51
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
52
|
Ho WJ, Yarchoan M, Charmsaz S, Munday RM, Danilova L, Sztein MB, Fertig EJ, Jaffee EM. Multipanel mass cytometry reveals anti-PD-1 therapy-mediated B and T cell compartment remodeling in tumor-draining lymph nodes. JCI Insight 2020; 5:132286. [PMID: 31855578 DOI: 10.1172/jci.insight.132286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-programmed cell death protein 1 (anti-PD-1) therapy has become an immunotherapeutic backbone for treating many cancer types. Although many studies have aimed to characterize the immune response to anti-PD-1 therapy in the tumor and in the peripheral blood, relatively less is known about the changes in the tumor-draining lymph nodes (TDLNs). TDLNs are primary sites of tumor antigen exposure that are critical to both regulation and cross-priming of the antitumor immune response. We used multipanel mass cytometry to obtain a high-parameter proteomic (39 total unique markers) immune profile of the TDLNs in a well-studied PD-1-responsive, immunocompetent mouse model. Based on combined hierarchal gating and unsupervised clustering analyses, we found that anti-PD-1 therapy enhances remodeling of both B and T cell compartments toward memory phenotypes. Functionally, expression of checkpoint markers was increased in conjunction with production of IFN-γ, TNF-α, or IL-2 in key cell types, including B and T cell subtypes, and rarer subsets, such as Tregs and NKT cells. A deeper profiling of the immunologic changes that occur in the TDLN milieu during effective anti-PD-1 therapy may lead to the discovery of novel biomarkers for monitoring response and provide key insights toward developing combination immunotherapeutic strategies.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | | | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health.,Graduate Program in Molecular Microbiology and Immunology, Graduate Program in Life Sciences.,Department of Pediatrics, and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,McKusick-Nathans Institute for Genetic Medicine, and.,Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering and.,Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,Department of Pediatrics, and.,Pancreatic Cancer Precision Medicine Program and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
53
|
Papadopoulos Z, Herz J, Kipnis J. Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:286-293. [PMID: 31907271 PMCID: PMC7061974 DOI: 10.4049/jimmunol.1900838] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
At steady state, the CNS parenchyma has few to no lymphocytes and less potent Ag-presentation capability compared with other organs. However, the meninges surrounding the CNS host diverse populations of immune cells that influence how CNS-related immune responses develop. Interstitial and cerebrospinal fluid produced in the CNS is continuously drained, and recent advances have emphasized that this process is largely taking place through the lymphatic system. To what extent this fluid process mobilizes CNS-derived Ags toward meningeal immune cells and subsequently the peripheral immune system through the lymphatic vessel network is a question of significant clinical importance for autoimmunity, tumor immunology, and infectious disease. Recent advances in understanding the role of meningeal lymphatics as a communicator between the brain and peripheral immunity are discussed in this review.
Collapse
Affiliation(s)
- Zachary Papadopoulos
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jasmin Herz
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
54
|
Hope JL, Spantidea PI, Kiernan CH, Stairiker CJ, Rijsbergen LC, van Meurs M, Brouwers-Haspels I, Mueller YM, Nelson DJ, Bradley LM, Aerts JGJV, Katsikis PD. Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model. Front Immunol 2020; 10:3074. [PMID: 31998326 PMCID: PMC6968785 DOI: 10.3389/fimmu.2019.03074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
The immune system, and in particular, cytotoxic CD8+ T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated “reinvigoration”-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis should be placed on understanding contributions of individual microenvironments in the development of T cell exhaustion.
Collapse
Affiliation(s)
- Jennifer L Hope
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Panagiota I Spantidea
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Laurine C Rijsbergen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Delia J Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Linda M Bradley
- Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
55
|
Basile MS, Mazzon E, Fagone P, Longo A, Russo A, Fallico M, Bonfiglio V, Nicoletti F, Avitabile T, Reibaldi M. Immunobiology of Uveal Melanoma: State of the Art and Therapeutic Targets. Front Oncol 2019; 9:1145. [PMID: 31750244 PMCID: PMC6848265 DOI: 10.3389/fonc.2019.01145] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Uveal Melanoma (UM) represents the most common primary intraocular malignant tumor in adults. Although it originates from melanocytes as cutaneous melanoma, it shows significant clinical and biological differences with the latter, including high resistance to immune therapy. Indeed, UM can evade immune surveillance via multiple mechanisms, such as the expression of inhibitory checkpoints (e.g., PD-L1, CD47, CD200) and the production of IDO-1 and soluble FasL, among others. More in-depth understanding of these mechanisms will suggest potential targets for the design of novel and more effective management strategies for UM patients.
Collapse
Affiliation(s)
- Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy
| |
Collapse
|
56
|
Saxena V, Li L, Paluskievicz C, Kasinath V, Bean A, Abdi R, Jewell CM, Bromberg JS. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol Rev 2019; 292:9-23. [PMID: 31538349 PMCID: PMC6935411 DOI: 10.1111/imr.12799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vivek Kasinath
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asher Bean
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, Robert E. Fischell Institute for Biomedical Devices University of Maryland, College Park, MD 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
57
|
Bottasso E. Toward the Existence of a Sympathetic Neuroplasticity Adaptive Mechanism Influencing the Immune Response. A Hypothetical View-Part II. Front Endocrinol (Lausanne) 2019; 10:633. [PMID: 31620088 PMCID: PMC6760024 DOI: 10.3389/fendo.2019.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
In the preceding work, a hypothesis on the existence of a specific neural plasticity program from sympathetic fibers innervating secondary lymphoid organs was introduced. This proposed adaptive mechanism would involve segmental retraction and degeneration of noradrenergic terminals during the immune system (IS) activation followed by regeneration once the IS returns to the steady-state. Starting from such view, this second part presents clinical and experimental evidence allowing to envision that this sympathetic neural plasticity mechanism is also operative on inflamed non-lymphoid peripheral tissues. Importantly, the sympathetic nervous system regulates most of the physiological bodily functions, ranging from cardiovascular, respiratory and gastro-intestinal functions to endocrine and metabolic ones, among others. Thus, it seems sensible to think that compensatory programs should be put into place during inflammation in non-lymphoid tissues as well, to avoid the possible detrimental consequences of a sympathetic blockade. Nevertheless, in many pathological scenarios like severe sepsis, chronic inflammatory diseases, or maladaptive immune responses, such compensatory programs against noradrenergic transmission impairment would fail to develop. This would lead to a manifest sympathetic dysfunction in the above-mentioned settings, partly accounting for their underlying pathophysiological basis; which is also discussed. The physiological/teleological significance for the whole neural plasticity process is postulated, as well.
Collapse
Affiliation(s)
- Emanuel Bottasso
- Departments of Pathology and Physiology, Faculty of Medicine, Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Rosario, Argentina
| |
Collapse
|
58
|
Martinez VG, Park D, Acton SE. Immunotherapy: breaching the barriers for cancer treatment. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180214. [PMID: 31431180 PMCID: PMC6627023 DOI: 10.1098/rstb.2018.0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The great ambition to treat cancer through harnessing a patient's own immune responses has started to become reality. Clinical trials have shown impressive results and some patients reaching the end of existing treatment options have achieved full remission. Yet the response rate even within the most promising trials remain at just 30-40% of patients. To date, the focus of immunotherapy research has been to identify tumour antigens, and to enhance activation of effector lymphocytes. Yet this is only the first step to effective immunotherapy for a broader range of patients. Activated cytotoxic T cells can only act on their tumour cell targets if they have free and easy access to all tumour regions. Solid tumours are complex, heterogeneous environments which vary greatly in their physical properties. We must now focus our efforts on understanding how factors such as the composition, density and geometry of tumour extracellular matrix acts to impede or promote immune cell infiltration and activation, and work to design novel pharmacological interventions which restore and enhance leucocyte trafficking within solid tumours. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Victor G. Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Danielle Park
- Tumour Cell Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
59
|
Murthy V, Katzman DP, Tsay JCJ, Bessich JL, Michaud GC, Rafeq S, Minehart J, Mangalick K, de Lafaille MAC, Goparaju C, Pass H, Sterman DH. Tumor-draining lymph nodes demonstrate a suppressive immunophenotype in patients with non-small cell lung cancer assessed by endobronchial ultrasound-guided transbronchial needle aspiration: A pilot study. Lung Cancer 2019; 137:94-99. [PMID: 31563736 DOI: 10.1016/j.lungcan.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Tumor draining lymph nodes (TDLN) are key sites of early immunoediting in patients with non-small cell lung cancer (NSCLC) and play an important role in generating anti-tumor immunity. Immune suppression in the tumor microenvironment has prognostic implications and may predict therapeutic response. T cell composition of draining lymph nodes may reflect an immunophenotype with similar prognostic potential which could be measured during standard-of-care bronchoscopic assessment. In this study, we compared the immunophenotype from different sites within individuals to primary tumor characteristics in patients with NSCLC to see whether there were tumor-regional differences in immunophenotype which could be evaluated from transbronchial needle aspirates. MATERIALS AND METHODS Twenty patients were enrolled in this study and had tissue (lymph node aspirates and/or peripheral blood) obtained during standard of care bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for diagnosis or staging of known or suspected NSCLC. Aspirates and blood underwent flow-assisted cell sorting and a subset of sorted effector T cells underwent RNA quantitation to determine feasibility of this approach. Immunophenotypic patterns from twelve patients with paired data from tumor-draining and non-tumor draining lymph nodes (NDLN) were compared relative to one another and based on PD-L1 immunohistochemistry and primary tumor histology. RESULTS TDLN had significantly fewer CD4+ T cells (12.68% vs 27%, p = 0.002) and significantly more regulatory T cells (Treg, 12.03% vs 9.52%, p = 0.03) relative to paired NDLN suggesting tumor-regional immunosuppression. There were significantly more Treg in NDLN relative to paired PBMC (9.52% vs 5.6%, p = 0.016). Patients with PD-L1 expression ≥50% had significantly greater tumor-regional CD4+ T cell depletion compared to patients with PD-L1 expression <50% (-35.98% vs -1.89%, p = 0.0357; negative values represent absolute difference between paired TDLN and NDLN). CONCLUSIONS In patients with NSCLC, TDLN have a suppressive immunophenotype correlating with tumor PD-L1 status and can be assessed during routine EBUS-TBNA.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States; Albert Einstein College of Medicine, Division of Pulmonary Medicine, New York, United States.
| | - Daniel P Katzman
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | - Jun-Chieh J Tsay
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | - Jamie L Bessich
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | - Gaetane C Michaud
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | - Samaan Rafeq
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | | | | | - M A Curotto de Lafaille
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| | - Chandra Goparaju
- NYU Langone Health, Department of Cardiothoracic Surgery, New York, United States
| | - Harvey Pass
- NYU Langone Health, Department of Cardiothoracic Surgery, New York, United States
| | - Daniel H Sterman
- NYU Langone Health, Division of Pulmonary, Critical Care and Sleep Medicine, New York, United States
| |
Collapse
|
60
|
Bashaw AA, Teoh SM, Tuong ZK, Leggatt GR, Frazer IH, Chandra J. HPV16 E7-Driven Epithelial Hyperplasia Promotes Impaired Antigen Presentation and Regulatory T-Cell Development. J Invest Dermatol 2019; 139:2467-2476.e3. [PMID: 31207230 DOI: 10.1016/j.jid.2019.03.1162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
Human papillomaviruses infect keratinocytes and can lead to hyperproliferative dysplasia and malignant transformation if not cleared by the immune system. Human papillomavirus has evolved an array of mechanisms to evade and manipulate the immune system to improve replication efficiency and promote persistent infection. We here demonstrate that hyperproliferative skin expressing the high-risk human papillomavirus 16 E7 oncogene as a transgene drives immunomodulation of dendritic cells (DCs), resulting in reduced capacity to take up antigen and prime effector CD4+ T cell responses. The phenotype of DCs in the E7-expressing hyperproliferative skin was not reversible by activation through intradermal immunization. Naïve CD4+ T cells primed by E7-driven hyperproliferative skin acquired FoxP3 expression and an anergic phenotype. DC and T help modulation was dependent on E7-retinoblastoma protein interaction-driven epithelial hyperproliferation, rather than on expression of E7. Inhibition of binding of E7 to retinoblastoma protein, and of consequent epithelial hyperplasia, was associated with normal skin DC phenotype, and T helper type 1 effector responses to immunization were restored. We conclude that human papillomavirus-induced epithelial hyperplasia modulates epithelial DCs and inhibits T helper type 1 immunity while polarizing T-cell differentiation to a regulatory or anergic phenotype.
Collapse
Affiliation(s)
- Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Siok M Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
61
|
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front Immunol 2019; 10:1014. [PMID: 31143179 PMCID: PMC6521804 DOI: 10.3389/fimmu.2019.01014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) efficiently process and present antigens to T cells, and by integrating environmental signals, link innate and adaptive immunity. DCs also control the balance between tolerance and immunity, and are required for T-cell mediated anti-tumor immunity. One subset of classical DCs, cDC1, are particularly important for eliciting CD8 T cells that can kill tumor cells. cDC1s are superior in antigen cross-presentation, a process of presenting exogenous antigens on MHC class I to activate CD8+ T cells. Tumor-associated cDC1s can transport tumor antigen to the draining lymph node and cross-present tumor antigens, resulting in priming and activation of cytotoxic T cells. Although cross-presenting cDC1s are critical for eliciting anti-tumor T cell responses, the role and importance of other DC subsets in anti-tumor immunity is not as well-characterized. Recent literature in other contexts suggests that critical crosstalk between DC subsets can significantly alter biological outcomes, and these DC interactions likely also contribute significantly to tumor-specific immune responses. Therefore, antigen presentation by cDC1s may be necessary but not sufficient for maximal immune responses against cancer. Here, we discuss recent advances in the understanding of DC subset interactions to maximize anti-tumor immunity, and propose that such interactions should be considered for the development of better DC-targeted immunotherapies.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sonia Majri-Morrison
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Kristin V Tarbell
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
62
|
Belderbos RA, Aerts JGJV, Vroman H. Enhancing Dendritic Cell Therapy in Solid Tumors with Immunomodulating Conventional Treatment. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:67-81. [PMID: 31020037 PMCID: PMC6475716 DOI: 10.1016/j.omto.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells and are the key initiator of tumor-specific immune responses. These characteristics are exploited by DC therapy, where DCs are ex vivo loaded with tumor-associated antigens (TAAs) and used to induce tumor-specific immune responses. Unfortunately, clinical responses remain limited to a proportion of the patients. Tumor characteristics and the immunosuppressive tumor microenvironment (TME) of the tumor are likely hampering efficacy of DC therapy. Therefore, reducing the immunosuppressive TME by combining DC therapy with other treatments could be a promising strategy. Initially, conventional cancer therapies, such as chemotherapy and radiotherapy, were thought to specifically target cancerous cells. Recent insights indicate that these therapies additionally augment tumor immunity by targeting immunosuppressive cell subsets in the TME, inducing immunogenic cell death (ICD), or blocking inhibitory molecules. Therefore, combining DC therapy with registered therapies such as chemotherapy, radiotherapy, or checkpoint inhibitors could be a promising treatment strategy to improve the efficacy of DC therapy. In this review, we evaluate various clinical applicable combination strategies to improve the efficacy of DC therapy.
Collapse
Affiliation(s)
- Robert A Belderbos
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| |
Collapse
|
63
|
Herzog RW, Kuteyeva V, Saboungi R, Terhorst C, Biswas M. Reprogrammed CD4 + T Cells That Express FoxP3 + Control Inhibitory Antibody Formation in Hemophilia A Mice. Front Immunol 2019; 10:274. [PMID: 30842776 PMCID: PMC6391332 DOI: 10.3389/fimmu.2019.00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/16/2023] Open
Abstract
Coagulation Factor VIII (FVIII) replacement therapy in hemophilia A patients is complicated by the development of inhibitory antibodies, which often render the treatment ineffective. Previous studies demonstrated a strong correlation between induction of regulatory T cells (Treg) and tolerance to the therapeutic protein. We, therefore, set out to evaluate whether the adoptive transfer of FVIII-specific CD4+ Treg cells prevents inhibitor response to FVIII protein therapy. To this end, we first retrovirally transduced FoxP3+ into FVIII-specific CD4+ cells, which resulted in cells that stably express FoxP3, are phenotypically similar to peripherally induced Tregs and are antigen specific suppressors, as judged by in vitro assays. Upon transfer of the FVIII-specific CD4+ FoxP3+ cells into hemophilia A mice, development of inhibitory antibodies in response to administering FVIII protein was completely suppressed. Suppression was extended for 2 months, even after transferred cells were no longer detectable in the secondary lymphoid organs of recipient animals. Upon co-transfer of FoxP3+-transduced cells with the B cell depleting anti-CD20 into mice with pre-existing inhibitory antibodies to FVIII, the escalation of inhibitory antibody titers in response to subsequent FVIII protein therapy was dramatically reduced. We conclude that reprogramed FoxP3 expressing cells are capable of inducing the in vivo conversion of endogenous FVIII peripheral Tregs, which results in sustained suppression of FVIII inhibitors caused by replacement therapy in recipient hemophilia A animals.
Collapse
Affiliation(s)
- Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Veronica Kuteyeva
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rania Saboungi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Moanaro Biswas
| |
Collapse
|
64
|
Caudana P, Núñez NG, De La Rochere P, Pinto A, Denizeau J, Alonso R, Niborski LL, Lantz O, Sedlik C, Piaggio E. IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation. Cancer Immunol Res 2019; 7:443-457. [PMID: 30651291 DOI: 10.1158/2326-6066.cir-18-0697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
Abstract
High-dose IL2 immunotherapy can induce long-lasting cancer regression but is toxic and insufficiently efficacious. Improvements are obtained with IL2/anti-IL2 complexes (IL2Cx), which redirect IL2 action to CD8+ T and natural killer (NK) cells. Here, we evaluated the efficacy of combining IL2Cx with blockade of inhibitory immune pathways. In an autochthonous lung adenocarcinoma model, we show that the IL2Cx/anti-PD-1 combination increases CD8+ T-cell infiltration of the lung and controls tumor growth. In the B16-OVA model, which is resistant to checkpoint inhibition, combination of IL2Cx with PD-1 or CTLA-4 pathway blockade reverses that resistance. Both combinations work by reinvigorating exhausted intratumoral CD8+ T cells and by increasing the breadth of tumor-specific T-cell responses. However, only the IL2Cx/anti-CTLA-4 combination is able to rescue NK cell antitumor function by modulating intratumoral regulatory T cells. Overall, association of IL2Cx with PD-1 or CTLA-4 pathway blockade acts by different cellular mechanisms, paving the way for the rational design of combinatorial antitumor therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Female
- Immunotherapy
- Interleukin-2/immunology
- Killer Cells, Natural/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Pamela Caudana
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | | | | | - Anaïs Pinto
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Jordan Denizeau
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Ruby Alonso
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | | | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
- Institut Curie, PSL Research University, Clinical Immunology Laboratory, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, TransImm Team, Paris, France.
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| |
Collapse
|