zhang X, Wang X. S-allyl cysteine reduces osteoarthritis pathology in the tert-butyl hydroperoxide-treated chondrocytes and the destabilization of the medial meniscus model mice via the Nrf2 signaling pathway. Aging (Albany NY) 2020; 12:19254-19272. [PMID: 33027770 PMCID: PMC7732291 DOI: 10.18632/aging.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
In this study, we used murine chondrocytes as an in vitro model and mice exhibiting destabilization of the medial meniscus (DMM) as an in vivo model to investigate the mechanisms through which S-allyl cysteine (SAC) alleviates osteoarthritis (OA). SAC significantly reduced apoptosis and senescence and maintained homeostasis of extracellular matrix (ECM) metabolism in tert-butyl hydroperoxide (TBHP)-treated chondrocytes. Molecular docking analysis showed a -CDOCKER interaction energy value of 203.76 kcal/mol for interactions between SAC and nuclear factor erythroid 2-related factor 2 (Nrf2). SAC increased the nuclear translocation of Nrf2 and activated the Nrf2/HO1 signaling pathway in TBHP-treated chondrocytes. Furthermore, Nrf2 knockdown abrogated the antiapoptotic, antisenescence, and ECM regulatory effects of SAC in TBHP-treated chondrocytes. SAC treatment also significantly reduced cartilage ossification and erosion, joint-space narrowing, synovial thickening and hypercellularity in DMM model mice. Collectively, these findings show that SAC ameliorates OA pathology in TBHP-treated chondrocytes and DMM model mice by activating the Nrf2/HO1 signaling pathway.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zongyou Pan
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingqian Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuqian Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shiyi Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
72
|
Kong D, Gu R, Zhang C, Yin R. Knockdown of hsa_circ_0059955 Induces Apoptosis and Cell Cycle Arrest in Nucleus Pulposus Cells via Inhibiting Itchy E3 Ubiquitin Protein Ligase. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3951-3963. [PMID: 33061300 PMCID: PMC7526870 DOI: 10.2147/dddt.s253293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Background Circular RNAs (circRNAs) play an important role in the progression of intervertebral disc (IVD) degeneration (IVDD). Using bioinformatics analysis, we have found that the expression of circRNA hsa_circ_0059955 was significantly downregulated in IVDD tissues. However, the relevant mechanism of hsa_circ_0059955 in the progression of IVDD remains unclear. Methods CCK-8 and flow cytometry assays were used to evaluate cell proliferation and apoptosis. In addition, Western blot assay was used to detect the expressions of ITCH, p73, CDK2 in nucleus pulposus (NP) cells. Moreover, a puncture-induced IVDD rat model was established to explore the role of hsa_circ_0059955 in IVDD. Results The level of hsa_circ_0059955 was significantly decreased in IVDD tissues from IVDD patients. Itchy E3 ubiquitin protein ligase (ITCH) is the host gene of hsa_circ_0059955, and downregulation of hsa_circ_0059955 significantly decreased the expression of ITCH in NP cells. In addition, downregulation of hsa_circ_0059955 markedly inhibited proliferation and induced apoptosis and cell cycle arrest in NP cells. Moreover, in vivo study illustrated that overexpression of hsa_circ_0059955 ameliorated IVDD in rats. Conclusion Downregulation of hsa_circ_0059955 could induce apoptosis and cell cycle arrest in NP cells in vitro, while overexpression of hsa_circ_0059955 attenuated the IVDD in a puncture-induced rat model in vivo. Therefore, hsa_circ_0059955 might serve as a therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Chengtao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| |
Collapse
|
73
|
Li Y, Liu M, Song X, Zheng X, Yi J, Liu D, Wang S, Chu C, Yang J. Exogenous Hydrogen Sulfide Ameliorates Diabetic Myocardial Fibrosis by Inhibiting Cell Aging Through SIRT6/AMPK Autophagy. Front Pharmacol 2020; 11:1150. [PMID: 32903815 PMCID: PMC7438924 DOI: 10.3389/fphar.2020.01150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Stress aging of myocardial cells participates in the mechanism of myocardial fibrosis (MF). Previous studies have shown that hydrogen sulfide (H2S) can improve MF, however the specific internal mechanism remains still unclear. Therefore, this study aims to explore whether H2S can improve myocardial cell aging induced by high glucose and myocardial fibrosis in diabetic rats by activating autophagy through SIRT6/AMPK. We observed that HG (high glucose, 33 mM) induced down-regulation of endogenous H2S-producing enzyme CSE protein expression, increased cell senescence, down-regulation of autophagy-related proteins Beclin1, Atg5, Atg12, Atg16L1, and inhibition of SIRT6/AMPK signaling pathway in H9c2 cardiomyocytes. H2S (NaHS: 400 μM) could up-regulate CSE protein expression, inhibit cell senescence, activate autophagy and SIRT6/AMPK signaling pathway. On the contrary, no above phenomena was achieved upon addition of CSE inhibitor PAG (dl-propargylglycine: mmol/L). In order to further elucidate the relationship between H2S and SIRT6/AMPK signaling pathway, dorsomorphin dihydrochloride (Dor), an inhibitor of AMPK signaling pathway, was added to observe the reversal of H2S’s inhibitory effect on myocardial cell aging. At the same, streptozotocin (STZ; 40 mg/kg) was injected intraperitoneally to build an animal model of diabetic SD rats. The results showed that myocardial collagen fibers were significantly deposited, myocardial tissue senescent cells were significantly increased and the expression of CSE protein was down-regulated, while SIRT6/AMPK signaling pathway and cell autophagy were significantly inhibited. H2S-treated (NaHS; 56 μmol/kg) could significantly reverse the above phenomenon. In conclusion, these findings suggest that exogenous H2S can inhibit myocardial cell senescence and improve diabetic myocardial fibrosis by activating CSE and autophagy through SIRT6/AMPK signaling pathway.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiong Song
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xia Zheng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jiali Yi
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Da Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Sen Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
74
|
Hu S, Shao Z, Zhang C, Chen L, Mamun AA, Zhao N, Cai J, Lou Z, Wang X, Chen J. Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. Aging (Albany NY) 2020; 12:11732-11753. [PMID: 32526705 PMCID: PMC7343479 DOI: 10.18632/aging.103339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Now days, obesity is a major risk factor for intervertebral disc degeneration (IDD). However, adipokine, such as chemerin is a novel cytokine, which is secreted by adipose tissue, and are thought to be played major roles in various degenerative diseases. Obese individuals are known to have high concentration of serum chemerin. Our purpose was to study whether chemerin acts as a biochemical relationship between obesity, and IDD. In this study, we found that the expression level of chemerin was significantly increased in the human degenerated nucleus pulposus (NP) tissues, and had higher level in the obese people than the normal people. Chemerin significantly increased the inflammatory mediator level, contributing to ECM degradation in nucleus pulposus cells (NPCs). Furthermore, chemerin overexpression aggravates the puncture-induced IVDD progression in rats, while knockdown CMKLR1 reverses IVDD progression. Chemerin activates the NF-kB signaling pathway via its receptors CMKLR1, and TLR4 to release inflammatory mediators, which cause matrix degradation, and cell aging. These findings generally provide novel evidence supporting the causative role of obesity in IDD, which is essentially important to literally develop novel preventative or generally therapeutic treatment in the disc degenerative disorders.
Collapse
Affiliation(s)
- Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning Zhao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinfeng Cai
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
75
|
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, Gao YC, Kang XW. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508:33-42. [PMID: 32348785 DOI: 10.1016/j.cca.2020.04.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yi-Cheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China.
| |
Collapse
|
76
|
Gao D, Hao L, Zhao Z. Long non-coding RNA PART1 promotes intervertebral disc degeneration through regulating the miR‑93/MMP2 pathway in nucleus pulposus cells. Int J Mol Med 2020; 46:289-299. [PMID: 32319551 PMCID: PMC7255469 DOI: 10.3892/ijmm.2020.4580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the role of the long non‑coding (lnc)RNA PART1 in nucleus pulposus (NP) cells derived from patients with intervertebral disc degeneration (IDD). The level of PART1 in degenerative NP tissues from patients with IDD, bulging and herniated discs was measured by reverse transcription‑quantitative PCR (RT‑qPCR) analysis. NP cells were isolated from patients with IDD and transfected with siPART1, after which time the growth ability of the NP cells was evaluated by Cell Counting Kit‑8 and colony formation assays, and cell apoptosis was measured by flow cytometry. The levels of the cell proliferation marker Ki‑67 and the apoptosis marker cleaved caspase‑3, and the levels of genes related to extracellular matrix (ECM) synthesis and degradation, were also evaluated by western blotting and RT‑qPCR, as appropriate. Bioinformatics methods predicted that miR‑93 was sponged by PART1, and matrix metallopeptidase (MMP)2 was targeted by miR‑93, which was further confirmed by dual‑luciferase reporter assay. The levels of miR‑93 and MMP2 were also measured in NP tissues, and further rescue experiments were performed to confirm the role of the PART1/miR‑93/MMP2 pathway in NP cells. PART1 was found to be upregulated in degenerative NP tissues, and siPART1 caused an increase in cell growth ability and ECM synthesis, whereas it decreased cell apoptosis and ECM degradation in NP cells. miR‑93 was downregulated and MMP2 was upregulated in degenerative NP tissues. Rescue experiments indicated that the effects of miR‑93 inhibitor on NP cells were abolished by siPART1, and the effect of miR‑93 mimic on NP cells was rescued by MMP2 overexpression. Thus, the results of the present study demonstrated that PART1 may regulate NP cell degeneration through the miR‑93/MMP2 pathway. These findings indicate a novel signaling axis in NP cells that may be explored for the treatment of IDD.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Pain Rehabilitation, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Long Hao
- Department of Pain Rehabilitation, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Zilong Zhao
- Department of Pathology, Ankang Central Hospital, Ankang, Shaanxi 725000, P.R. China
| |
Collapse
|
77
|
Li G, Song Y, Liao Z, Wang K, Luo R, Lu S, Zhao K, Feng X, Liang H, Ma L, Wang B, Ke W, Yin H, Zhan S, Li S, Wu X, Zhang Y, Yang C. Bone-derived mesenchymal stem cells alleviate compression-induced apoptosis of nucleus pulposus cells by N6 methyladenosine of autophagy. Cell Death Dis 2020; 11:103. [PMID: 32029706 PMCID: PMC7005291 DOI: 10.1038/s41419-020-2284-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
N6 methyladenosine (m6A) is one of the most prevalent epitranscriptomic modifications of mRNAs, and plays a critical role in various bioprocesses. Bone-derived mesenchymal stem cells (BMSCs) can attenuate apoptosis of nucleus pulposus cells (NPCs) under compression; however, the underlying mechanisms are poorly understood. This study showed that the level of m6A mRNA modifications was decreased, and the autophagic flux was increased in NPCs under compression when they were cocultured with BMSCs. We report that under coculture conditions, RNA demethylase ALKBH5-mediated FIP200 mRNA demethylation enhanced autophagic flux and attenuated the apoptosis of NPCs under compression. Specific silencing of ALKBH5 results in impaired autophagic flux and a higher proportion of apoptotic NPCs under compression, even when cocultured with BMSCs. Mechanistically, we further identify that the m6A "reader" YTHDF2 is likely to be involved in the regulation of autophagy, and lower m6A levels in the coding region of FIP200 lead to a reduction in YTHDF2-mediated mRNA degradation of FIP200, a core molecular component of the ULK1 complex that participates in the initiating process of autophagy. Taken together, our study reveals the roles of ALKBH5-mediated FIP200 mRNA demethylation in enhancing autophagy and reducing apoptosis in NPCs when cocultured with BMSCs.
Collapse
Affiliation(s)
- Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengfeng Zhan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
78
|
Ashraf S, Chatoor K, Chong J, Pilliar R, Santerre P, Kandel R. Transforming Growth Factor β Enhances Tissue Formation by Passaged Nucleus Pulposus Cells In Vitro. J Orthop Res 2020; 38:438-449. [PMID: 31529713 DOI: 10.1002/jor.24476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
The nucleus pulposus (NP) is composed of NP and notochord cell. It is a paucicellular tissue and if it is to be used as a source of cells for tissue engineering the cell number will have to be expanded by cell passaging. The hypothesis of this study is that passaged NP and notochordal cells grown in three-dimensional (3D) culture in the presence of transforming growth factor β (TGFβ) will show enhanced NP tissue formation compared with cells grown in the absence of this growth factor. Bovine NP cells isolated by sequential enzymatic digestion from caudal intervertebral discs were either placed directly in 3D culture (P0) or serially passaged up to passage 3 (P3) prior to placement in 3D culture. Serial cell passage in monolayer culture led to de-differentiation, increased senescence and oxidative stress and decreases in the gene expression of NP and notochordal associated markers and increases in de-differentiation markers. The NP tissue regeneration capacity of cells in 3D culture decreases with passaging as indicated by diminished tissue thickness and total collagen content when compared with tissues formed by P0 cells. Immunohistochemical studies showed that type II collagen accumulation appeared to decrease. TGFβ1 or TGFβ3 treatment enhanced the ability of cells at each passage to form tissue, in part by decreasing cell death. However, neither TGFβ1 nor TGFβ3 were able to restore the notochordal phenotype. Although TGFβ1/3 recovered NP tissue formation by passaged cells, to generate NP in vitro that resembles the native tissue will require identification of conditions facilitating retention of notochordal cell differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:438-449, 2020.
Collapse
Affiliation(s)
- Sajjad Ashraf
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kenny Chatoor
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Jasmine Chong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Robert Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Pathology and Laboratory Medicine, Sinai Health System and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
79
|
Restoration of Autophagic Flux Rescues Oxidative Damage and Mitochondrial Dysfunction to Protect against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7810320. [PMID: 31976028 PMCID: PMC6954474 DOI: 10.1155/2019/7810320] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/07/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress-induced mitochondrial dysfunction and nucleus pulposus (NP) cell apoptosis play crucial roles in the development of intervertebral disc degeneration (IDD). Increasing studies have shown that interventions targeting impaired autophagic flux can maintain cellular homeostasis by relieving oxidative damage. Here, we investigated the effect of curcumin (CUR), a known autophagy activator, on IDD in vitro and in vivo. CUR suppressed tert-butyl hydroperoxide- (TBHP-) induced oxidative stress and mitochondrial dysfunction and thereby inhibited human NP cell apoptosis, senescence, and ECM degradation. CUR treatment induced autophagy and enhanced autophagic flux in an AMPK/mTOR/ULK1-dependent manner. Notably, CUR alleviated TBHP-induced interruption of autophagosome-lysosome fusion and impairment of lysosomal function and thus contributed to the restoration of blocked autophagic clearance. These protective effects of CUR in TBHP-stimulated human NP cells resembled the effects produced by the autophagy inducer rapamycin, but the effects were partially eliminated by 3-methyladenine- and compound C-mediated inhibition of autophagy initiation or chloroquine-mediated obstruction of autophagic flux. Lastly, CUR also exerted a protective effect against puncture-induced IDD progression in vivo. Our results showed that suppression of excessive ROS production and mitochondrial dysfunction through enhancement of autophagy coupled with restoration of autophagic flux ameliorated TBHP-induced human NP cell apoptosis, senescence, and ECM degradation. Thus, maintenance of the proper functioning of autophagy represents a promising therapeutic strategy for IDD, and CUR might serve as an effective therapeutic agent for IDD.
Collapse
|
80
|
The Sirt1/P53 Axis in Diabetic Intervertebral Disc Degeneration Pathogenesis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7959573. [PMID: 31583043 PMCID: PMC6754956 DOI: 10.1155/2019/7959573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the major causes of low back pain. Diabetes is a risk factor for IDD and may aggravate IDD in rats; however, the mechanism is poorly understood. Previously, we demonstrated that apoptosis and senescence were increased in diabetic nucleus pulposus (NP) tissues; in the current study, we found that hyperglycaemia may promote the incidence of apoptosis and senescence in NP cells in vitro. Meanwhile, the acetylation of P53, a master transcription factor of apoptosis and senescence, was also found increased in diabetic NP tissues in vivo as well as in hyperglycaemic NP cells in vitro. Sirt1 is an NAD+-dependent deacetylase, and we showed that the expression of Sirt1 was decreased in NP tissues, while hyperglycaemia could suppress the expression and activity of Sirt1 in NP cells. Furthermore, we demonstrated that butein may inhibit acetylation of P53 and protect NP cells against hyperglycaemia-induced apoptosis and senescence through Sirt1 activation, as the Sirt1 inhibitor Ex527 may counteract the protective effect of butein in hyperglycaemic NP cells. An in vivo study showed that butein could ameliorate the IDD process in diabetic rats, while Sirt1 was increased and acetyl-p53 was decreased in NP tissues in butein-treated rats. These results indicate that the Sirt1/P53 axis is involved in the pathogenesis of diabetic IDD and may serve as a therapeutic target for diabetic IDD.
Collapse
|
81
|
Abstract
STUDY DESIGN An in vivo and in vitro study of the correlation between Paraoxonase 1 (PON1) and intervertebral disc degeneration (IVDD). OBJECTIVE The aim of this study is to clarify the expression and role of PON1 on the process of IVDD. SUMMARY OF BACKGROUND DATA IVDD is responsible for most of the spinal degenerative diseases. Inflammation and oxidative stress can deteriorate the living environment of nucleus pulposus (NP) cells, leading to IVDD. PON1 is an enzyme reported to have anti-inflammatory and anti-oxidative effects. There is no study about the correlation of PON1 expression with IVDD. METHODS Immunohistochemical (IHC), hematoxylin and eosin (H&E) staining, and Western blot examined the expression of PON1 in 88 human disc samples (male: female 43: 45) and rat models (n = 5 each group). The level of PON1 is measured in the tumor necrosis factor (TNF)-α and oxidative stress (H2O2)-induced degenerative NP cell models using Western blot and reverse transcription-polymerase chain reaction (RT-qPCR). The TNF-α, interleukin (IL)-1β, Mito superoxide (SOX), aggrecan, and collagen II are detected in nucleus pulposus (NP) cells transfected with si-RNA of PON1 using Enzyme-Linked Immunosorbent Assay (ELISA), mitoSOX staining Western blot, and RT-qPCR. RESULTS The expression of PON1 is significantly suppressed in human and rat degenerative intervertebral discs. The level of PON1 is significantly decreased in TNF-α and oxidative stress (H2O2)-induced degenerative NP cell models. ELISA results show that the level of TNF-α and IL-1β obviously increased; Mito SOX staining indicates that the Mito SOX fluorescence significantly increased, and the expression of aggrecan and collagen reduced in NP cells transfected with si-RNA of PON1. CONCLUSION Our study indicates that low PON1 expression is predictive of severe IVDD; PON1 plays an important role of keeping the homeostatic balance of intervertebral discs, and therapeutic approach regarding PON1 may be helpful to alleviate IVDD in the future. LEVEL OF EVIDENCE N/A.
Collapse
|
82
|
Wang S, Sun J, Yang H, Zou W, Zheng B, Chen Y, Guo Y, Shi J. Profiling and bioinformatics analysis of differentially expressed circular RNAs in human intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 2019; 51:571-579. [PMID: 31056633 DOI: 10.1093/abbs/gmz036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
The functional changes of nucleus pulposus (NP) cells are considered to be the initiating factors of intervertebral disc degeneration (IDD), and the differentially expressed circRNAs in NP cells may play an important role in the process of IDD. To identify circular RNAs (circRNAs) associated with human IDD, we isolated the NP cells from human degenerated and non-degenerated intervertebral disc and identified NP cells by microscopy and cell proliferation. CircRNA microarray expression profiles were obtained from NP cells of degenerated and non-degenerated intervertebral disc and further validated by quantitative reverse transcription PCR (qRT-PCR). The expression data were analyzed by bioinformatics. Microarray analysis identified 7294 circRNAs differentially expressed in degenerated human IDD NP cells. Among them, 3724 circRNAs were up-regulated and 3570 circRNAs were down-regulated by more than 2 folds. After validating by qRT-PCR, we predicted the possible miRNAs of the top dysregulated circRNAs using TargetScan, and miRanda. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most modulated circRNAs regulate the viability, degradation, apoptosis and oxidative stress in NP cells, and the possible mechanism underlying IDD was discussed. These results revealed that circRNAs may play a role in IDD and might be a promising candidate molecular target for gene therapy.
Collapse
Affiliation(s)
- Shunmin Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haisong Yang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zheng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yongfei Guo
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
83
|
Abstract
Sirtuin is an essential factor that delays cellular senescence and extends the organismal lifespan through the regulation of diverse cellular processes. Suppression of cellular senescence by Sirtuin is mainly mediated through delaying the age-related telomere attrition, sustaining genome integrity and promotion of DNA damage repair. In addition, Sirtuin modulates the organismal lifespan by interacting with several lifespan regulating signaling pathways including insulin/IGF-1 signaling pathway, AMP-activated protein kinase, and forkhead box O. Although still controversial, it is suggested that the prolongevity effect of Sirtuin is dependent with the level of and with the tissue expression of Sirtuin. Since Sirtuin is also believed to mediate the prolongevity effect of calorie restriction, activators of Sirtuin have attracted the attention of researchers to develop therapeutics for age-related diseases. Resveratrol, a phytochemical rich in the skin of red grapes and wine, has been actively investigated to activate Sirtuin activity with consequent beneficial effects on aging. This article reviews the evidences and controversies regarding the roles of Sirtuin on cellular senescence and lifespan extension, and summarizes the activators of Sirtuin including Sirtuin-activating compounds and compounds that increase the cellular level of nicotinamide dinucleotide.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
84
|
Zhao L, Tian B, Xu Q, Zhang C, Zhang L, Fang H. Extensive mechanical tension promotes annulus fibrosus cell senescence through suppressing cellular autophagy. Biosci Rep 2019; 39:BSR20190163. [PMID: 30910846 PMCID: PMC6470409 DOI: 10.1042/bsr20190163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Mechanical load contributes a lot to the initiation and progression of disc degeneration. Annulus fibrosus (AF) cell biology under mechanical tension remains largely unclear.Objective: The present study was aimed to investigate AF cell senescence under mechanical tension and the potential role of autophagy.Methods: Rat AF cells were cultured and experienced different magnitudes (5% elongation and 20% elongation) of mechanical tension for 12 days. Control AF cells were kept static. Cell proliferation, telomerase activity, cell cycle fraction, and expression of senescence-related molecules (p16 and p53) and matrix macromolecules (aggrecan and collagen I) were analyzed to evaluate cell senescence. In addition, expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I were analyzed to investigate cell autophagy.Results: Compared with the control group and 5% tension group, 20% tension group significantly decreased cell proliferation potency and telomerase activity, increased G1/G0 phase fraction, and up-regulated gene/protein expression of p16 and p53, whereas down-regulated gene/protein expression of aggrecan and collagen I. In addition, autophagy-related parameters such as gene/protein expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I, were obviously suppressed in the 20% tension group.Conclusion: High mechanical tension promotes AF cell senescence though suppressing cellular autophagy. The present study will help us to better understand AF cell biology under mechanical tension and mechanical load-related disc degeneration.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Baofang Tian
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Qing Xu
- Department of Anesthesia Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Luo Zhang
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Haolin Fang
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| |
Collapse
|
85
|
Li Z, Chen S, Chen S, Huang D, Ma K, Shao Z. Moderate activation of Wnt/β‐catenin signaling promotes the survival of rat nucleus pulposus cells via regulating apoptosis, autophagy, and senescence. J Cell Biochem 2019; 120:12519-12533. [PMID: 31016779 DOI: 10.1002/jcb.28518] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiliang Li
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Songfeng Chen
- Department of Orthopaedics The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Sheng Chen
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Donghua Huang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kaige Ma
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zengwu Shao
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
86
|
MicroRNA-143-5p targeting eEF2 gene mediates intervertebral disc degeneration through the AMPK signaling pathway. Arthritis Res Ther 2019; 21:97. [PMID: 30987676 PMCID: PMC6466769 DOI: 10.1186/s13075-019-1863-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain, and the treatment of IDD is costly and relatively ineffective. Dysregulation of microRNAs (miRNAs) has been reported to be involved in IDD. The purpose of our study is to illustrate the potential that miR-143-5p targeting eEF2 gene mediates IDD. Methods Following the establishment of the IDD rat models, expression of miR-143-5p, eEF2, Bcl-2, Bax, AMPK, mTOR, cyclinD, COL2, ACAN, and DCN was detected. The NP cells isolated from degenerative intervertebral disc (IVD) were introduced with a series of mimic, inhibitor, or AICAR to explore the functional role of miR-143-5p in IDD and to characterize the relationship between miR-143-5p and eEF2. Cell viability, cell cycle, apoptosis, and senescence were also evaluated. Results A reduction in eEF2, an increase in miR-143-5p, and activation of the AMPK signaling pathway were observed in degenerative IVD. Moreover, increased senescent NP cells were observed in degenerative IVD. eEF2 was confirmed as a target gene of miR-143-5p. miR-143-5p was found to activate the AMPK signaling pathway. The restoration of miR-143-5p or the activation of AMPK signaling pathway decreased COL2, ACAN, and DCN expression, coupled with the inhibition of NP cell proliferation and differentiation, and promotion of NP apoptosis and senescence. On the contrary, the inhibition of miR-143-5p led to the reversed results. Conclusion The results demonstrated that the inhibition of miR-143-5p may act as a suppressor for the progression of IDD.
Collapse
|
87
|
Autophagy mediates serum starvation-induced quiescence in nucleus pulposus stem cells by the regulation of P27. Stem Cell Res Ther 2019; 10:118. [PMID: 30987681 PMCID: PMC6466800 DOI: 10.1186/s13287-019-1219-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Adult stem cells exist in a quiescent state (G0) within the in vivo niche; the loss of quiescence often leads to a decrease in the number and function of adult stem cells, impairing tissue regeneration and repair. Endogenous repair by nucleus pulposus-derived stem cells has recently shown promising regenerative potential for the treatment of intervertebral disc degeneration (IDD). However, the number and function of nucleus pulposus stem cells (NPSCs) declined throughout the process of IDD. This effect may have a specific relationship with quiescence. However, the biology of the quiescent NPSCs has not been reported. Methods First, we established an in vitro model for NPSC quiescence with serum starvation. The induction of G0 was confirmed by flow cytometry analyses of dual staining with Hoechst 33342 and Pyronin Y, immunofluorescent staining with Ki67 and Western blot analysis of P27 expression. NPSCs were cultured under serum starvation conditions for a long time period (21 days). To examine the functional phenotype of quiescent NPSCs, the cells were reactivated with 10% serum and differentiated into osteogenic and chondrogenic lineages in vitro. The number of colony-forming units was also estimated. To elucidate the role of autophagy in the quiescence of NPSCs, we activated and inhibited autophagy in starved cells with rapamycin and chloroquine, respectively. Then, the expression of P27 was evaluated by Western blot analysis, and the immunofluorescence of Ki67 was assessed. Finally, we assessed the role of P27 siRNA in NPSC quiescence by flow cytometry analyses and 5-ethynyl-20-deoxyuridine incorporation assays under normal and serum-starved conditions. Results NPSC quiescence was induced by 48 h of serum starvation, and they maintained quiescence for up to 21 days. Upon reactivation with serum, the quiescent NPSCs re-entered the cell cycle and exhibited enhanced clonogenic self-renewal, osteogenic differentiation and chondrogenic differentiation potentials compared to control NPSCs under normal culture conditions. We also found that autophagy underlay serum starvation-induced NPSC quiescence. Further study demonstrated that autophagy mediated the quiescence of NPSCs by regulating P27. Conclusions Serum starvation efficiently induces quiescence in NPSCs. Quiescent NPSCs maintain stem cell properties. Our study reveals that autophagy plays a role in maintaining NPSC quiescence and that autophagy mediates the quiescence of NPSCs by regulating P27. We conclude that the induction of quiescence in cultured NPSCs provides a useful model for the analysis of mechanisms that might be relevant to the biology of NPSCs in vivo.
Collapse
|
88
|
Zi Y, Yi-An Y, Bing J, Yan L, Jing T, Chun-Yu G, Fan P, Hao L, Jia-Ni T, Han-Jin H, Fei C, Xue-Bo L. Sirt6-induced autophagy restricted TREM-1-mediated pyroptosis in ox-LDL-treated endothelial cells: relevance to prognostication of patients with acute myocardial infarction. Cell Death Discov 2019; 5:88. [PMID: 30993014 PMCID: PMC6461678 DOI: 10.1038/s41420-019-0168-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023] Open
Abstract
Inflammation mediated by myeloid cells trigger receptors 1 (TREM-1) is important for atherosclerosis development, while sirtuin 6 (Sirt6) levels decrease in atheroscleoritc plaque. Here we demonstrate that oxidatively modified low density lipoprotein (ox-LDL)-treated endothelial cells (ECs) exhibited increased TREM-1-mediated pyroptosis and decreased Sirt6-induced autophagy. We show that high sTREM-1 and low sSirt6 levels were independent predictors of boosted endothelial microparticles (EMPs) on admission, and were associated with increased risk for all-cause mortality and major adverse cardiovascular events (MACE) at median 24 months (interquartile range, 18–26) follow-up in acute myocardial infarction (AMI) patients. Additionally, blockage of Sirt6-induced autophagy led to augmented TREM-1-mediated pyroptosis, whereas Sirt6 overexpression attenuated ECs inflammation and pyroptosis following ox-LDL treatment. Our findings indicate that TREM-1 and in a reversed trend Sirt6 appeared to be markers of endothelial inflammation with potential for use in risk stratification.
Collapse
Affiliation(s)
- Ye Zi
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Yao Yi-An
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Ji Bing
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Lai Yan
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Tong Jing
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Guan Chun-Yu
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Ping Fan
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Lin Hao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Tang Jia-Ni
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Hou Han-Jin
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Chen Fei
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Liu Xue-Bo
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
89
|
Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway. Biochem Biophys Res Commun 2019; 513:616-622. [PMID: 30981502 DOI: 10.1016/j.bbrc.2019.03.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Intervertebral disc degeneration (IDD) is a kind of disease associated with nucleus pulposus (NP) cell senescence. Previous studies have shown that the sirtuin family plays an extremely important role in the progress of cell aging. However, whether sirtuin2 (Sirt2) protects against IDD remains unknown. The aim of this study was to determine whether Sirt2 protected NP from degradation in IDD. The expression of Sirt2 in different degree of degenerate disc tissues was determined by reverse transcription-polymerase chain reaction. Interleukin 1 beta (IL-1β) was used to stimulate the degeneration of NP cells. Subsequently, lentivirus transfection was performed to increase Sirt2 expression in vitro. Meanwhile, the function of Sirt2 overexpression in the progress of NP cell degeneration was evaluated. Our study showed that the expression of Sirt2 markedly decreased in severe degenerated disc tissues. IL-1β significantly promoted the progress of IDD. Meanwhile, overexpression of Sirt2 could reverse the effects of IL-1β. The data also revealed that Sirt2 overexpression obviously increased the production of antioxidant SOD1/2 and suppressed oxidative stress in the disc. Moreover, p53 and p21 could be significantly suppressed by Sirt2 overexpression. These results suggested that Sirt2 prevented NP degradation via restraining oxidative stress and cell senescence through inhibition of the p53/p21 pathway. Furthermore, Sirt2 might become a novel target for IDD therapy in the future.
Collapse
|
90
|
Zhu J, Xia K, Yu W, Wang Y, Hua J, Liu B, Gong Z, Wang J, Xu A, You Z, Chen Q, Li F, Tao H, Liang C. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater 2019; 86:300-311. [PMID: 30660009 DOI: 10.1016/j.actbio.2019.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.
Collapse
|
91
|
Ouyang L, Yi L, Li J, Yi S, Li S, Liu P, Yang X. SIRT6 overexpression induces apoptosis of nasopharyngeal carcinoma by inhibiting NF-κB signaling. Onco Targets Ther 2018; 11:7613-7624. [PMID: 30464510 PMCID: PMC6219112 DOI: 10.2147/ott.s179866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous reports show that SIRT6 serves as a critical modulator of the development of multiple malignancies as well as other disorders. However, its role in nasopharyngeal carcinoma (NPC) is unknown. Thus, we elucidated the effects of SIRT6 on the survival of NPC cells, and modulation of cell death. METHODS We found that expression of SIRT6 is downregulated in ten human NPC specimens as well as in the human NPC cell lines, 5-8 F and CNE1, as compared with that in healthy tissues and normal nasopharyngeal NP69 cells. The MTT assay and colony formation assay revealed that upregulation of SIRT6 impaired the proliferation, as well as the survival of 5-8 F and CNE1 cells. The TUNEL assay, annexin V-FITC/propidium iodide, and flow cytometry were performed to detect apoptosis. The results revealed that the expression of SIRT6 resulted in increased apoptosis. RESULTS Western blotting results showed that SIRT6 overexpression decreased anti-apoptotic Bcl-2 levels, whereas it promoted an increase in pro-apoptotic Bax and cleaved caspase-3 levels. Moreover, NF-κB levels were markedly reduced in cells expressing SIRT6, whereas they were increased in cells transfected with shRNA-SIRT6. Recovery of NF-κB expression was found to counter the suppressive influence of SIRT6 on NPC cell survival, whereas, NF-κB knockdown increased apoptosis of NPC cells. CONCLUSION Thus, the findings of our study offer insight into the biological and molecular mechanisms underlying the development of NPC and may lead to the development of new and innovative strategies for the treatment of NPC.
Collapse
Affiliation(s)
- Lei Ouyang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China,
| | - Liang Yi
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China,
| | - Jingkun Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China,
| | - Shijiang Yi
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Guilin Medical College, the Institute of Otolaryngology of Guilin Medical College, Guilin, 541001 Guangxi, People's Republic of China,
| | - Shisheng Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China,
| | - Peng Liu
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Guilin Medical College, the Institute of Otolaryngology of Guilin Medical College, Guilin, 541001 Guangxi, People's Republic of China,
| | - Xinming Yang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China,
| |
Collapse
|
92
|
Zhang Z, Lin J, Tian N, Wu Y, Zhou Y, Wang C, Wang Q, Jin H, Chen T, Nisar M, Zheng G, Xu T, Gao W, Zhang X, Wang X. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med 2018; 23:177-193. [PMID: 30353656 PMCID: PMC6307776 DOI: 10.1111/jcmm.13903] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose-dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3-methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX-527 suppressed melatonin-induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1-autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1-autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.
Collapse
Affiliation(s)
- Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingting Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Majid Nisar
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Ruian, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Zhejiang University of School Medicne, HangZhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
93
|
Zhang Z, Wang C, Lin J, Jin H, Wang K, Yan Y, Wang J, Wu C, Nisar M, Tian N, Wang X, Zhang X. Therapeutic Potential of Naringin for Intervertebral Disc Degeneration: Involvement of Autophagy Against Oxidative Stress-Induced Apoptosis in Nucleus Pulposus Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-20. [PMID: 30284462 DOI: 10.1142/s0192415x18500805] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain, but few efficacious medicines have been developed for IDD. Increased nucleus pulposus cells apoptosis is a dominant pathogenesis of IDD and is considered a therapeutic target. Previously, our group proved that autophagy may protect nucleus pulposus cells against apoptosis. As one of the major bioflavonoids of citrus, naringin activates autophagy. Therefore, we hypothesize that naringin may have therapeutic potential for IDD by activating autophagy in nucleus pulposus cells. In this study, we evaluated the effects of naringin on TBHP-induced oxidative stress in nucleus pulposus cells in vitro as well as in puncture-induced rat IDD model in vivo. Our results showed that naringin could reduce the incidence of oxidative stress-induced apoptosis in nucleus pulposus cells and promoted the expression of autophagy markers LC3-II/I and beclin-1. Meanwhile, inhibition of autophagy by 3-MA may partially reverse the anti-apoptotic effect of naringin, indicating that autophagy was involved in the protective effect of naringin in nucleus pulposus cells. Further study showed that autophagy regulation of naringin may be related to AMPK signaling. Also, we found that naringin treatment can regulate the expression of collagen II, aggrecan and Mmp13 to sustain the extracellular matrix. Furthermore, our in vivo study showed that naringin can ameliorate IDD in puncture-induced rat model. In conclusion, our study suggests that naringin can protect nucleus pulposus cells against apoptosis and ameliorate IDD in vivo, the mechanism may relate to its autophagy regulation.
Collapse
Affiliation(s)
- Zengjie Zhang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Chenggui Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Jialiang Lin
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Haiming Jin
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Ke Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Yingzhao Yan
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Jianle Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Congcong Wu
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Majid Nisar
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Naifeng Tian
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Xiangyang Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Xiaolei Zhang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
- § Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, P. R. China
| |
Collapse
|
94
|
Zhang Z, Xu T, Chen J, Shao Z, Wang K, Yan Y, Wu C, Lin J, Wang H, Gao W, Zhang X, Wang X. Parkin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration. Cell Death Dis 2018; 9:980. [PMID: 30250268 PMCID: PMC6155159 DOI: 10.1038/s41419-018-1024-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IDD) is a complicated pathological condition blamed for low back pain. Mitochondrion is of vital importance for cellular homeostasis, and mitochondrial dysfunction is considered to be one of the major causes of cellular damage. Mitophagy is a cellular process to eliminate impaired mitochondria and showed protective effects in various diseases; however, its role in IDD is still not clear. Here, we explore the role of Parkin-mediated mitophagy in IDD. In this study, we found that Parkin was upregulated in degenerative nucleus pulposus (NP) tissues in vivo as well as in TNF-α stimulated NP cells in vitro. Knockdown of Parkin by siRNA showed that Parkin is crucial for apoptosis and mitochondrion homeostasis in NP cells. Further study showed that upregulation of Parkin by salidroside may eliminate impaired mitochondria and promote the survival of NP cells through activation of mitophagy in vitro. In in vivo study, we found that salidroside could inhibit the apoptosis of NP cells and ameliorate the progression of IDD. These results suggested that Parkin is involved in the pathogenesis of IDD and may be a potential therapeutic target for IDD.
Collapse
Affiliation(s)
- Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Wansong Road 108#, Ruian, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ke Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yingchao Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Congcong Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China. .,Chinese Orthopaedic Regenerative Medicine Society, Ruian, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
95
|
Walters HE, Cox LS. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int J Mol Sci 2018; 19:E2325. [PMID: 30096787 PMCID: PMC6121351 DOI: 10.3390/ijms19082325] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular senescence is an essentially irreversible proliferation arrest mechanism that has important roles in development, wound healing, and preventing cancer, but it may limit tissue function and cause widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly, a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer, immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy, muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the efficacy of any healthy ageing therapy.
Collapse
Affiliation(s)
- Hannah E Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
96
|
Parathyroid hormone 1‑34 inhibits senescence in rat nucleus pulposus cells by activating autophagy via the m‑TOR pathway. Mol Med Rep 2018; 18:2681-2688. [PMID: 29956812 PMCID: PMC6102631 DOI: 10.3892/mmr.2018.9229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/20/2018] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis is closely associated with intervertebral disc degeneration. While parathyroid hormone (PTH) 1–34, which is an established drug used to treatosteoporosis, is thought to inhibit the disc degeneration associated with osteoporosis, the precise mechanism involved remains unclear. In the present study, primary Sprague-Dawley rat nucleus pulposus cells (NPCs) were cultured, phenotyped and then treated with dexamethasone (DXM) for 48 h. Cell area analysis and β-galactosidase staining were used to investigate the effect of DXM on the senescence of NPCs. In addition, the protein levels of LC3-II, Beclin-1, P62, p-mTOR and p-p70S6k were determined by western blotting and analyzing the regulatory effect of PTH upon autophagy and the mTOR signaling pathway in cells treated with DXM. Following autophagic inhibition induced by ATG5 siRNA transfection, the regulatory effect of PTH on senescence in NPCs were investigated in addition to the potential role of autophagy. As the concentration of DXM increased, the size of the NPCs was significantly enlarged and the proportion of cells with positive β-galactosidase staining increased significantly (P<0.05). In terms of protein expression, PTH treatment led to an increase in LC3-II and Beclin-1 proteins, a reduction in P62 protein, and inhibited p-mTOR and p-p70S6k protein expression in DXM-treated NPCs (P<0.05). PTH attenuated the effect of DXM according to the cell size and percentage of β-galactosidase-positive cells. However, the inhibition of autophagy via ATG5 siRNA transfection reversed the protective effect of PTH on cell senescence (P<0.05). Collectively, the present findings suggest that PTH may inhibit the senescence of NPCs induced by DXM by activating autophagy via the mTOR pathway.
Collapse
|
97
|
Song S, Yang Y, Liu M, Liu B, Yang X, Yu M, Qi H, Ren M, Wang Z, Zou J, li F, Du X, Zhang H, Luo J. MiR-125b attenuates human hepatocellular carcinoma malignancy through targeting SIRT6. Am J Cancer Res 2018; 8:993-1007. [PMID: 30034937 PMCID: PMC6048406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers. It has been demonstrated that aberrant expression of miRNAs plays an important role in HCC development. Here, we observed decreased miR-125b expression status in tumor samples from HCC patients, and the five years survival rate of HCC patients with low miR-125b expression is poor. By using bioinformatics prediction tools combining with luciferase reporter assay, we identified that miR-125b can suppress the expression of SIRT6 by directly targeting the seed-matching region of its 3'UTR. Based on the analysis via TCGA and clinical samples data, the expression of SIRT6 showed negatively correlated with the expression of mir-125b. After knocking-out the expression of SIRT6 through CRISPR/Cas9, HCC cells showed the decreased cell viability and invasiveness, which had the similar function upon the overexpression of the miR-125b. The function induced by overexpression of miR-125b can be rescued by the restoration of SIRT6. Further experiments demonstrated that the HCC cells showed the significant cellular senescence and apoptosis upon overexpression of miR-125b or knockout SIRT6, which is in accordance with the compromised cell malignancy. Thus, we conclude that, by targeting SIRT6, miR-125b can function as a tumor suppressor to induce the cellular senescence and apoptosis in hepatocellular carcinogenesis and could provide a novel insight for HCC treatment.
Collapse
Affiliation(s)
- Shi Song
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Yuxia Yang
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Boya Liu
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Xin Yang
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Miao Yu
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Hao Qi
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Mengmeng Ren
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Zhe Wang
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Junhua Zou
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Feng li
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science CenterBeijing 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science CenterBeijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|